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Abstract
Nested Event Extraction (NEE) aims to extract complex event structures where an event contains other events as its
arguments recursively. Nested events involve a kind of Pivot Elements (PEs) that simultaneously act as arguments of
outer-nest events and as triggers of inner-nest events, and thus connect them into nested structures. This special
characteristic of PEs brings challenges to existing NEE methods, as they cannot well cope with the dual identities of
PEs. Therefore, this paper proposes a new model, called PerNee, which extracts nested events mainly based on
recognizing PEs. Specifically, PerNee first recognizes the triggers of both inner-nest and outer-nest events and
further recognizes the PEs via classifying the relation type between trigger pairs. The model uses prompt learning to
incorporate information from both event types and argument roles for better trigger and argument representations to
improve NEE performance. Since existing NEE datasets (e.g., Genia11) are limited to specific domains and contain
a narrow range of event types with nested structures, we systematically categorize nested events in the generic
domain and construct a new NEE dataset, called ACE2005-Nest. Experimental results demonstrate that PerNee
consistently achieves state-of-the-art performance on ACE2005-Nest, Genia11, and Genia13. The ACE2005-Nest
dataset and the code of the PerNee model are available at https://github.com/waysonren/PerNee.
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1. Introduction

Event Extraction (EE), as an important task in
information extraction, aims to extract event trig-
gers and their corresponding arguments from sen-
tences. Traditional EE implicitly assumes that all
events in the same sentence have flat structure,
thus called Flat Event Extraction (FEE). However,
there also exists a kind of nested structures where
an event contains other events as its arguments
recursively. Therefore, Nested Event Extraction
(NEE) as a new information extraction task has
recently attracted attention (Trieu et al., 2020; Cao
et al., 2022). Figure 1 (a) and (b) illustrate two ex-
amples of both flat and nested events, correspond-
ingly. NEE holds immense importance in attaining
a profound semantic understanding and acquiring
a comprehensive perspective of the event struc-
ture.

In the case of nested events, events are con-
nected via a kind of special elements that simul-
taneously act as arguments of outer-nest events
and as triggers of inner-nest events. This kind
of elements play as pivots in the nested event
structures, thus called Pivot Elements (PEs) in this
paper. As shown in Figure 1(b), “pay” is a PE,
which serves as the trigger of the inner-nest event
Transfer-Ownership and as an argument of
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(a) Example of flat event.
We go to war in Iraq and 200,000 people start protesting in Pakistan.
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(b) Example of nested event.
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Figure 1: Examples of flat (a) and nested (b)
events.

the outer-nest event Intention. Through the PE
“pay”, these two events are connected to form a
nested event structure. Therefore, the key for the
NEE task is to recognize this kind of PEs.

However, the dual identities of PEs present chal-
lenges to existing NEE methods (Lin et al., 2020;
Cao et al., 2022). These methods typically employ
two separate modules to extract triggers and ar-
guments, and recognize those overlapping ones
as PEs. However, due to their more trigger-like

https://github.com/waysonren/PerNee
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characteristics of PEs, it is difficult for the argu-
ment extraction module to recognize them as the
arguments of outer-nest events, which affects the
performance of those existing methods on NEE.

To address this challenge, we propose PerNee,
a novel model for the NEE task via better recogniz-
ing PEs. Unlike existing methods, PerNee transfers
the identification problem of the argument identi-
ties of PEs to a classification problem of relations
between trigger pairs within the same sentences.
Specifically, PerNee utilizes the label names of
event types and argument roles as prompts, which
are prepended to the sentences. It then employs
a BERT-based network to encode the sentences
along with these prompts, generating contextual
representations enriched with the information of
event types and argument roles. Next, PerNee
recognizes triggers and regular arguments (i.e.,
entities that are definitely not PEs) by employing
two separate Feedforward Neural Networks (FNNs)
combined with a Conditional Random Field (CRF)
layer. Finally, PerNee identifies every regular ar-
gument corresponding to its trigger and further
determines its role by generating and classifying
pairs between triggers and regular arguments us-
ing an FNN. Simultaneously, by generating and
classifying the pairs of triggers based on another
FNN, it recognizes from the set of triggers, if any,
every PE as well as the trigger of its corresponding
outer-nest event and its role therein. By so doing,
the nested event structure contained in the input
sentence is identified.

There are several event extraction datasets con-
taining nested events (e.g., Genia11 (Kim et al.,
2011), Genia13 (Kim et al., 2013)). However, these
existing datasets primarily focus on the medical do-
main and have a narrow range of event types that
can introduce nested structures. For instance, in
Genia11, only some of the Regulation events
exhibit nested structures. In contrast, the generic
domain contains a diverse array of event types that
can introduce nested events, such as Intention,
Belief, and Statement. To address these limi-
tations, we systematically categorize nested events
in the generic domain into different types and cre-
ate a new NEE dataset, ACE2005-Nest, based
on the widely used benchmark dataset ACE2005
for FEE. ACE2005-Nest contains 14 event types
that can introduce nested structures in the generic
domain.

Our contributions can be summarized as follows:

• We propose PerNee for the NEE task, which
extracts nested events mainly based on rec-
ognizing PEs. By classifying the relations be-
tween trigger pairs, PerNee significantly en-
hances the accuracy of PE extraction.

• We systematically categorize nested events in

the generic domain and construct a new NEE
dataset, ACE2005-Nest, which can serve as
a valuable resource to advance the NEE task
in the generic domain.

• Experimental results demonstrate that the
PerNee model consistently outperforms ex-
isting baselines on ACE2005-Nest, Genia11,
and Genia13, demonstrating its effectiveness
in both FEE and NEE tasks.

2. Related Work

2.1. Nested Event Extraction

Some existing studies tackle NEE using methods
actually for overlapping events (Yang et al., 2019;
Li et al., 2020; Sheng et al., 2021; Cao et al., 2022),
as NEE can be seen as a specific type of overlap-
ping events, where triggers and arguments overlap.
For example, Cao et al. (2022) proposed OneEE to
address both overlapping and nested events. PEs
are recognized in both the trigger recognition mod-
ule and the argument recognition module, which
handles the overlapping issue between triggers
and arguments, thereby addressing NEE. In a sim-
ilar manner, some existing FEE methods (Nguyen
and Nguyen, 2019; Raffel et al., 2020; Wadden
et al., 2019; Lin et al., 2020; Lu et al., 2022; Shi
et al., 2023) can be adapted to address NEE by
treating PEs as both triggers and regular argu-
ments and recognizing the overlapping ones as
PEs.

However, these methods face difficulties in cop-
ing with the dual identities of PEs. They simply
treat PEs as regular arguments and extract them
within the argument extraction module, neglecting
their trigger-like characteristics, which brings chal-
lenges to argument extraction.

2.2. NEE Datasets

In the medical domain, there are several NEE
datasets available. Genia11 (Kim et al., 2011)
is a medical domain event extraction dataset,
containing a total of 9 event types. Among
these event types, Regulation, Positive
Regulation, and Negative Regulation are
3 event types that can involve other events as
arguments. Based on Genia11, Genia13 (Kim
et al., 2013) introduces additional event types
such as Phosphorylation that can introduce
nested events. Besides, in the Cancer Genetics
dataset (Pyysalo et al., 2013) and Pathway Cura-
tion dataset (Ohta et al., 2013), the Regulation
event type is prominent for introducing nested
event structures.

Above all, in existing NEE datasets, nested
events are mainly concentrated in limited event
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types like Regulation, with a predominant focus
on the medical domain. However, in the generic
domain, nested events are widespread with a di-
verse range of types, indicating a need for generic
domain NEE datasets.

3. Problem Formulation

Given a sentence X, the NEE task aims to ex-
tract the events therein, including their triggers and
arguments, and further identify the specific roles
of all extracted arguments and, if any, the nested
structures between events. Let E = {e1, e2, ..., ek}
be the set of events contained in X. Each event
ei (1 ≤ i ≤ k) is represented as a 4-tuple
(τi, ti, Ai, Ri), where τi is its type and ti is its trig-
ger associated with τi, indicating its occurrence;
Ai and Ri are the sets of its arguments and their
corresponding roles, respectively. For each ei, the
lth argument ali ∈ Ai is associated with a corre-
sponding role in Ri.

The nested event structures, if any, in E that
can essentially be characterized by a PE set P =
{ti|∃j, ti ∈ Aj}. In this view, the NEE task involves
the following subtasks:

Trigger Recognition: Given the sentence X,
it is to recognize all triggers T = {t1, t2, ..., tk}
therein and further determine their respective event
types.

Regular Argument Extraction: Given the sen-
tence X and a trigger ti ∈ T , this subtask is to
extract the set of its arguments excluding PEs,
Ai = {a1i , a2i , ..., ali, ...} and further determine their
respective roles in Ri.

Pivot Element Recognition: Given the sen-
tence X and a trigger ti ∈ T , the goal is to identify
whether or not there exists another trigger tj ∈ T ,
ti is one of its argument and, if so, further deter-
mine its role.

4. The PerNee Model

In this section, we will introduce the framework of
PerNee. As shown in Figure 2, it mainly contains
five modules. The text encoder encodes the sen-
tence with prompts to obtain the representations of
all words therein. Based on these representations,
the trigger recognizer and the regular argument rec-
ognizer recognize triggers and regular arguments,
respectively. Next, the pivot element recognizer is
adopted to recognize, if any, all PEs. Based on the
extracted elements, the structure decoder explores
possible event structures using beam search to
generate events with the highest global score.

4.1. The Text Encoder

This module aims to obtain the representation for
each word within a given sentence X. In order to
acquire the word representation enriched with a
contextual understanding of the event types and
argument roles, we prepend the label names of
all event types and argument roles as prompts to
X. This, in turn, enhances the model’s perception
of event schema. Some related papers (Lu et al.,
2022; Wang et al., 2022; Lou et al., 2023) have
demonstrated that introducing label information of
event types and argument roles can improve the
ability of the model to perceive the information to
be extracted.

Following Brown et al. (2020); Schick and
Schütze (2020), we use [EVENT] and [ROLE] as
placeholder separators (abbreviated as [T ] and [R]
hereafter) to concatenate the label names of event
types τi and argument roles ri. Finally, the input of
the text encoder is:

[T ]τ1[T ]τ2...[T ]τn[R]r1[R]r2...[R]rn[SEP ]X

Next, the input is encoded through a pre-trained
BERT model (Devlin et al., 2018). As BERT tok-
enizes each word into several subword pieces (e.g.,
“blowdryers” → “blow”, “##dr”, “##yers”), we obtain
its representation by computing the average of the
representations of those corresponding subword
pieces.

Finally, this module generates the represen-
tations of all words in X, denoted as H =
{h1,h2, ...,hn}.

4.2. The Trigger Recognizer

This module aims to recognize triggers, which con-
tains two steps: an identification step to identify
triggers and a classification step to obtain, for each
trigger, the label scores of corresponding event
types.

The trigger identification can be formulated as a
sequence labeling problem. Specifically, the mod-
ule takes word representations in each sentence
as its input and calculates a score vector for each
word using an FNN. Each value in the vector repre-
sents the score of a specific tag corresponding to
the BIO tag schema. To capture the dependencies
among predicted tags, a CRF layer is utilized to
ensure the validity of certain tag sequences. For
instance, an I-Intention tag should not follow a B-
Attack tag. The trigger tag sequence correspond-
ing to the sentence is obtained as ẑt. Inspired
by Lample et al. (2016), the objective is to max-
imize the log-likelihood of the gold-standard tag
sequence. Thus, the loss of trigger identification is
defined as:

Lt
1 = log

∑
ẑt∈Zt

es(H,ẑt) − s(H, zt), (1)
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[SEP]
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Figure 2: The overall framework of the PerNee model.

where s denotes the tag sequence scoring function,
zt represents the golden trigger tag sequence, and
Zt represents the set of all possible trigger tag
sequences for a given sentence.

In the classification step, since the identified trig-
gers may contain several words, the representa-
tion of the ith identified trigger is obtained by av-
eraging its word representations, denoted as ti.
To obtain its corresponding event type, another
FNN is employed to calculate type label scores as
ŷt
i = FNN(ti).
For trigger classification, the objective is to mini-

mize the following cross-entropy loss:

Lt
2 = − 1

N t

Nt∑
i=1

yt
i log ŷ

t
i , (2)

where N t and yt
i represent the number of triggers

and the true label vector, respectively. Therefore,
the training loss of the trigger recognizer is defined
as:

Lt = Lt
1 + Lt

2. (3)

4.3. The Regular Argument Recognizer

Considering the trigger-like characteristics of PEs
and their notable differences from regular argu-
ments (i.e., entities), jointly recognizing PEs and
regular arguments may affect the performance of
argument recognition. Therefore, this regular argu-
ment recognizer focuses only on extracting regular
arguments. It involves two steps: an identification
step to extract regular arguments and a classifica-
tion step to obtain the label scores of role types.

In the identification step, this module employs
an FNN followed by a CRF layer to generate tag
sequences for regular arguments. Similar to Equa-
tion 1, the loss of regular argument identification is
defined as:

La
1 = log

∑
ẑa∈Za

es(H,ẑa) − s(H, za), (4)

where ẑa, za, and Za represent the predicted reg-
ular argument tag sequence, the golden regular
argument tag sequence, and the set of all possi-
ble regular argument tag sequences for a given
sentence, respectively.

In the classification step, role types of arguments
are determined by establishing relations between
triggers and regular arguments. Given a trigger
and a regular argument, the representation of the
trigger-argument pair is calculated by concatenat-
ing the representations of the identified trigger
and regular argument, denoted as [ti;aj]. Then,
another FNN is employed to calculate the score
vector of the trigger-argument pair, denoted as
ŷa
i,j = FNN([ti;aj]), which represents the role

type scores for the identified regular argument.
For trigger-argument pair classification, the ob-

jective is to minimize the following cross-entropy
loss:

La
2 = − 1

Na

Na∑
i=1

ya
i,j log ŷ

a
i,j , (5)

where Na and ya
i,j represent the number of trigger-

argument pairs and the true label vector, respec-
tively. Therefore, the training loss of the regular
argument recognizer is defined as:
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La = La
1 + La

2 . (6)

4.4. The Pivot Element Recognizer

The nested events arise when one event serves as
an argument of another event. To recognize nested
events, it is crucial to recognize PEs. However, PEs
bring challenges to existing methods due to their
dual identities. Considering the trigger-like charac-
teristics of PEs, PerNee first identifies the trigger
identities of PEs via the trigger recognizer as men-
tioned in Section 4.2. Then, in the pivot element
recognizer, PerNee further identifies the argument
identities of PEs by transferring the identification
problem to a classification problem of the relations
between trigger pairs within the same sentence.
By doing so, recognizing PEs can be transferred
to discovering the argument relations between the
trigger pairs, hereby helping the model avoid con-
fusion arising from the dual identities of PEs.

Specifically, given the set T of all the extracted
triggers in a sentence, PerNee first generates the
candidate trigger pairs {(ti, tj)|ti, tj ∈ T}. Note
that if the trigger pair (ti, tj) is added to candidate
trigger pairs, the trigger pair (tj , ti) is also included.
Then, the representations of the triggers are con-
catenated to form the representation of the trigger
pair, represented as [ti; tj]. An FNN is employed
to calculate the score vector of the trigger pair,
denoted as ŷp

i,j = FNN([ti; tj]), which represents
the role type scores for the PE in the corresponding
outer-nest event.

For trigger-trigger pair classification, the objec-
tive is to minimize the following cross-entropy loss:

Lp = − 1

Np

Np∑
i=1

yp
i,j log ŷ

p
i,j , (7)

where Np and yp
i,j represent the number of trigger-

trigger pairs and the true label vector, respectively.
Finally, the joint objective function during train-

ing is optimized by minimizing the following loss
function:

L = Lt + La + Lp. (8)

4.5. The Structure Decoder

In the prediction stage, we first extract the elements
and their corresponding score vectors based on
the above modules and subsequently employ a
beam search-based strategy to decode the glob-
ally optimal event structure, following (Lin et al.,
2020). This approach aims to achieve global best
extraction results instead of local ones. In this con-
text, event structures are represented as graphs
in which triggers and regular arguments serve as
nodes, connected by edges denoting their relations.

The score for a given graph g is computed as:

score(g) =

Nv∑
i=0

s(vi) +

Nℓ∑
i=0

s(ℓi), (9)

where s(vi), s(ℓi) represent the scores of node
types and edge types, and Nv, N ℓ denote the
number of nodes and edges. Note that all scores
are normalized within the nodes or edges.

Beam search is used to iteratively extend nodes
and edges with a beam set of size θ. The extension
process involves selecting the top k most likely
labels for both nodes and edges. After extending
nodes and edges, a set of candidate graphs is
obtained, denoted as G = {g1, g2, ..., gn}. The
graph with the highest score is then selected from
this set:

gbest = argmax
gk∈G

(score(gk)), k = 1, 2, ..., n. (10)

5. The ACE2005-Nest Dataset

To address the limitations of existing NEE datasets,
such as Genia11, which are domain-specific and
have a limited range of event types that can intro-
duce nested structures, we construct a new NEE
dataset in the generic domain, building upon the
ACE2005 dataset1 (a widely used source for FEE).
It contains 8 event categories, 33 sub-categories,
and 35 argument roles, derived from news, broad-
casts, and conversations. Based on ACE2005,
we discover extra event types that can introduce
nested structures and their associated argument
roles. We then annotate instances of these new
event types based on the original events.

5.1. Nested Event Schema Discovery

Building upon the existing event annotations in the
ACE2005 dataset, we discover the nested event
schema as follows: First, triggers that may cause
nested structures are identified; Then, the inner-
nest events (i.e., PEs) are identified as well as
their relevant arguments, such as agent and time.
After that, we build up the connections between
the triggers and their respective arguments.

To categorize event types and determine the
frame semantics descriptions, some established
resources are referred to, including WordNet (Fell-
baum, 2010), FrameNet (Baker et al., 1998), and
FactBank (Saurí and Pustejovsky, 2009). These
resources provide valuable insights into verb classi-
fication and frame semantics. With this knowledge,
we systematically define various types of triggers
that have the potential to introduce nested struc-
tures. Based on our analysis, these triggers can be

1https://catalog.ldc.upenn.edu/LDC2006T06
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classified into 7 categories and 14 sub-categories,
as shown in Table 1.

Event Types Subtypes Trigger Examples

Statement Oral say, speak

Written write, report

Idea
Belief believe, think

Attitude oppose, agree

Doubt wonder, doubt

Knowledge
Aware know, aware

Perception see, hear

Inference mean, indicate

Sentiment Preference like, hate

Emotion worry, fear

Instruction Command order, instruct

Demand require, ask

Judgement - accuse, blame

Intention - plan, want

Table 1: Event types in the generic domain that can
introduce nested events and their corresponding
trigger examples.

5.2. Data Analysis

ACE2005-Nest is divided into the train, dev, and
test sets following pre-processing of Wadden et al.
(2019). We conduct an analysis of ACE2005-Nest,
along with the other two NEE datasets, Genia11
and Genia13, as shown in Table 2. It reveals that
in ACE2005-Nest, approximately 25% of the sen-
tences with events contain nested events, while
in Genia11 and Genia13, the account is 39% and
49%. Besides, ACE2005-Nest significantly sur-
passes Genia11 and Genia13 in terms of the num-
ber of event types capable of introducing nested
events. While Genia11 and Genia13 only have 3
and 5 such event types, ACE2005-Nest has 14,
indicating that ACE2005-Nest exhibits greater di-
versity in event types capable of introducing nested
events.

Additionally, we conduct a detailed analysis of
the proportions of event types that may introduce
nested events, as shown in Figure 3. The results
show that Statement:Oral, Idea:Belief and
Intention are the top three event types that
may introduce nested structures with the highest
number of occurrences, accounting for 45.54%,
13.64%, and 13.64%, respectively.

Besides, the ACE2005-Nest dataset also has
some shortcomings: (1) The coverage breadth of
event types capable of introducing nested events

#S. #S.E. #S.N.E. #E.T. #E.T.N.

ACE2005-
Nest

Train 19,204 3,342 778
47 14Dev 901 327 103

Test 676 293 112

Genia11
Train 8,722 3,707 1,464

9 3Dev 1,090 474 167
Test 1,091 456 173

Genia13
Train 4,000 1,574 795

13 5Dev 500 189 90
Test 500 201 85

Table 2: Statistics of the datasets. “#S.”, “#S.E.”,
“#S.N.E.”, “#E.T.”, and “#E.T.N.” denote the numbers
of sentences, sentences with events, sentences
with nested events, event types, and event types
that can introduce nested events, respectively.

is insufficient. Nested events are a common
phenomenon in natural language, and our cur-
rent classification is based on statistical analy-
sis during the annotation process and referenc-
ing some resources such as WordNet (Fellbaum,
2010), FrameNet (Baker et al., 1998), and Fact-
Bank (Saurí and Pustejovsky, 2009). However, this
is still a preliminary exploration, and the relevant
definitions need further refinement and supplemen-
tation. (2) ACE2005-Nest is annotated based on
ACE2005. Due to inherent noise in ACE2005 and
variations in the standards among annotators dur-
ing the labeling process, additional noise may be
introduced.
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Figure 3: Analysis of the proportions of event types
capable of introducing nested events.

6. Experiments

6.1. Experimental Setup

Datasets. We conduct experiments on ACE2005-
Nest, Genia11 and Genia13. The statistics of
datasets are shown in Table 2. Since the golden
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annotations for the test set of Genia112 and Ge-
nia133 are not released, we follow Cao et al. (2022)
to split the train and dev sets into train/dev/test sets
with a proportion of 8:1:1 randomly.

Evaluation Metrics. For evaluation, we use the
same criteria of previous work (Cao et al., 2022)
and two new criteria. The traditional criteria are as
follows: 1) Trigger Identification (TI): A trigger is cor-
rectly identified when its span matches the golden
label; 2) Trigger Classification (TC): A trigger is cor-
rectly classified when it is identified correctly and its
event type matches the golden label; 3) Argument
Identification (AI): An argument is correctly identi-
fied when its event type matches the golden label
and its predicted span matches the golden label; 4)
Argument Classification (AC): An argument is cor-
rectly classified when it is identified correctly, and
its role type matches the golden label. Besides, to
evaluate the performance of PE recognition, two
new criteria are added: 5) Pivot Element Identifi-
cation (PEI): A PE is correctly identified when its
outer-nest event type is recognized correctly, and
its predicted span matches the golden label; 6)
Pivot Element Classification (PEC): A PE is cor-
rectly classified when it is identified correctly, and
its role in outer-nest events matches the golden la-
bel. We report the average F-measure (F1) scores
across five runs for each of these metrics.

Baselines. For evaluation, we choose
OneIE (Lin et al., 2020), UIE (Lu et al., 2022),
PLMEE (Yang et al., 2019), CasEE (Sheng et al.,
2021), HDGSE (Shi et al., 2023), and OneEE (Cao
et al., 2022) as the baseline models. OneIE, UIE,
and HDGSE were initially designed for FEE and
have exhibited robust performance. We adapt
these models to NEE by considering spans that are
simultaneously identified as triggers and regular
arguments as PEs. Furthermore, aligning with pre-
vious work (Cao et al., 2022), PLMEE, CasEE, and
OneEE are selected as our baselines that have
demonstrated strong performance in overlapping
and nested event extraction tasks.

6.2. Results on Extracting All Events

Table 3 presents the F1 scores for extracting all
events on ACE2005-Nest, Genia11, and Genia13.
It can be observed that PerNee outperforms all the
baselines. The existence of PEs in the dataset con-
fuses the baselines and affects their performance
on all the subtasks. The PerNee model effectively
mitigates the impact of dual identities associated
with PEs through a two-step process: 1) Firstly,
it identifies the candidate PEs within triggers us-
ing the trigger recognizer. 2) It subsequently de-
termines the argument identities of the PEs via

2https://2011.bionlp-st.org/home/genia-event-extraction-genia
3https://bionlp.dbcls.jp/projects/bionlp-st-ge-2013/wiki/Overview

classifying the relations between trigger pairs with
the pivot element recognizer. By disentangling the
two identities of PEs through the above two mod-
ules, the model achieves enhanced precision in
recognizing PEs. Besides, the utilization of label
information of event types and argument roles as
prompts can help the model get better representa-
tions. Thereby, PerNee leads to better performance
in most NEE tasks.

In Table 3, the improvement in AI and AC on
ACE2005-Nest is significant while the enhance-
ment on Genia11 and Genia13 is marginal. This
may be attributed to the fewer outer-nest event
types and a lower proportion of PEs in Genia11
and Genia13. (1) In the Genia11 and Genia13
datasets, there are only 3 and 5 outer-nest event
types, with the majority falling into the “Regulation”
type, while ACE2005-Nest contains 14 outer-nest
event types. This implies that the extraction of
nested events in Genia11 and Genia13 is relatively
easier compared to ACE2005-Nest. (2) the num-
ber of PEs accounts for only 19% and 20% of all
arguments in Genia11 and Genia13, respectively.
The AI and AC metrics in Table 3 reflect the extrac-
tion performance of all arguments. As our model is
primarily optimized for PE recognition, the overall
improvement in AI and AC is not significant.

6.3. Results on Extracting Nested Events

To further verify that the improvement on ACE2005-
Nest, Genia11, and Genia13 are indeed attributed
to the enhancement of NEE, we evaluate the per-
formance of PerNee only on the sentences that
contain at least one nested event structure in
ACE2005-Nest, Genia11, and Genia13. The re-
sults are presented in Table 4. It can be observed
that PerNee significantly surpasses other base-
lines on all the subtasks on these three datasets,
which convincingly verifies its effectiveness. To fur-
ther analyze the reason, the F1 scores on PEI and
PEC are also reported in Table 4. It can be noticed
that PerNee achieves significant improvement on
the PEI and PEC because the designed trigger
recognizer and pivot element recognizer can better
process the dual identities of PEs.

6.4. Ablation Studies

To verify the effectiveness of PE recognition for
NEE, we treat PEs as regular arguments and rec-
ognize them using the same module as the regular
argument recognizer rather than the designed PER
module in PerNee. The results are denoted as “w/o
PER” in Table 5. It shows that removing PER leads
to a decrease, particularly in AI, AC, PEI, and PEC
metrics. It implies that emphasizing PE recogni-
tion and designing a specialized PER module can
improve the performance of NEE.
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ACE2005-Nest Genia11 Genia13

TI TC AI AC TI TC AI AC TI TC AI AC

PLMEE (Yang et al., 2019) 60.8 58.5 45.2 44.3 65.4 63.5 57.1 56.8 72.6 69.9 65.7 64.9
CasEE (Sheng et al., 2021) 71.9 67.2 47.8 46.3 70.8 68.2 60.2 59.8 78.9 75.1 67.8 67.1
UIE (Lu et al., 2022) 70.0 66.0 50.7 48.2 70.4 68.5 60.7 59.2 75.5 72.2 66.7 66.3
HDGSE (Shi et al., 2023) 72.3 69.5 49.9 46.9 71.5 69.2 61.3 59.9 77.1 76.2 69.4 67.7
OneIE (Lin et al., 2020) 70.9 68.3 53.1 51.3 71.0 68.8 58.7 57.4 78.7 75.2 66.4 64.6
OneEE (Cao et al., 2022) 72.7 69.9 51.3 48.4 71.3 69.2 61.9 60.8 78.6 76.4 70.8 68.1

PerNee 72.8 70.0 55.5 53.8 71.8 69.5 62.3 61.2 79.6 76.7 70.9 68.9

Table 3: Experimental results of extracting all events on ACE2005-Nest, Genia11, and Genia13, respec-
tively.

TI TC AI AC PEI PEC

• ACE2005-Nest
PLMEE 66.3 64.2 46.2 45.4 28.8 28.8
CasEE 78.3 75.7 53.5 50.9 46.1 46.1
UIE 78.0 75.0 54.3 51.0 46.3 46.3
HDGSE 78.2 75.9 53.2 50.2 43.2 43.2
OneIE 74.0 71.6 49.1 48.1 24.9 24.9
OneEE 78.5 76.9 54.4 50.2 46.8 46.8

PerNee 79.0 77.5 55.7 54.6 49.2 49.2

• Genia11
PLMEE 70.4 68.1 65.4 64.8 54.7 53.7
CasEE 75.0 72.2 64.4 63.8 54.0 53.2
UIE 73.5 69.5 63.5 62.9 55.1 54.4
HDGSE 75.1 72.5 64.2 63.3 53.6 52.9
OneIE 73.7 69.8 64.0 63.4 53.7 52.2
OneEE 75.4 73.0 65.0 63.9 57.3 55.7

PerNee 75.7 73.2 66.6 65.9 58.8 56.9

• Genia13
PLMEE 72.8 70.4 69.0 67.5 65.7 65.2
CasEE 78.8 75.4 68.3 67.4 66.2 65.9
UIE 78.4 75.2 71.4 66.8 65.8 65.8
HDGSE 79.1 76.5 70.1 67.6 65.9 65.6
OneIE 79.0 76.0 69.2 66.1 63.9 63.5
OneEE 78.6 76.9 70.4 70.3 66.7 66.7

PerNee 79.6 76.9 72.2 70.9 68.1 68.1

Table 4: Experimental results of extracting nested
events on ACE2005-Nest, Genia11, and Genia13,
respectively.

To further verify the effectiveness of identifying
PEs via trigger-trigger relation classification, we
treat PE recognition as a sequence labeling prob-
lem by utilizing a specific FNN with CRF, denoted
as “repl. PER”. It illustrates a significant decline of
27.2% in both PEI and PEC metrics. This indicates
the design of the PER module in PerNee is more
effective in recognizing PEs.

Besides, to verify the effectiveness of prompts,
we remove them (denoted as “w/o. pmt”), resulting
in performance decreases across all subtasks. It
suggests that label information related to event

types and argument roles proves beneficial for
NEE.

TI TC AI AC PEI PEC

PerNee 72.8 70.0 55.5 53.8 41.5 41.5

w/o PER 72.1 69.6 54.0 52.4 35.5 35.5
repl. PER 64.8 62.2 42.5 41.2 14.3 14.3
w/o pmt. 71.4 69.4 53.4 52.0 40.1 40.1

Table 5: Ablation studies on ACE2005-Nest.

6.5. Detailed Analysis

To verify the motivation that identifying the dual
identities of PEs is crucial for NEE, we compare
the F1 scores of PerNee with OneIE4 on the fol-
lowing four subtasks, as shown in Figure 4 (a): 1)
PE-TI: Identifying the trigger identities of PEs; 2)
Identifying regular triggers; 3) AI-PE: Identifying
the argument identities of PEs; 4) AI-Reg: Iden-
tifying regular arguments. From results shown in
Figure 4 (b), we can observe that:

1) Identifying the argument identities of PEs is
more challenging than the trigger identities of PEs.
Both OneIE and PerNee achieve high F1 scores
in PE-TI (81.3% and 84.8%) but low F1 scores in
PE-AI (40.1% and 66.2%). It suggests that PEs
possess more trigger-like characteristics, making
the argument identities of PEs more difficult to be
recognized;

2) For OneIE, identifying the argument identi-
ties of PEs is more difficult than identifying regular
arguments. The F1 score on PE-AI (40.1%) is
significantly lower than that on Reg-AI (65.2%). It
indicates deploying the same module to identify the
argument identities of PEs and regular arguments
is ineffective;

3) PerNee significantly improves the argument
identification of PEs. PerNee outperforms OneIE

4Here, we adopt OneIE for comparison, as it achieves
the second best performance on ACE2005-Nest and
allows for the separation of the TI and AI subtasks.
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(a) Four subtasks for detail analysis.

(b) Comparison between OneIE and PerNee on the four subtasks.

OneIE

PerNee

Figure 4: Detailed analysis on ACE2005-Nest.

on all four subtasks. Especially on PE-AI, it in-
creases from 40.1% to 66.2%, indicating the effec-
tiveness of the PER module;

4) PerNee exhibits a much smaller performance
gap in identifying regular arguments and the ar-
gument identities of PEs compared to OneIE. The
gap between AI-PE and AI-Reg is 0.5% for PerNee,
while the gap for OneIE is 26.1%. It indicates that,
with the PER module, the AI-PE subtask is not that
difficult and can achieve comparable performance
with the AI-Reg subtask.

6.6. Case Study

To demonstrate the importance of Pivot Element
(PE) recognition in NEE, two cases are selected
from the ACE2005-Nest dataset. As shown in
Table 5, PerNee correctly extracted the nested
events while OneIE, the second-best model in the
ACE2005-Nest dataset, failed.

In these cases, PerNee correctly recognized the
PEs ("destroyed" in Case 1, "met" in Case 2) and
consequently extracted nested events accurately.
On the other hand, OneIE successfully recognized
most arguments but failed to recognize the argu-
ment identities of PEs, resulting in the inability to
extract nested events. This highlights the effec-
tiveness of our specifically designed PE recogni-
tion module, which enhances the performance of
nested event extraction.

OneIE PerNee Golden

Case1

"He claimed Iraqi troops had destroyed five tanks."

Case2

"Erdogan said he would submit his Cabinet list to the president as soon as possible."
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Figure 5: Case study on the importance of PE
recognition for NEE on ACE2005-Nest.

7. Conclusions

In this paper, we presented PerNee, a new model
designed to tackle the Nested Event Extraction
(NEE) task by focusing on recognizing Pivot Ele-
ments (PEs). PEs are crucial in connecting outer-
nest and inner-nest events within a nested struc-
ture. Since PEs have dual identities (i.e., trigger
identities and argument identities), we employ a
trigger recognizer to recognize the trigger identi-
ties and utilize a PE recognizer to recognize the
argument identities, thus connecting events into
nested structures. To enhance NEE performance,
the semantic information of event types and argu-
ment roles is leveraged through prompt learning.
Additionally, we introduced ACE2005-Nest, a new
NEE dataset in the generic domain, which sys-
tematically categorizes nested events therein. Ex-
perimental results demonstrate that the proposed
model consistently achieves state-of-the-art perfor-
mance on ACE2005-Nest, Genia11, and Genia13.
Moreover, ablation studies validate the effective-
ness of the PE recognizer module and prompts.
In the future, we will try to optimize the PE rec-
ognizer module and extend our method to handle
events with more complex structures, such as multi-
level nested events. This will allow us to further
advance NEE capabilities and address the chal-
lenges posed by intricate event hierarchies.
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