
LREC-COLING 2024, pages 12395–12402
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

12395

On The Adaptation of Unlimiformer for Decoder-Only Transformers

Kian Ahrabian1∗, Alon Benhaim2, Barun Patra2
Jay Pujara1, Saksham Singhal2, Xia Song2

1 Information Sciences Institute, University of Southern California
2 Microsoft

ahrabian@usc.edu, {alonbenhaim,barun.patra}@microsoft.com
jpujara@isi.edu, {saksham.singhal,xiaso}@microsoft.com

Abstract
One of the prominent issues stifling the current generation of large language models is their limited context length.
Recent proprietary models such as GPT-4 and Claude 2 have introduced longer context lengths, 8k/32k and 100k,
respectively; however, despite the efforts in the community, most common models, such as LLama-2, have a
context length of 4k or less. Unlimiformer (Bertsch et al., 2023) is a recently popular vector-retrieval augmentation
method that offloads cross-attention computations to a kNN index. However, its main limitation is incompatibility
with decoder-only transformers out of the box. In this work, we explore practical considerations of adapting
Unlimiformer to decoder-only transformers and introduce a series of modifications to overcome this limitation.
Moreover, we expand the original experimental setup on summarization to include a new task (i.e., free-form Q&A)
and an instruction-tuned model (i.e., a custom 6.7B GPT model). Our results showcase the effectiveness of these
modifications on summarization, performing on par with a model with 2x the context length. Moreover, we discuss
limitations and future directions for free-form Q&A and instruction-tuned models.

Keywords: Large Language Models, Decoder-Only Transformers, Retrieval-Augmented Attention

1. Introduction
In recent years, large language models (LLMs)
have become critical to many language-based
technologies, such as conversational and search
systems. LLMs have shown state-of-the-art per-
formance on sequence-to-sequence downstream
tasks such as summarization and question-
answering. However, the performance of these
models is bounded by the information that can fit
in their context (see Figure 3 and Section 4.3).
Despite the efforts in the community (Choroman-
ski et al., 2021; Beltagy et al., 2020; Ivgi et al.,
2023), most of the common open-source models,
e.g., MPT (Team, 2023), Falcon (Penedo et al.,
2023), and LLama-2 (Touvron et al., 2023), have
a context length of 4096 or less. As such, ef-
ficiently overcoming this limitation would allow a
broader and fairer adaptation of LLMs while in-
creasing their performance across benchmarks.
In general, most of the existing methods for ex-
tending the contextual information in LLMs fo-
cus on one of the following approaches: 1) ex-
tending positional embeddings through extrapo-
lation or interpolation (Press et al., 2022; Sun
et al., 2023), 2) introducing recurrence in the trans-
former (Hutchins et al., 2022; Yang et al., 2019),
3) introducing sparsity in the attention mecha-
nism (Beltagy et al., 2020; Zaheer et al., 2020),
and 4) augmenting the transformer with a vector-
retrieval module (Rubin and Berant, 2023). One
popular approach that has gained much trac-

∗ Work done during an internship at Microsoft.

Figure 1: Overview of an example of the adapted
decoder-only model where only a single layer
(e.g., 16th) uses cross-attention. Here, Ti and
Gi represent the original context and generated
tokens. The cyan section encapsulates the first
pass to create the indices, while the pink section il-
lustrates the second pass to generate sequences.
Note that the first chunk appears in both the in-
put and the index by design, keeping the input the
same in all variations of our experiments.

tion recently for extending contextual informa-
tion to unlimited inputs (theoretically) is Unlim-
iformer (Bertsch et al., 2023). Unlimiformer is
a vector-retrieval augmentation method that of-
floads the cross-attention computations to a kNN
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index and can wrap any existing encoder-decoder
model. However, its incompatibility with decoder-
only models is a significant shortcoming.
Contributions: In this work, we present a set of
modifications to overcome this limitation of the Un-
limiformer architecture, adapting it to the decoder-
only models (see Figure 1). These modifications
consist of 1) modifying the cross-attention formu-
lation to include information fusion, 2) updating
the index creation procedure, 3) addressing the in-
dex staleness problem, and 4) adapting the chunk
encoding procedure to causal attention (see Sec-
tion 3). Moreover, we introduce a new evalua-
tion setting and present our experiments on four
long-document datasets across two tasks: sum-
marization and free-form Q&A. Our experiments
show that our modifications improve summariza-
tion datasets, performing on par with a model with
2x context length. We also discuss the limita-
tions and future directions for free-form Q&A and
instruction-tuned models.

2. Related Works
Many prior works, such as Linformer (Wang et al.,
2020) and Reformer (Kitaev et al., 2020), have
been focused on creating more efficient trans-
formers. Tay et al. (2022) present a compre-
hensive study on these models. Moreover, there
have been efforts to accelerate dense atten-
tion calculations by crafting IO-aware CUDA ker-
nels (Dao et al., 2022; Dao, 2023). Recently, Ru-
bin and Berant (2023) have introduced another
retrieval-augmented attention model for decoder-
only transformers; however, unlike Unlimiformer,
this model does not work in zero-shot settings.
Finally, there have been attempts to break away
from attention-based models entirely through lin-
ear RNNs (Peng et al., 2023) or convolutions (Poli
et al., 2023).

3. Methodology
In summary, Unlimiformer consists of three main
steps: 1) split the input into overlapping digestible
chunks, 2) encode each chunk and store the hid-
den states of the middle-half tokens in a kNN in-
dex, and 3) approximate the dense attention in
the decoder using a subset of hidden states re-
trieved from the index. In this section, we discuss
our changes tomakeUnlimiformer compatible with
decoder-only models1.

3.1. Cross-Attention
Formally, in Unlimiformer, the dot-product part of
the cross-attention mechanism in decoder layers

1Concurrently, Bertsch et al. (2023) have released
an implementation for decoder-only models. Appendix
A details the differences in our adaptation.

is approximated as

QKT ≈ (hdWqW
T
k )hT

e (1)

where hd is the decoder’s hidden states, and
he is the retrieved hidden states that maximize
(h

(−1)
d WqW

T
k )hT

e .
In decoder-only transformers, due to the absence
of a natural encoding/decoder splitting layer, we
can arbitrarily choose any layer to use cross-
attention instead of self-attention. This allows us
to use various simple or complex patterns for the
set of cross-attention layers, L (e.g., L = {16} in
Figure 1). Appendix B details how these patterns
are tuned as hyperparameters of the model.
Let hCA be the input to a cross-attention layer.
Based on h

(−1)
CA , we can retrieve the relevant vec-

tors, hkNN, from the index. Similar to the memory
transformer (Burtsev et al., 2020), by fusing hkNN
and hCA we form the new query matrix hq, and the
new key-value matrix, hkv as

hq = [hkNN[αq :];hCA[βq :]] (2)
hkv = [hkNN[αkv :];hCA[βkv :]] (3)

where αq and βq (αkv and βkb) control the retention
sizes of the retrieved and input vectors in the query
(key-value) matrix. This fusion scheme gives us
more flexibility on what information is processed
in the attention mechanism. Given hq and hkv, we
can approximate the dot-product part of the cross-
attention as

QKT ≈ (hqWq)(hkvWk)
T . (4)

Similar to the original approach, Wq and Wk are
head-specific but use the same index.

3.2. kNN Indices
Without separate encoder/decoder modules, op-
erating with only one index for the whole model
is impossible. This is because each layer in a
decoder-only model attends to the output of its
previous layer, in contrast to the decoder layers
in encoder-decoder models that attend to the en-
coder’s output. Consequently, if we arbitrarily use
a specific layer’s output for building our index, we
create a distributional mismatch between the ex-
pected input and actual inputs of future layers.
Hence, we must create a separate index for each
cross-attention layer to overcome this issue. How-
ever, this approach requires much more memory
and computation cost to build the indices. For ex-
ample, in our models, it could add up to |L| times
the cost of having a single index. Section 8 dis-
cusses the potential ways of mitigating this issue.
In our experiments, we only tune ourmodels to use
at most three cross-attention layers, i.e., |L| = 3.
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Figure 2: A sample free-form Q&A prompt. The
article section consists of the truncated version of
the full article that fits in the context. The question
section is always fully included.

3.3. Index Staleness
One of the potential issues of a static index is stal-
eness. Specifically, since Unlimiformer approxi-
mates dense attention, without updating the index,
we would lose the information from the newly gen-
erated tokens, which might lead to incoherent out-
puts. For example, assume we have a model with
a context length of N . In this scenario, at genera-
tion stepN+2, the input to the model would be the
lastN generated tokens, effectively discarding the
first generated token as it is also absent from the
index. To fix this problem, at each generation step
and each layer, we add h

(−1)
CA to its respective in-

dex. This ensures the addition of the most recent
token and keeps the indices from going stale. Ap-
pendix 6.1 presents an ablation study that show-
cases the effectiveness of this simple change.

3.4. Chunks Encoding
In contrast to encoder-decoder models, decoder-
only transformers use causal (unidirectional) at-
tention. This difference means that a token has
seen enough contextual information if a certain
number of tokens are behind it. As a result, instead
of only storing the hidden states of the middle half
tokens, we can keep all the non-overlapping ones.
This will allow us to be slightly more efficient when
processing long documents. Note that only the
first instance of overlapping tokens is added to the
index, as illustrated by orange tokens in Figure 1.

4. Experimental Setup
4.1. Datasets & Tasks
For our experiments, we use datasets from the two
tasks of summarization and free-form Q&A, cho-

Dataset Metrics #Samples Avg #Tokens

GovReport (GAO) ROUGE-{1,2,L},
METEOR

611 11395
BookSum 46 164695

NarrativeQA Token F1 10557 76433
Qasper 1372 4836

Table 1: Statistics of the datasets. The average
number of tokens is obtained using the GPT-4 tok-
enizer: https://github.com/openai/tiktoken.

Figure 3: Performance comparison of GPT-Summ
on GovReport (GAO) and BookSum, and GPT-
Inst on NarrativeQA and Qasper at varying context
lengths.

sen due to the existence of long-document bench-
marks (Shaham et al., 2023). Specifically, for
summarization, we use GovReport (GAO) (Huang
et al., 2021) and BookSum (Kryscinski et al.,
2022), and for free-form Q&A, we use Narra-
tiveQA (Kočiský et al., 2018) and Qasper (Dasigi
et al., 2021). Moreover, we tune the hyperparame-
ters on the validation sets and report the results on
the test sets. All the experiments are carried out in
a zero-shot setting. Table 1 presents the statistics
of these datasets.

4.2. Models
We used two distinct base models to evaluate our
modifications: 1) GPT-Summ: a finetuned sum-
marization model and 2) GPT-Inst: an instruction-
tuned model. To better understand the impact
of our approach compared to dense attention, in
contrast to prior works, we pre-train both variants
of the models with a sequence length of 8192
using the same architecture as the GPT-3 6.7B
model (Brown et al., 2020b), with the addition of
RoPE embeddings (Su et al., 2021).

4.3. Evaluation Setup
The original Unlimiformer paper presents two
main experimental comparisons: 1) BARTbase
vs. BARTbase + Unlimiformer and 2) BARTbase +
Unlimiformer vs. SLED (Ivgi et al., 2023)
and Longformer (Beltagy et al., 2020). These
comparisons showcase the effectiveness of the

https://github.com/openai/tiktoken
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Figure 4: METEOR and ROUGE-{1,2,L} achieved by GPT-Summ on the GovReport (GAO) dataset.

Figure 5: METEOR and ROUGE-{1,2,L} achieved by GPT-Summ on the BookSum dataset.

proposed model; however, one missing cru-
cial evaluation setup is the comparison to the
same base model with longer context lengths,
e.g., GPT-Summ[2048] vs. GPT-Summ[1024] +
Unlimiformer. Such a setup provides more in-
sight into how efficiently Unlimiformer uses the ex-
tra information provided through the kNN index.
In this work, we focus on this setting by restrict-
ing the context length of the base model to 1024,
2048, 4096, and 8192 tokens and then compar-
ing them to variations equipped with Unlimiformer.
To ensure that our models and datasets showcase
meaningful differences across context lengths in
such a setup, we ran experiments on the base
models using the validation sets, estimating the
performance changes as contextual information
increased. Figure 3 illustrates the results of our
experiments. Moreover, Appendix 6.2 presents a
case study to ensure the performance disparity in
Figure 3 is an artifact of the datasets, not a defi-
ciency in the models.

4.4. Prompt Structure
For the free-form Q&A datasets and the
instruction-finetuned model, we opted for a
simple three-part (Article, Question, and An-
swer) template. Figure 2 illustrates an example
of the prompt structure. We also investigated
ZeroScrolls’s prompt template (Shaham et al.,
2023), but since we did not notice any significant
difference in the performance, we continued with
the more straightforward template.

4.5. Metrics
For summarization, we report ROUGE-
{1,2,L} (Lin, 2004) and METEOR (Banerjee

Figure 6: Token F1 achieved by GPT-Inst on Nar-
rativeQA (left) and Qasper (right) datasets.

and Lavie, 2005) as 1) they are standard met-
rics and 2) have shown good correlation to
expert annotations (Fabbri et al., 2021). More-
over, in our early experiments, we investigated
BERTScore (Zhang* et al., 2020); however,
similar to Bertsch et al. (2023)’s findings, we
observed a lack of distinguishing power among
the lengthy summaries, even when other metrics
and manual inspection showed improvements.
For free-form Q&A, we used the standard token
F1 metric, similar to the ZeroScrolls benchmark.

5. Results
5.1. Summarization
Figures 4 and 5 present our experimental re-
sults using the GPT-Summ model on the Gov-
Report (GAO) and BookSum datasets, respec-
tively. As evident from these results, adding
our modifications improves the model’s perfor-
mance to a 2x level (e.g., GPT-Summ[1024] +
Unlimiformer ≈ GPT-Summ[2048]) on the GovRe-
port (GAO) dataset. Similarly, we observe sig-
nificant improvements in the BookSum dataset.
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Variation Rouge-1 Rouge-2 Rouge-L

w/o 0.4247 0.1734 0.2512
w/ 0.4263 0.1744 0.2523

Table 2: Effect of adding newly generated tokens
to the index on the performance of the model.

Chunk Min Evidence
> 1024 (%)

Min Evidence
> 2048 (%)

Min Evidence
> 4096 (%)

Min Evidence
> 8192 (%)

Train 66.37 47.79 19.26 1.42
Valid 67.77 47.03 15.30 0.87
Test 68.22 46.02 13.71 0.75

Table 3: Percentage of answers with minimum ev-
idence position outside a given context length in
Qasper.

These results showcase the effectiveness of our
proposed modifications.

5.2. Free-Form Q&A
Figure 6 illustrates our experimental results us-
ing the GPT-Inst model on the NarrativeQA and
Qasper datasets. Although we can observe some
improvements in both Qasper and (mostly) Narra-
tiveQA, they are less significant than the summa-
rization datasets’ results. Given the prompt-based
approach used for the free-from Q&A task (see
Figure 2), the insignificant improvements could be
an artifact of the instruction-tuned model being too
biased toward the input, making it insensitive to
the added information in the cross-attention lay-
ers. These results present exciting opportunities
to investigate such models in future studies.

6. Ablations
6.1. Index Staleness
To study the effect of index staleness, we experi-
ment with an internal summarization dataset con-
sisting of samples of up to 7k tokens using a model
with a context length of 2048 and a generation limit
of 700 tokens. Table 2 presents the result of our
experiments. Although the generation length is
still way under the 2048 limit, we can see a slight
positive improvement in the performance, show-
casing the usefulness of this simple addition with
almost no cost. Moreover, we believe the perfor-
mance boost will increase as the generation length
increases.

6.2. Contextual Information
In the Qasper dataset, we have access to a set
of evidence for each answer. Hence, we can cal-
culate the percentage of answers that all of their
evidence falls out of the range of a specific con-
text length. Table 3 presents these numbers for
different context lengths. These numbers are con-

sistent with the improvements in Figure 3, which
showcase the validity of our models.

7. Conclusion
This work presented a set of changes to adapt the
Unlimiformer architecture to decoder-only models.
We evaluated these changes with a new set of ex-
periments, showcasing their effectiveness, espe-
cially on summarization datasets. We also identi-
fied a failure case that warrants further investiga-
tions in future studies. We hope this work paves
the way for the broader use of this architecture.

8. Limitations
Query Bias Since both Unlimiformer and our ap-
proach use a specific query vector to retrieve hid-
den states from the index, the retrieval process
becomes biased on the query vector. In Unlim-
iformer, this vector is h

(−1)
d , which is calculated

by attending to the generated tokens. In our ap-
proach, this vector is h

(−1)
CA , which is calculated by

attending to the whole input, i.e., original context +
generated tokens. This dependence on the orig-
inal context potentially reduces the expected per-
formance gains when external indices are used.
Moreover, it could partially explain the lack of sig-
nificant improvements in Section 5.2.
Latency The main setback of having many in-
dices is the increase in latency. To alleviate this
problem, we could 1) use approximate indices
and/or 2) use indices that operate on GPU to re-
move the CPU-GPU transfer overhead.

9. Ethical Considerations
This paper does not have any ethical considera-
tions
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A. Implementation Comparison
Although similar in using separate indices for each
layer, we present additional modifications to the
original methodology2. Specifically, 1) we intro-
duce an update procedure for indices to avoid stal-
eness, 2) we use a slightly more efficient chunk
encoding approach, and 3) we introduce informa-
tion fusion into the architecture and reformulate
the attention calculations to be more comprehen-
sive (see Section 3.1). Moreover, to the best of
our knowledge, no evaluation of their proposed

2https://github.com/abertsch72/unlimiformer

https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
https://doi.org/10.18653/v1/2023.acl-long.816
https://doi.org/10.18653/v1/2023.acl-long.816
https://doi.org/10.1145/3530811
https://openreview.net/forum?id=SkeHuCVFDr
https://github.com/abertsch72/unlimiformer


12402

methodology has been presented for decoder-only
models, a shortcoming that our work aims to ad-
dress using a new evaluation setting and new
datasets.

B. Hyperparameters
Cross-Attention Layers (L) To find the best L,
first, we find the highest-performing single-layer
pattern. Then, we expand that pattern by adding
one more cross-attention layer before or after that
layer, with varying distances, until no performance
improvement can be seen over the validation set.
We continue this process up to three layers. For
example, if L = {16} is the highest-performing
single-layer pattern, at the second step, we will
try L ∈ {{16, 17}, {15, 16}, {16, 18}, . . .}, and then
at the third step, assuming L = {16, 18} was
the best-performing pattern, we will try L ∈
{{14, 16, 18}, {16, 18, 20}, . . .}. In most of our ex-
periments, the best performance was achieved by
L = {20, 22, 24}.
Retention Sizes (αq, βq, βkv, αkv) After tuningL,
we tune these hyperparameters by first constrain-
ing them with αq + βq = βkv + αkv = S, where
S is the context length, and then doing a sweep
on αq, αkv ∈ {0.05, 0.1, 0.15, . . . , 0.95, 1} × S. In
most of our experiments, the best performance
was achieved by αq, αkv = 0.4× S.


	Introduction
	Related Works
	Methodology
	Cross-Attention
	kNN Indices
	Index Staleness
	Chunks Encoding

	Experimental Setup
	Datasets & Tasks
	Models
	Evaluation Setup
	Prompt Structure
	Metrics

	Results
	Summarization
	Free-Form Q&A

	Ablations
	Index Staleness
	Contextual Information

	Conclusion
	Limitations
	Ethical Considerations
	Bibliographical References
	Implementation Comparison
	Hyperparameters

