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Abstract
For several NLP tasks, an important substep is the identification of noun phrases in running text. This has typically
been done by “chunking” – a way of finding minimal noun phrases by token classification. However, chunking-like
methods do not represent the fact that noun phrases can be nested. This paper presents a novel method of finding
all noun phrases in a sentence, nested to an arbitrary depth, using the BERT model for token classification. We show
that our proposed method achieves very good results for both Swedish and English.
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1. Introduction

For several NLP tasks, an important substep is
the identification of phrases, in particular noun
phrases (NPs), in running text. For instance,
a co-reference resolution system needs to cor-
rectly identify the mentions of people, places,
and concepts that might co-refer (Soon et al. 2001;
Zheng et al. 2011), and in so-called “answer-
aware” question generation, noun phrases often
constitute the desired answer on which to base a
question (Ma et al. 2020).

A group of methods for identifying noun phrases
(without resorting to full parsing) dates back to
Church (1988). These methods rely on token-
based tagging, using a “BIO” scheme, where “B” “I”
and “O” denote “beginning”, “inside” and “outside”
of an NP, respectively. For instance, the sentence
“Alice and Ben took the bus to York” could be tagged
as follows:

Alice and Ben took the bus to York
B O B O B I O B

However, this scheme does not represent the
fact that noun phrases can be nested. In the ex-
ample above, “Alice” and “Ben” are separate NPs
but also part of the larger NP “Alice and Ben”, and
similarly “the bus” and “York” are parts of “the bus
to York”. One might imagine an alternative scheme,
instead tagging maximal NPs, i.e. tagging “Alice
and Ben´´ as “BII”, but this would lose the informa-
tion that “Alice´” and “Ben” also are separate NPs.
And this information is important, for instance in co-
reference resolution, where “Alice” might co-refer
with “her” whereas “Alice and Ben” might co-refer
with “them”.

This paper presents a novel method of finding all
noun phrases in a sentence, nested to an arbitrary
depth, using the BERT model for token classifica-
tion (Devlin et al. 2018) in a recursive manner. Our
approach thus constitutes a useful middle ground
between chunking and full parsing. We train and

evaluate the method on the OntoNotes 5.0 corpus
(Pradhan et al. 2012). Furthermore, to show that
the method generalizes across languages, we train
and evaluate a Swedish model using the KB-BERT
model (Malmsten et al. 2020) and the Talbanken
corpus (UD Swedish Talbanken).

Our method results in syntax tree structure(s),
but using simple token classification without any
pre-written grammar, and without any requirement
to form a single tree from the sentence – we are
merely interested in identifying the noun phrases.
The basic idea is to iteratively merge consecu-
tive words or phrases in the sentence to create
tree structures, while at the same time determining
which of these tree structures actually constitute
NPs.

N O N O O N O N

Iteration 1

Alice and Ben took the bus to York

NP NP .

Iteration 2
NP

Iteration 3
.

Iteration 4
.

Figure 1: Bottom-up construction of a syntax tree,
while simultaneously distinguishing noun phrases
(NP), from other phrases (.) Words labeled “N”
are nouns, which can be considered atomic NPs,
whereas “O” are non-nouns.

For instance, consider the sentence “Alice and
Ben took the bus to York” again. Here, our method
would first identify “Alice”, “Ben”, “bus”, and “York”
as nouns, pronouns or names (which could all be
the head word of a noun phrase). In the next it-
eration, “Alice and Ben” would be merged into a
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phrase which additionally would be identified as an
NP, as would “the bus”, whereas “to York” would be
merged into a phrase which would be identified as
NOT an NP. In the next step, “the bus to York” would
be merged and identified as an NP. Then, “took”
is merged with “the bus to York, and finally, the
whole sentence would be merged into a phrase. In
the two final steps, neither of the resulting phrases
would be identified as an NP. The whole process is
illustrated in Figure 1.

The next section describes how this process is
achieved using BERT.

2. Method

The first step of the method is to introduce a new to-
ken “|” (the “pipe” symbol), which is put in-between
every original token. For instance, “Alice and Ben
took the bus to York” (8 tokens) is now expanded
into the 15 tokens:

Alice | and | Ben | took | the | bus | to | York

The “|” symbol is a boundary, signifying that the
word(s) on either side of it are not part of the same
phrase. The idea is now to have the model (i) de-
cide which of these “|”’s should be removed, in
order to join the surrounding words into a phrase,
(ii) decide which of these newly-formed phrases are
NPs, and (iii) decide which of the original words is
a noun, name or pronoun (for the sake of simplicity,
we will refer to both as “nouns”).

In order to achieve this, we fine-tune the BERT
model to perform a five-class token classification
problem, using the classes

N Noun

O Not a noun

NP Remove token. The resulting phrase is a noun
phrase.

R Remove token. The resulting phrase is a NOT a
noun phrase.

D Don’t remove token

Though technically this is a five-class problem, the
two first classes will only be assigned to the original
words, where as the three last classes will only be
assigned to “|” tokens.

Continuing the example, the correct tagging of
the extended sentence would be:

Alice | and | Ben | took | the | bus | to | York
N NP O NP N D O D O NP N D O R N

This tagging represents that “Alice”, “Ben”, “Alice
and Ben”, “bus”, “the bus”, and “York” are NPs, and
that “to York” is a phrase which is not an NP. At

training time, this extended sentence and its tag-
ging would be a data point, while at inference time
the model should produce this tagging as output.

We then remove all “|” labelled NP or R. In the
next iteration, the correct tagging is:

Alice and Ben | took | the bus | to York
N O N D O D O N NP O N

We can now conclude that “the bus to York” is an
NP. The final two iterations do not yield any further
NPs:

Alice and Ben | took | the bus to York
N O N D O R O N O N

Alice and Ben | took the bus to York
N O N R O O N O N

After removing the final “|” symbol tagged “R”,
the process terminates.

The above example shows the behavior of the
method at inference time. BERT is iteratively called
with the input strings shown above until no more
“|” tokens are left, or the output contains no “R” or
“NP” tags. Intuitively, this process corresponds to
the bottom-up tree building illustrated in Figure 1.

The process may terminate before a complete
tree has been built. This would happen if some
“|” tokens are present in the input, but the model
predicts the label “D” for all these tokens. In that
case, no “|” tokens are removed, so the input for the
next iteration would be unchanged. The process
then terminates and returns a set of subtrees rather
than a complete tree. Unless the top node of the
tree was an NP, this would not impact the overall
result.

If the above sentence was used as training mate-
rial, we would obtain 4 data points: one data point
for each of the expanded strings above (one for
each iteration), with its corresponding tagging.

2.1. Data
We used English part of the OntoNotes 5.0
corpus (Pradhan et al. 2012), together with the
OntoNotes-5-parsing program (Bondarenko 2021)
to obtain a more easily readable format from the
OntoNotes parse trees. The OntoNotes corpus con-
tains ‘syntax’ and ‘morphology’ information for each
sentence which was used in data pre-processing
steps. The pre-processing was broadly divided into
the following steps:

1. Firstly, the syntax and morphology labels were
mapped from character indices to words in a
sentence.

2. Then, different variants of multi-word noun
phrases were standardized into a single label
‘NP’. This concerned labels like NP, NP-SBJ,
NP-PRD etc. in the OntoNotes corpus – all of
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these were considered NPs. The labels for the
remaining phrases, like ‘VP’, ‘PP’ etc., were
kept as they were. Single-word nouns labeled
‘NP’, ‘NN’, ‘NNS’, ‘NNP’, ‘NNPS’, ‘NP’, and ‘NS’
in the OntoNotes corpus were relabeled into
‘N’, while all other words and special charac-
ters appearing in the sentence were labeled
’O’.

3. Lastly, training data points were created by the
process described at the beginning of section
2. The boundary tokens “|” separating words
and phrases in a sentence were removed by
ascending order of phrase length (number of
words in a phrase), as determined by the labels
“NP” and “R”.

We obtained 113,334 sentences from the
OntoNotes corpus. 80% of the corpus, 90,667
sentences from which 511,281 data points were
obtained, was used for training. The remaining
20%, 22,667 sentences, were used for evaluation.

For the Swedish data, we used Talbanken
(UD Swedish Talbanken), from which we extracted
226,008 data points of 63,800 sentences from the
conll files. 62,307 of these sentences were used
for training and 1,493 for evaluation. The pre-
processing steps involved with the Swedish data
were similar, but less complicated as the syntax
labels were already mapped to words in a sen-
tence rather than character indices. All multi-word
noun phrases were called ‘NP’, whereas single-
word nouns, proper names, and pronouns (‘NN’,
‘PM’, and ‘PN’, respectively) were labeled ‘N’.

2.2. Models
For the English data, we used the pre-trained
BERT model ‘bert-base-cased’ with 109M parame-
ters (Devlin et al. 2018), available from the python
transformers library (Bert-HuggingFace) with a
softmax classifier added to the base model. We
fine-tuned the model using 511,281 training exam-
ples created using the data in the OntoNotes cor-
pus with a training batch size of 128 and a learning
rate of 1× 10−5. Initially, we also trained the ‘bert-
base-uncased’ model which performed only slightly
worse than the bert-base-cased model, hence we
decided to go ahead with the ‘bert-base-cased’
model for further analysis. Since most proper
nouns are written with a capital first letter the case
information helps in identifying NPs.

For the Swedish data, we used the pre-
trained KB-BERT model ´bert-base-swedish-cased’
(Malmsten et al. 2020) with a softmax classifier.
We fine-tuned the model using 217,615 training ex-
amples from the Talbanken corpus, using a batch
size of 64 and a learning rate of 1× 10−5.

To make the results for the Swedish model and
English model more comparable, we also trained

the English BERT on approximately half of the train-
ing data, 218,000 datapoints and calculated evalua-
tion metrics on 1,500 sentence from the test corpus.
All the models were trained using NVIDIA T4(x2)
GPU provided by Kaggle (Kaggle GP T4).

2.3. Evaluation metrics
To evaluate the results, we compute precision, re-
call, and F1-score in terms of the number of iden-
tified NPs at the sentence level and the sub-tree
level, as well as the number of completely correct
trees.

At the sequence level, we compare predicted
and ground truth NPs, irrespective of the syntax
tree structure. This is the most lenient measure of
performance in our evaluation. By contrast, at sub-
tree level, we consider a NP as correctly identified
if all the NPs below it in the tree have also been
correctly identified. As example highlighting the
difference between the two, consider the predicted
tree:

(NP (NP a window with) (NP a wooden frame))

where the NP “a window with a wooden frame”
would be considered correct on the sequence level
but not on the sub-tree level, as the interior NP “a
window with” is incorrect.

3. Results and discussion

The evaluation data set from the OntoNotes corpus
consisted of 22,667 distinct sentences that were
not used during training. Table 1 summarizes the
average values of the metrics. We obtained very
high recall values (> 0.9) indicating that our model
produces a very low number of false negatives, i.e.,
it rarely misses out on identifying NPs in a sentence.
The precision values are also equally high at the
sequence and sub-tree level, indicating that our
model produces a low number of false positives as
well. The tree-level precision and recall are low, as
it is enough for a single sub-tree to be identified
incorrectly in a sentence for the tree level metrics
to become 0 for that sentence.

Figure 2 shows the average precision and recall
over all sentences in the test set as a function of
the maximal NP depth of the sentence and the sen-
tence length (number of space-separated tokens in
a sentence). At the sequence and sub-tree levels,
the trends show a slight linear decrease along the
sentence length and the maximal depth of NPs, but
remain in the range of 1 to 0.8. This indicates that
as the length of the sentence or the depth of NPs
in the sentence increases, the model performance
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Figure 2: Recall and Precision as a function of the maximum nested NP depth and sentence length
(number of space separated tokens). Metrics calculated for the fine-tuned English base-cased BERT
model.
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Figure 3: Recall and Precision as a function of the maximum nested NP depth and sentence length
(number of space separated tokens), calculated for the fine-tuned Swedish BERT model.

moderately degrades. The tree-level metrics dis-
play an exponential drop with respect to both the
NP depth and the sentence length. This shows that
our model requires further improvement to create
completely correct syntax tree structure especially
for longer and more complex sentences.

Metric Level Recall Precision F1 score
Sequence 0.94 0.94 0.94
Sub-tree 0.92 0.91 0.91

Tree 0.59 0.57 0.56

Table 1: Average Recall, Precision and F1 at the
sentence level, the sub-tree level and the tree level
using the fine-tuned English base-cased BERT
model.

Metric Level Recall Precision F1 score
Sequence 0.68 0.91 0.74
Sub-tree 0.66 0.89 0.71

Tree 0.27 0.31 0.25

Table 2: Average Recall, Precision and F1-score at
the sentence level, the sub-tree level and the tree
level on the fine-tuned Swedish KB-BERT model.

We evaluated the fine-tuned Swedish KB-BERT
model on 1,493 sentences that had not been seen

by the model during training. Table 2 summarizes
the overall metric values, while figure 3 plots them
along the maximal NP depth and sentence lengths.
Similar trends as for the English model are ob-
served. High precision values are achieved at the
sequence and the sub-tree level. Again, there is
a slight linear decrease with increasing sentence
length and depth of NP nested. Recall values how-
ever display a more interesting trend. With increas-
ing NP depth there is a steeper decrease in perfor-
mance indicating that the model creates a greater
number of false negatives for more complex sen-
tences. The recall trend across sentence length
seems to show a slight linear increase. However, as
the sentence length increases the number of NPs
in the sentence also increases. Thus, the recall
values across sentence length are majorly consis-
tent. The plots along the sentence length seem
spiky towards the end as the number of examples
for longer sentences was smaller in the Talbanken
test corpus.

Metric Level Recall Precision F1 score
Sequence 0.92 0.88 0.90
Sub-tree 0.88 0.83 0.85

Tree 0.44 0.39 0.37

Table 3: Average Recall, Precision and F1-score at
the sentence level, the sub-tree level and the tree
level on the fine-tuned English base-cased BERT
model on half of the training data.
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For comparison, the evaluation results for the
English model trained with only half of the total
English training data available is presented in ta-
ble 3 .The recall for the Swedish model is lower
as compared to the English BERT. A possible ex-
planation for this is that the English training data
consists of 732,626 NPs including one-word nouns
and all nested NPs while the Swedish training data
contains only 416,341 NPs. Despite this difference,
high precision values suggest that our method of re-
cursively applying the BERT model to identify NPs
nested to an arbitrary depth can be generalized
across languages.

4. Related work

Church (1988) was the first to study the chunking
problem (i.e. retrieving non-recursive phrases with-
out the use of a pre-written grammar or finite-state
automaton), using a statistical technique. The
problem has later been attacked using memory-
based learning (Daelemans et al. 1999), support
vector machines (Kudo and Matsumoto 2001),
conditional random fields (Sha and Pereira 2003),
hidden Markov models with majority voting
(Shen and Sarkar 2005), convolutional neural
networks (Collobert et al. 2011), and various
kinds of recurrent neural networks like LSTMs
and GRUs (Huang et al 2016; Yang et al. 2016;
Zhai et al. 2017).

The problem of retrieving recursive chunks
has not attracted the same attention. However,
Socher et al. presented a recursive method for
constructing binary syntax trees, in which a vec-
tor of real numbers represents words and phrases
(Socher et al. 2011). At every step in the recur-
sion, segments (words/phrases) are merged to-
gether, thus creating a parse tree in a bottom-up
fashion. An RNN was used to determine, in each
iteration, which two segments should be merged,
and what the vector representation of the result-
ing segment would be. This vector representation
contains ‘syntactic and compositional-semantic in-
formation’ which could be used for classification of
the words/phrases into NP, VP, PP etc. The pro-
cess terminates when a tree covering the whole
sentence has been constructed.

On the other side of the spectrum, there are
the statistical or machine-learning-based full pars-
ing approaches. One of the first representa-
tives of this line of research was Collins’ statis-
tical parser (Collins 1997). More lately, several
researchers have constructed full constituency
parsers using neural approaches, either transition-
based (Cross and Huang 2016) or graph-based
(Stern et al. 2017). There are also many neural de-
pendency parsers, but we leave them aside since

we are interested in consituency-based syntax.
Finally, we mention the approaches that have

used BERT in some way in the parsing process.
In particular, BERT has been used as a feature
extractor, to obtain features that can be used to pre-
dict stack operations in chart-based neural parsers
(Fried et al 2019; Cui et al 2021). We are not famil-
iar with any work that has used BERT in the way
we are doing in this paper.

5. Conclusion

With this paper we present a novel method to iden-
tify nested noun phrases to an arbitrary depth in a
sentence, using a fine-tuned BERT model in a recur-
sive fashion. The method also produces syntactical
tree structures for a given sentence in the process.
We have achieved high precision levels for both
English and Swedish, especially at the sequence
and sub-tree levels. Future work involves the si-
multaneous prediction of several kinds of phrases
(like noun phrases, verb phrases, and prepositional
phrases) and investigating the approach for more
languages than English and Swedish.

The code developed for this research project is
available through this link.
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