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Abstract
Hierarchical text classification (HTC) is a significant but challenging task in natural language processing (NLP) due
to its complex taxonomic label hierarchy. Recently, there have been a number of approaches that applied prompt
learning to HTC problems, demonstrating impressive efficacy. The majority of prompt-based studies emphasize
global hierarchical features by employing graph networks to represent the hierarchical structure as a whole, with
limited research on maintaining path consistency within the internal hierarchy of the structure. In this paper, we
formulate prompt-based HTC as a named entity recognition (NER) task and introduce conditional random fields
(CRF) and Global Pointer to establish hierarchical dependencies. Specifically, we approach single- and multi-path
HTC as flat and nested entity recognition tasks and model them using span- and token-based methods. By narrowing
the gap between HTC and NER, we maintain the consistency of internal paths within the hierarchical structure
through a simple and effective way. Extensive experiments on three public datasets show that our method achieves
state-of-the-art (SoTA) performance.
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1. Introduction

HTC is a subtask of multi-label classification in NLP
where a sample is categorized as a set of labels
with a hierarchical structure (Vens et al., 2008). Fre-
quently, real-world classification datasets consist
of numerous categories that are organized like this,
such as scientific literature categorization (Kowsari
et al., 2017) and news corpus (Lewis et al., 2004;
Evan Sandhaus, 2008). In these scenarios, the ap-
propriate modeling of the hierarchical structure is
a crucial aspect of achieving well-performing clas-
sification results, as it allows for an intuitive repre-
sentation of the complicated relationships among
labels.

Inspired by GPT-3 (Brown et al., 2020) and LAMA
(Petroni et al., 2019), more and more researches
applying prompts (Ding et al., 2022) for model fine-
tuning narrows the gap between the pretraining
strategies of PLMs and the downstream tasks, and
proves that such prompts approach indeed exhibits
better performance. Recently, a series of studies
have commenced exploring prompt-based learning
in the HTC task (Wang et al., 2022b; Ji et al., 2023)
and achieved promising results, providing us with
more insights to address HTC problems. Despite
the success of prompt tuning in HTC, further explo-
ration is needed for its integration with hierarchical
structures.

The current SoTA HTC models tend to represent
hierarchy features through graph neural networks
(GNN) and then inject them as external knowledge
into the text features (Wang et al., 2022a; Zhou
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Figure 1: Illustration of method for comparing NER
with HTC. (a) For flat NER, each token corresponds
to an output label. Similarly, for single-path HTC,
each hierarchical slot produces one label. (b) For
multi-path HTC, a span-based approach similar to
nested NER can be adapted.

et al., 2020), leading to notable results. With the
rise of pretrained language models (PLMs), an in-
creasing number of tasks are incorporating PLMs
(Chen et al., 2021), and HTC is no exception. More-
over, the fusion of hierarchical knowledge has been
categorized into three types: injecting features be-
fore the model input (Jiang et al., 2022), after the
model output (Ji et al., 2023), and simultaneously
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inserting features (Wang et al., 2022b). Although
existing studies have taken into account the po-
sitional impact of feature fusion, very few focus
on the global and local hierarchical features at the
same time, often overlooking the local relationships,
specifically, the issue of path consistency within the
hierarchical structure. Jiang et al. (2022) notice
this issue and propose a sequence-to-sequence
model HBGL. However, this method employs pre-
extracted global features to represent local ones
and uses the sum of embeddings to represent the
current level. It fails to capture the specific depen-
dencies among labels within the hierarchy. Besides,
additional iterations and sequential constraint pre-
diction are also limitations of their performance.

To address the prompt-based HTC task, which
ignores path consistency within the internal hierar-
chy , we look closely at the label structures and find
that the most crucial aspect of the local features
lies in the parent-child relationship between adja-
cent hierarchical levels. Under this observation,
we draw parallels with NER tasks that also exhibit
constrained relationships among labels, such as
the BIO tag scheme (Huang et al., 2015), where
the B-tag must follow a start or O-tag, and the I-tag
must follow a B-tag, similar to how sub-labels at dif-
ferent levels must follow their corresponding parent
labels. Furthermore, as shown in Figure 1, we also
identify similarities between single- and multi-path
HTC tasks with respect to flat and nested NER prob-
lems. In this work, we introduce an NER-guided
comprehensive hierarchy-aware model combined
with the prompt tuning method to enable prompt-
based models to establish complete hierarchical
dependencies. Our main contributions are as fol-
lows:

• By considering the characteristics of hierarchi-
cal dependencies, we are the first to adopt
NER methods for modeling two prompt-based
HTC tasks, providing a novel perspective for
hierarchical-related work.

• We employ Global Pointer and CRF designed
for nested and flat entities to model both multi-
path and single-path HTC problems, ensuring
path consistency in the results through a sim-
ple and effective way.

• We evaluate our method on three popular
datasets: Web-of-Science (WOS), NYTimes
(NYT), and RCV1-V2. Extensive experiments
demonstrate that our method achieves signifi-
cant improvements.

2. Related Work

HTC is a subtask of multi-label classification, which
poses challenges owing to its imbalanced, large-
scale, and complex hierarchical structures (Mao

et al., 2019). Current research is primarily focused
on addressing HTC issues by integrating hierar-
chical features as extra knowledge into the text or
model. Specifically, these works are grouped into
local and global approaches based on their treat-
ment of label structures (Zhou et al., 2020). The
local approaches apply classifiers for each node
or layer to acquire specific hierarchical representa-
tions. Early works on HTC commonly employ local
approaches (Wehrmann et al., 2018; Shimura et al.,
2018; Banerjee et al., 2019). However, the number
of local classifiers varying with the label structure
makes local methods less scalable, leading to the
prominence of global approaches, which gradually
become mainstream.

Global approaches leverage one classifier to
model the label hierarchy. Several works employ
popular approaches to integrate hierarchical global
information, such as attention mechanism (Zhang
et al., 2022), meta-learning (Wu et al., 2019), and
reinforcement learning (Mao et al., 2019). Subse-
quently, Zhou et al. (2020) propose that employing
a holistic encoder to represent hierarchical relation-
ships can improve performance. From then on, the
focus of HTC research gradually shifts from how
to represent hierarchical structures to how to effec-
tively integrate hierarchical features into text and
models. HyperIM (Chen et al., 2020) and HiMatch
(Chen et al., 2021) adopt the approach of projecting
label hierarchy and text semantics into a joint em-
bedding space for further presentation. Zhao et al.
(2021) propose a self-adaption semantic aware-
ness network to integrate text and label information.
Ji et al. (2023) fuse label hierarchy knowledge into
verbalizers in prompt few-shot HTC tasks. Besides,
several studies (Wang et al., 2022a,b; Jiang et al.,
2022; Zhu et al., 2023) jointly model hierarchical
features and text, rather than separately represent-
ing them and then integrating, resulting in promising
outcomes.

3. Preliminaries

3.1. Traditional HTC

As a subtask of multi-label text classification, HTC
primarily differs in the unique composition of its la-
bel hierarchy. We predefine the label structure as
a special directed acyclic graph (DAG) H = (Y,E),
where Y is the complete label set, and E repre-
sents the relationships among labels. Typically, H
is a tree-like structure, wherein each node, except
for the leaf nodes, contains one or more children.
In HTC, given an input text x = {x1, x2, . . . , xn},
where n is the sequence length, the objective is to
predict a multi-label set y ⊆ Y , corresponding to
one or more paths in H starting from the root node.
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3.2. NER-guided Prompt-based HTC
We employ an NER-guided approach on top of
the prompt-based HTC. Taking the soft prompt
as an example, we make the template like this:
[CLS] x [SEP] [T1] [Hie1] [T2] [Hie2] ...
[TL] [HieL] [SEP], where[Hie] slots indicate
the labels at each hierarchical level, virtual tem-
plate words [T] are continuously updated dur-
ing the training process and L represents the
maximum number of hierarchical levels. For
single-path HTC, we employ the sequence tagging
method commonly used in flat NER. Let xhie =[
x1

hie , x
2
hie , . . . , x

L
hie

]
represent the input sequence

of hierarchy slots and y = {y1, y2, . . . , yL} ∈ P be
the output label path, where P is the path set in
H. We aim to build a conditional probability model
Pr(y | xhie ). For multi-path HTC, we view it as
the nested NER and employ a span-based ap-
proach. Let S = {s1, s2, . . . sm} be the possible
spans. Each span s is denoted as s[i : j], where i
and j are the indices of Hhie. Our goal is to identify
all s ∈ P .

4. Methodology

This section will introduce the proposed compre-
hensive hierarchy-aware structure in detail. As
shown in Figure 2, our framework is divided into
two parts: global and local. In the global method,
we draw inspiration from the architecture of HPT
(Wang et al., 2022b), which we believe effectively
captures the global characteristics of the hierarchi-
cal structure but overlooks the local hierarchical
dependencies. In the local part, we address the
issue of path consistency separately. For the multi-
path task, we treat it as a nested NER problem
and employ Global Pointer (Su et al., 2022a) for
resolution. As for the single-path task, we identify
its connection with flat NER and utilize a simple
method of CRF(Huang et al., 2015) to capture the
relationships between adjacent hierarchical labels.

4.1. Global Hierarchy-aware Structure
We adopt the layer-wise soft prompt template from
HPT (Wang et al., 2022b), as described above, de-
noted as: [CLS] x [SEP] [T1] [Hie1] [T2]
[Hie2] ... [TL] [HieL] [SEP]. In this con-
text, [T1] to [TL] are virtual template words, and
[Hie1] to [HieL] are special slots for predicting
hierarchical labels, where L represents the maxi-
mum number of levels in the current dataset.

We utilize BERT (Devlin et al., 2019) as text en-
coder. Initially, embeddings are obtained for each
token:

Emb = [X;T]

=
[
x1, . . . ,xn, t1, e

1
hie, . . . , tL, e

L
hie

] (1)

where X denotes word embeddings from x1 to xn

and T is prompt embeddings, which consisting of
virtual template embeddings {ti}Li=1 and hierarchy
prediction embeddings ehie. We feed these em-
beddings into BERT encoder to get corresponding
hidden states:

H = BERT (Emb)

=
[
h1, . . . ,hn,ht1 ,h

1
hie, . . . ,htL ,h

L
hie

] (2)

where hi
hie represents the hidden state of the i-th

layer, which is generally filtered by verbalizer for
subsequent label prediction. We redefine it as:

Hhie =
[
h1

hie ,h
2
hie , . . . ,h

L
hie

]
(3)

It is confirmed that the hierarchical injection
method used in the previous works effectively cap-
tures the global features. Following HPT (Wang
et al., 2022b), we employ graph attention net-
work (GAT) (Kipf and Welling, 2017), a widely
used model for extracting graph structural features.
Given a node v in the l-th layer of GAT, the informa-
tion it can obtain in the (l + 1)-th layer is defined
as:

G(l+1)
v = ReLU(

∑
u∈N (v)

⋃
{v}

1

cv
W(l)G(l)

u ) (4)

where W ∈ Rdm×dm is a learnable parameter ma-
trix, N (v) represents the set of neighboring nodes
of v, and cv is a normalization constant. To integrate
hierarchical features, ti in Equation (1) is updated
as t′i:

t′i = ti +GK
ti (5)

where K is the number of layers in GAT and the
neighbors for ti are labels in the current layer.

4.2. Local Hierarchy-aware Structure for
Multi-path HTC

As mentioned above, we consider multi-path HTC
as the nested NER task and employ the Global
Pointer (Su et al., 2022a) model to address it. Given
that NER tasks emphasize relationships between
adjacent tokens or spans, we apply them to prompt-
based HTC in order to capture the local hierarchical
dependencies. According to Equation 3, we obtain
the hidden state hhie of each ehie, which corre-
sponds to the label hierarchy at each layer. The
length of Hhie is L, and it is known from the Pre-
liminaries section that there are m possible spans,
where m = L(L+ 1)/2. To compute the span rep-
resentation, we first analyze a specific label path
α ∈ P and pass hi

hie, h
j
hie through two feedforward

layers:
qi,α = Wq,αh

i
hie + bq,α

kj,α = Wk,αh
j
hie + bk,α,

(6)
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Figure 2: Model structure used in our method. We consider single-path HTC and multi-path HTC as flat
and nested NER, respectively. For the multi-path task, we employ span-based Global Pointer method. In
the case of single-path HTC, it is treated as a sequence labeling problem. For global-level information,
we follow the approach in HPT.

corresponding to the begin and end of the span,
respectively. qi,α ∈ Rdm and kj,α ∈ Rdm are two
different vector representations of the hierarchy fea-
ture hhie which used to identify the label path α.
That is to say, for span s[i : j] of α, qi,α and kj,α
represent the start and end position i and j. All
vectors in α are denoted as:

Qα = [q1,α,q2,α, · · · ,qL,α]

Kα = [k1,α,k2,α, · · · ,kL,α]
(7)

Then, the probability of the span s[i : j] belonging
to label path α is computed as follows:

sα(i, j) = q⊤
i,αkj,α (8)

For all path labels in P , the final scores are repre-
sented as a tensor Score ∈ RL×L×p, where p is the
total path labels. In HTC tasks, label paths usually
start from the root node to leaf nodes. Therefore,
we can focus our analysis on S[1 : j] to capture
relevant information while still conserving space.
Following Global Pointer (Su et al., 2022a), we also
employ the rotation position encoding (ROPE) to
leverage the boundary information, where the trans-
formation matrix satisfies M⊤

i Mj = Mj−i. After
the update, the span scores are represented as:

sα(i, j) = (Miqi,α)
⊤
(Mjkj,α)

= q⊤
i,αMj−ikj,α

(9)

4.3. Local Hierarchy-aware Structure for
Single-path HTC

For single-path HTC tasks, each layer outputs
just one label, corresponding to the sequence

labeling method used in flat NER. Let xhie =[
x1

hie , x
2
hie , . . . , x

L
hie

]
represent the input sequence

of hierarchy slots, and y = {y1, y2, . . . , yL} ∈ P
represent the output sequence, where P denotes
the set of all possible output sequences and L is
the sequence length, which is also the maximum
hierarchy layers. Let

Pr(y | xhie ) =
exp(Score(xhie ,y))∑

y′∈P exp (Score (xhie ,y′))
(10)

represent the probability of the output sequence y
given the input sequence xhie .

To compute the Score, we first define the emis-
sion matrix and the transition matrix. Let xi

hie and
yi be the i-th token and its corresponding label in
the sequence. The emission matrix Em ∈ RL×p

is such that Emi,j represents the score from xi
hie

to yi , while the transition matrix Tr ∈ R(p+2)×(p+2)

is such that Tri,i+1 represents the probability of
transitioning from yi to yi+1. Tr contains two ad-
ditional states, start and end. Then, Score can be
calculated as:

Score(xhie ,y) =
L∑

i=1

Emi,yi
+

L∑
i=0

Tryi,yi+1
(11)

where y0 and yL+1 are the two additional states
mentioned above.

Furthermore, following previous work, we con-
sider the hidden states outputted by the feedfor-
ward layers or encoders as emission probabilities.
Therefore, the formula Score can be transformed
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into:

Score(xhie ,y) =
L∑

i=1

lihie [yi] +Tryi,yi+1
(12)

where lihie ∈ Rp is the i-th logit vector of Hhie (in
Equation 3) after passing through a feedforward
layer.

It’s worth mentioning that flat entities can also
be represented in the form of spans, which means
that single-path problems can also be addressed
using Global Pointer, as it is a general method.

4.4. Objective Function
Our final training loss function consists of three
parts, namely masked language model (MLM) loss,
global loss, and local loss:

L = LMLM + λ1LGlobal + λ2LLocal (13)

where λ1 and λ2 are two hyperparameters for bal-
ancing the global loss and local loss. To maintain
consistency with the pretraining task, we randomly
mask 15% tokens and use the LMLM for training:

LMLM = − log
est∑V
i=1 e

si

= log(1 +

V∑
i=1,i̸=t

esi−st)

(14)

which is also the cross entropy (CE) loss, where
st is the target score and V is the vocabulary size.
Following HPT (Wang et al., 2022b), we also use
the Zero-bounded Log-sum-exp & Pairwise Rank-
based (ZLPR) loss (Su et al., 2022b) to alleviate the
issue of class imbalance in multi-label classification.
The original log-sum-exp pairwise (LSEP) loss (Li
et al., 2017)

LLSEP = log(1 +
∑

i∈Uneg

∑
j∈Upos

esi−sj ) (15)

cannot handle situations with the variable number
of target categories, where Upos and Uneg are the
positive and negative label set. To address this
issue, Su et al. (2022b) introduce a threshold s0
in the loss function, aiming to have the scores of
positive classes greater than s0, and those of neg-
ative classes less than s0. Then, the ZLPR loss
function is defined when the threshold s0 is set to 0
as follows:

LZLPR = log(1 +
∑

i∈Uneg

∑
j∈Upos

esi−sj

+
∑

i∈Uneg

esi−0 +
∑

j∈Upos

e0−sj )

= log(1 +
∑

i∈Uneg

esi) + log(1 +
∑

j∈Upos

e−sj )

(16)

Based on the above equations, the global loss
function can be represented as:

LGlobal =

L∑
m=1

(log(1 +
∑

i∈Uneg
m

esi)

+ log(1 +
∑

i∈Upos
m

e−si))

(17)

where si = vT
i h

m
hie + bim and bim is bias. Besides,

Upos
m and Uneg

m are positive and negative label sets
for the m-th layer respectively. Similarly, the local
loss function for the multi-path task can be repre-
sented as:

LLocal =
∑
α∈P

(log(1 +
∑

(i,j)∈Qα

esα(i,j))

+ log(1 +
∑

(i,j)∈Ωα

e−sα(i,j)))
(18)

where i, j are the begin and end indices of a span
and sα(i, j) can be calculated from Equation 8. In
addition, Ωα is a set of spans belonging to path label
α and Qα is a negative sample set, including spans
that are not paths or whose type is not α. When
dealing with a single-path HTC task, according to
Equation 10, we modify the local loss function to:

LLocal = − log(Pr(y | xhie ))

= log(
∑
y′∈P

expScore(xhie ,y′))− Score(xhie ,y)

(19)

5. Experiments

5.1. Datasets and Evaluation Metrics
To evaluate the proposed method, we conduct
experiments on three widely used datasets for
HTC: Web-of-Science (WOS) (Kowsari et al., 2017),
RCV1-V2 (Lewis et al., 2004) and NYTimes (NYT)
(Evan Sandhaus, 2008). Among them, RCV1-V2
and NYT are for multi-path HTC while WOS include
single-path hierarchical labels. The statistical de-
tails are shown in Table 1. We follow the data
preprocessing methods of previous studies (Zhou
et al., 2020; Wang et al., 2022b) and leverage the
same evaluation metrics: Macro-F1 and Micro-F1.

Dataset |Y | Depth Avg(|yi|) Train Dev Test
WOS 141 2 2.0 30,070 7,518 9,397
NYT 166 8 7.6 23,345 5,834 7,292

RCV1-V2 103 4 3.24 20,833 2,316 781,265

Table 1: Data Statistics. |Y | is the number of
classes. Avg(|yi|) is the average number of classes
per sample. Depth is the maximum level of label
hierarchy.
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Model WOS (Depth 2) RCV1-V2 (Depth 4) NYT (Depth 8) Average
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Hierarchy-Aware Models
TextRCNN (Zhou et al., 2020) 83.55 76.99 81.57 59.25 70.83 56.18 78.65 64.14
HiAGM (Zhou et al., 2020) 85.82 80.28 83.96 63.35 74.97 60.83 81.58 68.15
HTCInfoMax (Deng et al., 2021) 85.58 80.05 83.51 62.71 - - - -
HiMatch (Chen et al., 2021) 86.20 80.53 84.73 64.11 - - - -

Pretrained Language Models
BERT (Wang et al., 2022a) 85.63 79.07 85.65 67.02 78.24 65.62 83.17 70.57
BERT+HiAGM (Wang et al., 2022a) 86.04 80.19 85.58 67.93 78.64 66.76 83.42 71.63
BERT+HTCInfoMax (Wang et al., 2022a) 86.30 79.97 85.53 67.09 78.75 67.31 83.53 71.46
BERT+HiMatch (Chen et al., 2021) 86.70 81.06 86.33 68.66 - - - -
HGCLR (Wang et al., 2022a) 87.11 81.20 86.49 68.31 78.86 67.96 84.15 72.49
HiTIN (Zhu et al., 2023) 87.19 81.57 86.71 69.95 79.65 69.31 84.52 73.61
HiTIN† 86.75 81.18 86.72 68.94 79.40 68.42 84.29 72.85
HPT (Wang et al., 2022b) 87.16 81.93 87.26 69.53 80.42 70.42 84.95 73.96
HPT† 86.93 81.50 87.39 69.11 80.59 70.45 84.97 73.69
NERHTC (Ours) 87.42↑0.49 81.93↑0.43 87.50↑0.11 69.76↑0.65 80.97↑0.38 70.99↑0.54 85.30↑0.33 74.23↑0.54

Table 2: The experimental results (%) of our proposed method comparing to previous models on three
datasets. Best results are in boldface. Our re-implementation scores are marked by "†". "↑" indicates the
improvement of our model compared with the second-best result within our reproduction.

5.2. Implement Details
Our model is implemented with Pytorch framework
by an end-to-end training style. Following previous
work (Wang et al., 2022b), we utilize bert-base-
uncased pretrained model as the base architec-
ture. The batch size is set to 16. The optimizer is
Adam with a learning rate 3e−5 for BERT and 5e−4

for single-path model CRF. The loss balancing pa-
rameter λ1 is set to 1. λ2 is set to 1 on RCV1-V2 and
10 on WOS and NYT. The length of template words
for soft prompt is adapted according to the number
of layers. We train our model with training set and
evaluate on development set. We set the maximum
training epochs to 50 and initiate evaluation after
training 20 epochs. We employ the following early
stopping strategy: training stops when both Macro-
F1 and Micro-F1 metrics cease to improve for more
than 15 steps. For baseline models, we follow the
parameters and settings in the original papers.

5.3. Baselines
We compare our model with multiple HTC baselines
as follows:

• TextRCNN (Lai et al., 2015): A traditional text
classification model, commonly employed as
a text encoder before the emergence of large-
scale PLMs.

• BERT (Devlin et al., 2019): An effective and
widely used PLM, often employed as a text fea-
ture extractor, capable of capturing semantic
information and applying it to various down-
stream tasks.

• HiAGM (Zhou et al., 2020): This hierarchical-
aware global model extracts label-wise text
features based on prior hierarchy information
by hierarchical encoders.

• HTCInfoMax (Deng et al., 2021): HTCInfoMax
addresses the issues in HiAGM by introducing
information maximization, including maximiz-
ing text-label mutual information and label prior
matching.

• HiMatch (Chen et al., 2021): Himatch in-
troduces a hierarchical-aware label semantic
matching network, redefining the text-label se-
mantic relationship as a semantic matching
problem.

• HGCLR (Wang et al., 2022a): HGCLR utilizes
contrastive learning to integrate hierarchical
features into the text encoder, and introduces
a new graph encoder.

• HiTIN (Zhu et al., 2023): HiTIN is a simple
and efficient architecture in fusing the label
structural information into text representations.

• HPT (Wang et al., 2022b): HPT adopts prompt
tuning to address the HTC problem by incor-
porating the hierarchical label knowledge into
virtual templates and label words.

5.4. Main Results
Table 2 presents the experimental results for each
of the models mentioned above. For a fair com-
parison, we implement some crucial experiments
on our own device. As shown, our method outper-
forms the baseline models on all three datasets.
These results demonstrate the superiority of our
model since it makes HPT pay attention to local
hierarchical dependencies to some extent using an
NER-guided method.

On WOS, our model observes 1.79% and 2.86%
improvements of Micro-F1 and Macro-F1 respec-
tively against BERT and is better than HPT by
0.46% on average. As mentioned in 4.3, the flat
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Ablation Models Micro-F1 Macro-F1
NERHTC 80.97 70.99
r.m. ROPE 80.80 70.40
r.m. MLM loss 80.67 70.40
r.p. BCE loss 80.70 70.10
r.m. GAT 80.82 70.25

Table 3: Ablation study results on NYT. r.m. stands
for remove. r.p. stands for replaced with.

NER problem can be tackled using a span- or token-
based approach. In Table 2, to demonstrate a
general approach, the results for the single-path
dataset WOS are achieved by Global Pointer. In
practice, when applying token-based method, the
Micro-F1 score is 87.16%, and the Macro-F1 score
is 81.63%, which is 0.36% higher than HPT in total.

Among the three datasets, the results for WOS
and NYT are favorable. Notably, upon comparison,
NYT stands out as the most complex, featuring the
highest number of paths, hierarchical levels, and
the largest average number of labels. Despite these
challenges, we achieve the best results on both
evaluation metrics by 0.46% on average. This fur-
ther underscores the effectiveness of our approach,
particularly in addressing intricate multi-path tasks.

6. Analysis

6.1. Ablation Study

We conduct ablation experiments on NYT, as it is
the most complex, with the highest number of hier-
archy levels and paths. The results are shown in
Table 3. After removing positional encodings, we
observe a 0.59% decrease in Macro-F1. As the cur-
rent mainstream choice, RoPE positional encoding
(Su et al., 2021) has found increasing application
in various large-scale models. We also adopt it to
enhance the model’s sensitivity to span boundary
information. MLM is one of the fundamental tasks in
language model pretraining. As a multi-task model,
we comprise global, local, and MLM loss. Upon
removing MLM loss, we observe a decline in model
performance of 0.30% in Micro-F1 and 0.59% in
Macro-F1, underscoring the necessity of maintain-
ing relative consistency with the pretraining tasks.
In our model, we employ ZLPR multi-label clas-
sification loss function. When replaced with the
traditional BCE loss, there is a significant decrease
of 0.89% in Macro-F1 score, an indicator to evalu-
ate class imbalance issues. From this, ZLPR loss
demonstrates better performance in addressing im-
balance concerns. In extracting of global features,
we employed GAT, which is widely used to repre-
sent graph structures. By removing GAT, the model
cannot access the information of the label hierarchy
and drops 0.74% on Macro-F1.

Method WOS
PMicro-F1 PMacro-F1 CMicro-F1 CMacro-F1

BERT 79.96 78.40 85.43 79.37
HiTIN 81.06 79.23 86.45 80.76
HPT 80.69 79.03 86.57 80.85
NERHTC 81.41 79.52 87.14 81.36

Table 4: Consistency experiments of path-based (P-
metric) and path-constrained (C-metric) evaluation
metrics on WOS.

Method RCV1-V2 NYT
CMicro-F1 CMacro-F1 CMicro-F1 CMacro-F1

BERT 85.68 66.96 78.05 64.62
HiTIN 86.48 68.07 78.45 66.79
HPT 86.95 68.15 79.51 68.38
NERHTC 86.99 68.46 80.11 69.42

Table 5: Consistency experiments of path-
constrained (C-metric) evaluation metrics on RCV1
and NYT.

6.2. Effect of Local Structure
Our method is proposed to address the limitation
of neglecting local hierarchical dependencies in
most prompt-based models. To demonstrate the
effectiveness of our model, we conduct analyses
from three perspectives: path consistency, label
granularity, and discriminability.

6.2.1. Path Consistency

We hold the view that path consistency reflects the
attention on local features, which often tend to fo-
cus more on relationships between adjacent nodes,
thereby ensuring the connectivity of paths. Follow-
ing Yu et al. (2022) and Ji et al. (2023), we utilize
path-constrained metric (CMicro-F1 and CMacro-
F1) and path-based metric (PMicro-F1 and PMacro-
F1) to measure our model’s performance at the
path level. The C-metrics are defined such that a
node label is considered predicted correctly only
when all its ancestor nodes are correct. P-metrics
measure the correctness of all labels along the
entire pathway for mandatory-leaf (Bi and Kwok,
2014) dataset, such as WOS. We re-evaluate the
experimental results on three datasets, as depicted
in Table 4 and 5.

For the mandatory-leaf dataset WOS, our ap-
proach exhibits an overall advantage. It surpasses
HiTIN by a total of 1.93% across the four metrics
and exceeds HPT by 2.29%. WOS has only two hi-
erarchical levels, which is relatively simpler. On the
8-layer NYT dataset, our approach demonstrates
a significant edge, leading HiTIN by 1.66% on
CMicro-F1 and 2.63% on CMacro-F1. When com-
pared to HPT, our approach excels on multi-path
datasets, particularly outperforming in the CMacro-
F1 metric for NYT by 1.04%. From the perspective
of path consistency, our method generally outper-
forms other models, particularly in datasets with
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Figure 3: Peference study on label granularity of
NYT based on layer increment.

complex hierarchical structures. This is because it
simultaneously considers both global and local hi-
erarchical features, offering a more comprehensive
approach to addressing the HTC problem.

6.2.2. Label Granularity

Conducting a granularity analysis on complex hi-
erarchical labels is necessary. In HiMatch (Chen
et al., 2021), level-based F1 score analysis is em-
ployed. However, calculating scores for labels in
each layer separately fails to showcase the advan-
tages of our model. This is because our local ar-
chitecture places a stronger emphasis on the con-
nections between hierarchy levels. Therefore, we
introduce a layer-incremental method: computing
the cumulative F1 scores for labels at the current
hierarchy and its preceding layers. We conduct
the analysis using the NYT dataset with eight lev-
els. As shown in Figure 3, the horizontal axis is
the current level, while the vertical axis represents
the cumulative F1 scores. The Micro-F1 metric ex-
hibit a smooth decreasing trend, with our model
performing optimally at each level. Regarding the
Macro-F1, our model maintains a relatively superior
performance, only slightly lower than HPT at the
second layer. Notably, all four models experience
a significant drop at the second level, which we
attribute primarily to the increased number of la-
bels and the subsequent surge in sample quantity,
leading to a certain performance decline.

6.2.3. Discriminability

As shown in Figure 4, we utilize T-SNE visualization
analysis to demonstrate our model’s discriminative
ability with respect to features. From Figures 4(a)
and 4(b), it can be observed that BERT and TiHIN
treat WOS as a typical multi-class classification
task, where each leaf represents a cluster center,
with no connection between labels. Both HPT and
our method utilize parent nodes as cluster centers.
Features with the same parent should exhibit a rel-
atively distant relationship among sub-nodes while
maintaining an overall proximity, as demonstrated
in Figure 4(d). Our approach outperforms the HPT
method, as reflected in the greater distances be-

(a) BERT (b) HiTIN (c) HPT (d) NERHTC

Figure 4: T-SNE visualization of the label repre-
sentations on WOS. Images in the first row display
feature clusters for the first-level labels, while the
second row is for the sub-labels of ECE. Dots of
the same color belong to the same category.

Models Acc.
Llama 1-7B 22.08

w/ demo 19.05
Llama 2-7B 16.28

w/ demo 16.78

Table 6: The accuracy of using large models for
inference on the first-level labels of WOS. demo
represents demonstration. w/ stands for with.
The results are the average of three experiments

tween different classes in the graph and the tighter
aggregation of features within the same category.

6.3. Large Language Model
Large language models (LLMs) have been garner-
ing increasing attention due to their excellent rea-
soning abilities. To keep pace with technological
advancements and lay the foundation for future
work, we conduct tests using the LLaMA-7B mod-
els (Touvron et al., 2023a,b). Due to hardware limi-
tations and the cost, we only perform inference on
the first-level labels of WOS without fine-tuning. As
shown in Table 6, the unguided Llama 1-7B model
achieves an average accuracy of 22.08% without
any demonstrations. In the current stage, LLMs
are still unable to effectively address text classifica-
tion problems with long texts, multiple labels, and
numerous categories. Research based on small
models remains valuable. Furthermore, there are
still many unexplored aspects of LLMs, awaiting
further investigation.

7. Conclusion

We propose an NER-guided prompt tuning model
for HTC tasks to address the limitation of neglecting
local hierarchical dependencies in prompt-based
models. Considering the emphasis on adjacent to-
kens in NER, we model single- and multi-path HTC
tasks using the CRF and Global Pointer methods,



12125

which were initially designed for flat and nested
entities. Through our research, a connection is
established between HTC and NER, and label con-
sistency in prompt-based HTC tasks is effectively
reinforced in a sample end-to-end manner. We em-
pirically verify the effectiveness of our method and
achieve the SoTA performance.

Limitations

Based on the results of the above indicators, our
method appears to be more effective for data with
complex hierarchical structures. However, our
method is prompt-based, and more complex hi-
erarchical structures often require a larger number
of prompt template words, which may compromise
the length of the text. Furthermore, these limita-
tions also exist in LLMs. During zero-shot inference,
we provide the model with demonstrations for each
level of labels. Detailed and specific demonstra-
tions aid the model in understanding the task, but
it consumes the length of prediction samples. Ad-
ditionally, when dealing with numerous levels of
labels, it is often impossible to provide detailed
demonstrations, resulting in incomplete model’s un-
derstanding of the task. We will conduct further
research on the above-mentioned issues.

Ethics Statement

All datasets in our paper are public. Our experi-
mental results are obtained using the settings and
parameters described in this paper. We ensure the
authenticity and reproducibility of our article.
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