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Abstract
Recent advances in machine learning have demonstrated that multi-modal pre-training can improve automatic speech
recognition (ASR) performance compared to randomly initialized models , even when models are fine-tuned on
uni-modal tasks. Existing multi-modal pre-training methods for the ASR task have primarily focused on single-stage
pre-training where a single unsupervised task is used for pre-training followed by fine-tuning on the downstream
task. In this work, we introduce a novel method combining multi-modal and multi-task unsupervised pre-training
with a translation-based supervised mid-training approach. We empirically demonstrate that such a multi-stage
approach leads to relative word error rate (WER) improvements of up to 38.45% over baselines on both Librispeech
and SUPERB. Additionally, we share several important findings for choosing pre-training methods and datasets.
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1. Introduction

Despite progress in large-scale pre-training for auto-
matic speech recognition (ASR) (Chen et al., 2022;
Hsu and Shi, 2022; Chan et al., 2022), uni-modal
(speech-only) ASR remains a challenging task, par-
ticularly when faced with rare words and noisy
acoustic conditions. When understanding spoken
phonemes, the model must correctly discern both
speaker-specific patterns (e.g., accent, prosody)
and global noise patterns (e.g., background noise,
intermittent interruptions, confounding speakers).
Recent work in natural language processing (NLP)
(Tu et al., 2020; Hoffmann et al., 2022), robotics
(Mandlekar et al., 2022; Kuhar et al., 2023; Khaz-
atsky et al., 2024) and computer vision (Goyal et al.,
2022; Ramanujan et al., 2023; Jain et al., 2024)
has demonstrated that exposing models to a high
diversity of data during pre-training is essential in
building robust representations.

Similarly, recent works in the ASR community
have corroborated these results. Shi et al. (2022)
and Hsu and Shi (2022) demonstrated that pre-
training on large-scale audio-visual data (or audio-
only data), in the form of lip-reading videos, leads
to better performance on the lip-reading task. Chan
et al. (2022) showed that exposing models to video
data during pre-training led to performance improve-
ments not only when visual input is available at train-
ing time, but also when only audio is available at
test time.

Chan et al. (2022) also demonstrated that adding
visual information from non-speech specific videos

1Work done during an internship at Amazon Alexa AI.

(leveraging the Kinetics dataset (Carreira and Zis-
serman, 2017)) is only a small portion of the pos-
sible augmentations that can be made during pre-
training. In this work, we not only explore two new
audio-visual pre-training sources, but also leverage
a translation task with English speech input as a new
mid-training task to consolidate information learned
during the pre-training phase. Further, while Chan
et al. (2022) explore an attention-based transfer-
learning framework based on k-means clustering
for pre-training, we simplify the pre-training architec-
ture significantly, and explore several pre-training
objectives beyond masked cluster prediction. Our
primary contributions are as follows:

1. We perform large-scale evaluation of multiple
audio-visual pre-training methods (MAE, CLR)
using several pre-training datasets (Kinetics,
VoxCeleb2, LRS3) with varying characteristics.
We evaluate them on the ASR task and the SU-
PERB benchmark, showing how multi-modal
pre-training is affected by key dataset charac-
teristics.

2. We show that pre-training with audio-visual
data, particularly data from speech-specific
audio-visual datasets can improve word error
rate (WER) up to 30.8% relative compared
to randomly initialized baseline models on
speech-only test data.

3. We introduce a novel mid-training stage be-
tween the pre-training and fine-tuning steps,
using speech translation as the mid-training
task. The mid-training stage improves WER by
38.45% relative on the Librispeech test-clean
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dataset, and by 26.18% relative on the test-
other dataset compared to audio-visual pre-
training only baseline. The technique also
shows improvements on several tasks (Key-
word Spotting, Intent Classification, Phoneme
Recognition, and Speaker Diarization) in the
SUPERB (Yang et al., 2021) benchmark.

2. Background

Representation learning methods like Contrastive
Predictive Coding (Oord et al., 2018) and Wav2Vec
(Schneider et al., 2019) have shown significant
promise when applied to ASR. Methods for large-
scale pre-training for ASR can be categorized into
two methods: masked autoencoding methods (Hsu
et al., 2021; Chen et al., 2022), and contrastive
learning (Baevski et al., 2020). While traditionally
self-supervised methods are trained on a single
target loss, other methods have been proposed
which leverage multiple pre-training targets. Pas-
cual et al. (2019); Talnikar et al. (2021); Wang et al.
(2021a) all optimize a combination of uni-modal
supervised losses and recently, approaches such
as W2v-BERT (Chung et al., 2021) and JUST (Bai
et al., 2022) have combined contrastive approaches
with masked auto-encoding to build robust self-
supervised speech representations. Similarly, while
most self-supervised methods are pre-trained on
a single dataset, Radford et al. (2022); Narayanan
et al. (2018); Likhomanenko et al. (2020); Chan et al.
(2021) have all demonstrated that a wide mix of data
is essential for pre-training. In this work, we target
both of these problems: use a combination of losses,
and pre-training stages under different datasets to
improve the learned multi-modal representations.

Audio-visual data provides diverse information for
representation learning. Shi et al. (2022) demon-
strate improvements on ASR when visual input is
available (at both training and test time), and meth-
ods such as u-HuBERT (Hsu and Shi, 2022) extend
such pre-training approaches to applications where
both uni-modal and multi-modal data are available
at training-time (but still require multi-modal data for
inference). Later work by Chan et al. (2022) demon-
strated that pre-training with paired audio-visual
data, can even improve performance on uni-modal
datasets.

In addition to multiple modalities, pre-training with
multiple languages has also been explored in the
literature. Radford et al. (2022) demonstrate that
pre-training with a wide range of inputs from sev-
eral languages improves ASR performance across
all of the studied languages. (Lahiri et al., 2021)
show that leveraging self-supervised learning (SSL)
for knowledge transfer across languages can yield
WER improvements of up to 3.55% relative WER on
target languages, and Karimi et al. (2022) demon-

strate that in almost all cases, even out-of-domain
multi-lingual data can improve WER in single and
multi-speaker conversations and dictation tasks.

3. Methods

Our method (Figure 1), consists of a multi-stage
multi-modal pre-training approach, followed by a
fine-tuning stage on downstream tasks. We de-
scribe our method in this section.

3.1. Pre-Training Tasks

We experiment with two pre-training strategies that
differ in the granularity of information they extract.
The first method, Masked Autoencoder (MAE),
learns local features by reconstructing masked
parts of speech and video. The second method,
Contrastive Learning (CLR), focuses on global
features by using pooled audio-visual features
from the same video as positive pairs while other
combinations of audio-visual pairs as negatives.
The two pre-training strategies help us compare
the effects of local and global feature learning
against the visual-audio dataset characteristics,
for eg., Kinetics dataset (Carreira et al., 2018) has
non-speech audio streams, while LRS-3 (Afouras
et al., 2018) and Voxceleb2 (Chung et al., 2018)
datasets have videos with speech.

Masked Autoencoding (MAE): Traditional MAE
approaches for ASR pre-training have focused on
token-based reconstruction (Hsu et al., 2021; Shi
et al., 2022; Chan et al., 2022). However these
methods have the drawback of requiring a sepa-
rate quantization method, which can add significant
training complexity. We simplify the encoder to di-
rectly reconstruct features from the original masked
signal.

Our MAE approach consists of three encoders:
Ea, a masked audio-specific encoder based on the
encoder in Chen et al. (2022), Ev, a masked video-
specific encoder based on Tong et al. (2022), and
Da+v, a joint transformer decoder with the same
structure as in Devlin et al. (2018).

Let a∈RTa×F be the set of audio input frames (we
use f-dimensional log-filterbank energies (LFBE)),
and v∈RH//PH×W//PW×Tv//PT×(PHPWPT ) be a set
of video frames, which have been subdivided into
(PH ,PW ,PT ) voxels. Ta refers to number of audio
frames and Tv are number of video frames of height
H and width W . To generate the input sequence
to Ea, we randomly mask a fraction ϕ of the audio
frames with 0s (masking), and generate the embed-
ded audio ea=Ea(a). We use a similar process to
mask voxels, to generate ev=Ev(v).

The encoded representations ea and ev are
passed through the common decoder Da+v to pro-
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Figure 1: Overview of multi-modal training strategy. Raw audio and video features are extracted from source data.
These features are then passed through the audio and video encoders to get features which are further processed as
(1) MAE: the masked encoded features are reconstructed through a common decoder successively and are compared
against original input using L2 loss, (2) CLR: contrastive learning applied to spatio-temporally pooled audio and video
encoded features, and (3) the trained audio encoder is further used for mid-training (translation task) and then for
downstream tasks.

duce oa=Da+v(ea) and ov=Da+v(ev) respectively.
The common decoder Da+v ensures that the rep-
resentations ea and ev are projected to the same
representation space. The final MAE loss is com-
puted as the squared L2 distance between oa and
a, and ov and v:

LMAE= ||Da+v(Ea(a))−a||22+||Da+v(Ev(v))−v||22
(1)

Contrastive Learning (CLR): Contrastive Learning
aims to learn representations using a contrastive
loss that minimizes the distance between similar
points and maximizes the distance between dis-
similar points in a latent space. For contrastive
learning, following Radford et al. (2021) and Xu
et al. (2021), we use the modality specific encod-
ings ea and ev to generate aenc =Pool(ea), where
the pooling operation is a temporal average, and
venc = Pool(ev), where the pooling operation is a
spatio-temporal average. While other pooling oper-
ations like attention pooling are possible, we found
that the spatio-temporal average captures consis-
tent low-frequency global information, which corre-
lates well with the information shared with the visual
modality (unlike high-frequency information, which
is often not evident from the visual modality). The
self-supervised contrastive loss for a batch of sam-

ples aenci ,1≤ i≤N , and venci ,1≤ i≤N is computed
as

Li
contrastive=−log

(
exp(aenci ·venci )∑N

k=11[k ̸=i]exp(a
enc
i ·venck )

)
(2)

LCLR=
1

N

N∑
i=1

Li
contrastive (3)

MAE + CLR: In this setup, we combine the benefits
of learning local features using MAE with learn-
ing global features using CLR as shown in Fig-
ure 1. Both pre-training losses are added with equal
weights, similar to Chung et al. (2021) to compute
the final loss as

LMAE+CLR=
LMAE+LCLR

2
(4)

Pre-training Datasets: We use three datasets for
pre-training. The Kinetics-600 dataset (Carreira
et al., 2018) has 966 hours of audio-visual data
for activity recognition, with a focus on the envi-
ronment or instrument used. The videos contains
non-speech audio data and have been used previ-
ously for audio-visual training (Chan et al., 2022).
Voxceleb2 (Chung et al., 2018) provides 2380 hours
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of multi-lingual speaker recognition data with chal-
lenging acoustics and comprehensive lip and fa-
cial movements. LRS3 (Afouras et al., 2018) fea-
tures 346 hours of clean, multi-modal spoken sen-
tence data from TED and TEDx videos. The speech
data in Voxceleb2 is has noisy acoustic conditions
whereas LRS-3 has clean speech with speakers
talking to a close-talk microphone. These datasets
allow for exploring the impact of clean-speech/noisy-
speech/non-speech videos and pre-training tech-
niques on the ASR task (subsection 3.3).

3.2. Mid-Training: Speech Translation

To improve performance of the pre-trained audio-
visual models on the downstream tasks, we intro-
duce a mid-training task that bridges the gap be-
tween pre-training and fine-tuning. Our approach
transfers the learned distribution of the pre-trained
model towards the distribution required for the down-
stream task, while discarding irrelevant information.

The mid-training task is designed to provide a
low-cost warm-up for the pre-trained model, which
can accurately represent various characteristics of
the data. We chose to mid-train our audio encoder
on the speech translation task using the MuST-C
dataset (Di Gangi et al., 2019) in three languages,
German, Italian and Dutch. This stage is useful for
aligning the learned speech representations with
the text modality which is beneficial for ASR, as
shown in recent work in the speech representation
learning space(Zhang et al., 2023). Our audio en-
coder was mid-trained until convergence on the
speech translation task. This mid-training approach
is the key to strong performance in downstream
tasks, which we demonstrate in detail in section 4.

Using translation as a mid-training task is only
one possible instantiation of the mid-training ap-
proach. In addition to translation, future work can
explore other speech-centric tasks like speaker
identification, implied by (Chan and Ghosh, 2022)),
speaker/source separation, text to speech, and oth-
ers. While we found that translation is effective in
this work, we expect that each additional task will
impact the downstream training process in unique
ways.

3.3. Fine-Tuning

We evaluated our models by testing their perfor-
mance on several downstream tasks. The fine-
tuning task is distinct from the pre-training task of
masked reconstruction (MAE) or contrastive learn-
ing (CLR), and the mid-training task designed to
bridge the gap. Primarily, we evaluate the perfor-
mance of the models on the test-clean and test-
other Librispeech (Panayotov et al., 2015) datasets
for ASR, as well as four tasks from the SUPERB
(Yang et al., 2021) benchmark: Intent Classification

(IC), Keyword Spotting (KS), Phoneme Recogni-
tion (PR) and Speaker Diarization (SD). Because
our aim was to evaluate how both the pre-training
and mid-training data distributions impact the final
learned representations, we freeze the encoder
weights during task specific fine-tuning, and fine-
tune only the task specific decoder using the LS-960
dataset (for ASR) following Baevski et al. (2020)
or the default datasets specified in the SUPERB
benchmark (Yang et al., 2021).

3.4. Model Details

In this section, we discuss the implementation
details of the different training setups across the
three datasets.

Video Data Pre-processing: Videos are first
resized to a resolution of 224 × 224 pixels, with
a temporal stride of 4 and 16 frames sampled
temporally. We apply random resized cropping with
scale from 0.5 to 1, and random horizontal flipping
following standard computer vision techniques for
visual data augmentation.

Video Encoder: Our video encoding approach is
similar to that of (Feichtenhofer et al., 2022). Firstly,
we divide the video into a regular grid of space-time
patches of dimensions 16×16×2 in the (H,W,T )
direction, respectively. These patches are then
flattened and augmented with spatio-temporal posi-
tional embeddings (Vaswani et al., 2017).

For the Masked Autoencoder, we randomly select
60% of the patches for masking, and mask patches
without replacement, while keeping the selection
agnostic in the space-time domain. The remain-
ing patches are then passed through 12 ViT en-
coder blocks (Dosovitskiy et al., 2020) with a hidden
dimension of 768. We obtain the video encoded
features of the remaining spatio-temporal patches,
which are later reconstructed using a common de-
coder.

For Contrastive Learning, we reduce the spatial
patches to a single embedding for each frame (Xu
et al., 2021; Radford et al., 2021). The reduced
patches are passed through a video encoder with
12 ViT encoder blocks (Dosovitskiy et al., 2020)
with a hidden dimension of 768. The encoded em-
beddings are temporally pooled following (Xu et al.,
2021), resulting in single-vector video features
which can be contrasted against corresponding
audio embeddings.

Audio Data Pre-processing: The audio input is
re-sampled to a frequency of 16kHz. Subsequently,
80-dimensional Log-Filterbank Energy (LFBE)
features are computed from the resulting audio
frames. To ensure consistency in feature size, we
selected the first 1000 LFBE frames for downstream
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processing. The frames are further sub-sampled
using a 1D convolutional layer, reducing the number
of audio frames to 250, following the approach of
Gulati et al. (2020).

Audio Encoder: We use positional embeddings
in the sub-sampled audio frames similar to video
encoding, as proposed by Vaswani et al. (2017). In
the Masked Autoencoder, a random mask without
replacement is applied to 60% of the frames, with
the visual and audio modalities sharing the same
masking ratio to maintain balance in the amount of
information across both modalities. The remaining
frames are encoded by a Conformer (Gulati et al.,
2020) with 16 layers, 4 heads, and a depth-wise
convolutional kernel of size 31. Audio features are
then up-sampled by a linear layer and normalized
for reconstruction.

In Contrastive Learning, the sub-sampled frames
are directly featurized by the Conformer blocks with-
out any masking involved. The audio features are
then temporally pooled to obtain a single feature for
the audio clip, which is up-sampled and normalized.
For both the Mid-training and Fine-tuning tasks, the
feature output from Conformer blocks is used as
input to task-specific decoders. The weights of the
convolutional sub-sampling layer and Conformer
blocks are the only components re-used from the
pre-training stage for further steps.

Common Decoder: The Masked Autoencoder
pre-training step uses a relatively small vanilla ViT
(Dosovitskiy et al., 2020) decoder of hidden dimen-
sion size of 512 and 4 ViT blocks. The decoder pro-
cesses a combination of the encoded and masked
patches and outputs the original reconstructed sig-
nal. A shared decoder is used to sequentially recon-
struct each patch.

4. Results, Analysis & Limitations

Our main results on the Librispeech dataset are
shown in Table 1 and Figure 3, and demonstrate
several interesting learnings:

Audio-visual Pre-training is Effective: Table 1
shows that on average in all cases, audio-visual
pre-training is effective. Averaging the performance
across all methods results in 6.34 ± 0.94 WER for
test-clean, and 12.18 ± 0.98 for test-other. Under
the null hypothesis that audio-visual pre-training
is ineffective, we find significant improvements
(p=0.035) over the baseline.

Mid-training with all translation pairs im-
prove ASR performance: Table 1 shows that
the mid-training approach leads to significant
(p < 0.01) improvements over pre-trained models

alone, leading to relative WER improvements of
8.59%/6.77% (test-clean/test-other) with English-
German pair, 18.55%/10.28% for English-Italian
pair, and 13.11%/7.71% for English-Dutch pair. Sur-
prisingly, Italian is the most effective, suggesting
that choosing languages which are complemen-
tary to English may be more useful than languages
which are closer to the target downstream language
(English, Dutch and German all have Germanic
roots, while Italian has Latin roots - see Tyshchenko
et al. (2000) for a discussion on linguistic distance).

We leave it to future work to explore languages
that retain very little shared information, such as
Russian or Chinese. The relative performance
improvements with mid-training are shown in
Figure 3. The figure shows several effects which
we discuss in the following sections: the model
pre-trained on Kinetics dataset is most improved
with mid-training, English-Italian translation
is the best mid-training pair, and the model pre-
trained with CLR benefits the most with mid-training.

How do pre-training datasets impact perfor-
mance (Is dataset size the only factor)? De-
spite differences in pre-training dataset sizes, it
is interesting to understand how the input mix of
data impacts the overall performance of the model.
Without mid-training, models pre-trained on LRS-3,
the smalleset dataset, outperform all other mod-
els (6.19%/11.64% WER) on the test-other dataset.
LRS-3 is a small fraction of the size of the VoxCeleb2
dataset, suggesting that the distributional makeup
of the multi-modal dataset is key to pre-training per-
formance, and dataset size is not all that matters.
VoxCeleb2 (6.16%/12.01% WER) outperforms LRS-
3 slightly on the test-clean dataset. Kinetics trails
both in aggregate (6.65%/12.9% WER), which could
be due to both the size of the dataset (only half the
size of VoxCeleb2), or the makeup of the dataset
(no speech-specific data).

All three pre-training datasets outperform from
scratch training for ASR (even Kinetics), indicating
that pre-training on any amount or type of audio-
visual data can be helpful. We note that while
Kinetics has the worst overall performance, it im-
proves the most with mid-training (Rel. WER im-
provement of 14.03%) vs VoxCeleb2 (9.45%) and
LRS-3 (6.17%) (Figure 3). These results confirm
that the model pre-trained on Kinetics has the most
to gain from language-representation alignment (as
it contains no speech data), and training on LRS-3,
which consists of primarily clean data, has less to
gain.

The best ASR results with MAE and CLR
are obtained on the LRS-3 pre-training dataset.
However the best MAE+CLR performance was
in using the Kinetics dataset. While it can be
difficult to disentangle the results from pre-training
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Method PT MT en-de ↓ en-it ↓ en-nl ↓
Test-clean Test-other Test-clean Test-other Test-clean Test-other

No Pre-training None - 6.84 ± 0.22 12.91 ± 0.47 6.84 12.91 6.84 12.91

MAE K600 - 7.54 13.88 7.54 13.88 7.54 13.88
K600 ✓ 5.69 11.34 5.95 12.55 5.73 12.04
VC2 - 5.28 11.51 5.28 11.51 5.28 11.51
VC2 ✓ 5.11 11.12 5.56 10.42 5.64 12.46
LRS3 - 4.73 10.27 4.73 10.27 4.73 10.27
LRS3 ✓ 5.61 10.85 4.21 9.53 5.32 10.33

CLR K600 - 6.85 12.92 6.85 12.92 6.85 12.92
K600 ✓ 5.02 10.85 4.72 10.62 4.65 10.41
VC2 - 6.47 12.42 6.47 12.42 6.47 12.42
VC2 ✓ 6.43 12.31 5.1 10.61 4.62 10.77
LRS3 - 6.35 12.12 6.35 12.12 6.35 12.12
LRS3 ✓ 6.74 10.59 5.84 11.33 6.01 10.13

MAE + CLR K600 - 5.56 11.91 5.56 11.91 5.56 11.91
K600 ✓ 5.02 11.68 5.23 11.37 6.39 12.03
VC2 - 6.75 12.11 6.75 12.11 6.75 12.11
VC2 ✓ 5.36 11.22 4.77 10.84 5.03 10.73
LRS3 - 7.51 12.54 7.51 12.54 7.51 12.54
LRS3 ✓ 7.16 12.29 5.08 11.13 6.17 12.32

Table 1: Performance (WER) on the Librispeech test-clean and test-other datasets with and without mid-training,
and across Kinetics (K600), Voxceleb2 (VC2) and LRS-3 pre-training datasets. MT: With mid-training. MAE: Masked
Autoencoding, CLR: Contrastive Learning. PT: Pre-Training. Underline denote the consistent WER drop through
mid-training alone across the 3 datasets and PT strategies. We observe that translation Mid-training task benefit
the global representations of CLR more consistently compared to MAE. Overall, it improves the ‘only pre-trained’
performance by aligning the learnt features towards the downstream task through auxiliary translation task. Further,
italian language is the most effective as a mid-training task, suggesting that the languages that are complimentary to
English may be more useful than others.

dataset size, this result may suggest that multi-task
learning is more effective on out-of-domain data,
where modalities contain non-redundant audio
information, compared to VoxCeleb/LRS-3, where
modalities consist of primarily redundant informa-
tion.

MAE outperforms CLR, MAE+CLR on ASR:
For ASR results averaged over all pre-training
datasets, we find that MAE (5.63%/11.53% WER)
alone outperforms both CLR (6.00%/11.67%)
and MAE+CLR (6.09%/11.85%), suggesting that
pre-training with masked auto-encoding objectives
remains a promising approach for future exploration.
Following intuition from Chan et al. (2022), it is likely
that CLR-augmented methods outperform on more
global downstream tasks, whereas MAE encodes
more local information which is useful for ASR, and
MAE+CLR is a useful mix of both. This hypothesis
is validated in our experiments on SUPERB (Yang
et al., 2021), where we found MAE+CLR most
effective when aggregated across the mix of global
(Intent Classification, Keyword Spotting), and local
(Phoneme Recognition) tasks.

Mid-Training is most effective with multi-task
pre-training: We explore the performance of

-4.29%

+6.715%

+70.1%

+11.716%

SD
PR
IC
KS

Figure 2: Aggregate (dataset/language) relative perfor-
mance improvement (higher is better) under mid-training
for MAE + CLR on SUPERB. KS: Keyword spotting, IC:
Intent Classification, PR: Phoneme Recognition, SD:
Speaker Diarization. We observe consistent improve-
ment in performance due to translation mid-training on
tasks which require local feature information (KS, IC and
PR) whereas global task SD observe a decrease in per-
formance. It further shows that translation mid-training
task enhances the pre-trained model’s performance for
local feature tasks while hurts the global feature task.

our methods on four tasks from the SUPERB
(Yang et al., 2021) benchmark in Figure 2. For
SUPERB, mid-training improves performance for
MAE+CLR models across most tasks. The notable
exception is speaker diarization (SD), where
there is minimal task overlap between SD and the
mid-training target. Intent Classification (IC) is most
improved (results not show in the tables), primarily
due to a improvements in models pre-trained on
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the Kinetics (+80.17%) and LRS-3 (+102.30%)
datasets, which benefit from the additional textual
alignment. Keyword spotting (KS) improvements
can also be largely attributed improvements on
models pre-trained on Kinetics (+27.52%), for
similar reasons. Models pre-trained on VoxCeleb2
improve less with mid-training compared to models
pre-trained with both Kinetics and LRS-3 for all
tasks. We posit that since VoxCeleb2 dataset is
already multi-lingual, and benefits less from further
multi-lingual training.
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Figure 3: Average relative WER improvement on
the Librispeech test-clean and test-other datasets
with mid-training to show the effect of pre-training
methods (left), mid-training translation pairs (cen-
ter), and pre-training datasets (right). Translation
mid-training improves upon CLR pre-training the
most as it aligns its features for the local information
required for ASR. Among the translation languages,
Italian provides the best improvement, suggesting a
complimentary language to English gains the most
compared to languages that shares its roots with En-
glish. Models pre-trained on non-speech dataset Ki-
netics benefit the most from translation mid-training
followed by noisy speech dataset Voxceleb2 and
then clean speech dataset LRS3.

Note on baseline conformer performance: In
this work, we note that our baseline conformer
models do not match the performance of Gulati
et al. (2020). Note that our primary goals was not to
attain state of the art models, but study the impact
of pre-training methods and datasets on ASR
performance. The higher WER can be attributed
to lower batch size used in out experiments, which
was done to account for the large number of
ablation studies done for this paper. While the
overall baseline performance may be worse, the
insights learned from the relative performance
comparisons across the large-scale ablation are
transferable to larger, more expensive models.

In summary, our results indicate the following:

• Audio-visual pre-training is effective in almost
all scenarios.

• Mid-training is useful and including data which
is complementary is more effective than includ-
ing data similar to pre-training data.

• Clean speech audio-visual dataset LRS-3 is
an effective pre-training dataset given its size,
compared to Kinetics and Voxceleb2.

• MAE pre-training is more effective than con-
trastive learning in ASR, while augmenting pre-
training with CLR can help with downstream
tasks that use global information.

5. Discussion

Recently, the size of pre-trained models and the
datasets have increased to such an extent that
it is cost-prohibitive to pre-train these models on
datasets aligned with the downstream tasks of in-
terest. Hence, a light-weight mid-training strategy
can tune the pre-trained features strengthening the
downstream performance.

An alternative to the mid-training strategy is to
include task during pre-training itself. This alterna-
tive strategy has two drawbacks; first, the amount
of labeled data available for the mid-training task is
typically not large enough to have significant impact
when jointly learned in the pre-training stage. Sec-
ondly, the mid-training approach is more practical
as it can be applied to already available pre-trained
models instead of training the models from scratch
which requires large amounts of time and compute.

6. Conclusion & Future Directions

This work presents a multi-lingual mid-training
objective and a large-scale analysis of multiple
audio-visual pre-training methods and datasets,
which confirms observations from (Hsu et al.,
2021) and (Chan et al., 2022) — we show how
large scale audio-visual pre-training significantly
improves downstream ASR performance, and that
a well-chosen mid-training task can help the final
downstream task.

While this paper presents initial insights into how
mid-training tasks impact models multi-modal pre-
trained models, we believe that significant additional
future work remains to fully understand how se-
quences of training tasks can align large pre-trained
models with downstream tasks.

One interesting direction for future work is an ex-
ploration of additional mid-training tasks. In this
work, we show that translation has the power to
bridge gaps between multi-modal pre-trained mod-
els and language-based ASR tasks. Paired data for
translation data can often be scarce, and may not
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be the optimal choice for future mid-training tasks.
Instead, it may be insightful to explore mid-training
tasks which are centered around synthetic data
(such as TTS data from text datasets, or text gener-
ated by large language models) or self-supervised
approaches to mid-training.

Another closely related direction of future work
explores how pre-training tasks impact the per-
formance of downstream and mid-trained models.
Here, we focus on multi-modal pre-training, as it is
a key emergent direction of ASR research. How-
ever mid-training can easily be applied to uni-modal
pre-training, or even zero-shot transfer from founda-
tional models.

In conclusion, this study sheds light on the impact
of mid-training tasks in the context of multi-modal
pre-training and demonstrates the significant im-
provement in downstream automatic speech recog-
nition performance achieved through large-scale
audio-visual pre-training. By continuing to delve
into these areas, we can advance our understand-
ing of how to effectively align pre-trained models
with diverse downstream tasks and unlock new pos-
sibilities for multi-modal ASR research.
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