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Abstract
Language models have long been shown to embed geographical information in their hidden representations. This
line of work has recently been revisited by extending this result to Large Language Models (LLMs). In this paper, we
propose to fill the gap between well-established and recent literature by observing how geographical knowledge
evolves when scaling language models. We show that geographical knowledge is observable even for tiny models,
and that it scales consistently as we increase the model size. Notably, we observe that larger language models
cannot mitigate the geographical bias that is inherent to the training data.
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1. Introduction & Related work

In recent years, numerous studies analyzing the
hidden representations of self-supervised language
models have provided insights into how these mod-
els incorporate linguistic knowledge from their train-
ing data (Gupta et al., 2015; Köhn, 2015; Shi et al.,
2016; Hupkes and Zuidema, 2018; Conneau et al.,
2018; Jawahar et al., 2019).

This line of work has been called probing, as
most approaches are generally based on the train-
ing of classifiers—or probes—upon frozen hidden
representations.

Analyzing the representations of language mod-
els can point out sociocultural biases that were
inherently learned by the models during training
(Zhao et al., 2018), and training probes can help
with mitigating these biases (Ravfogel et al., 2020;
Iskander et al., 2023).

Among probing tasks, several works have fo-
cused on geographical representations that are
implicitly embedded in language models. Louw-
erse and Benesh (2012) show that coordinates
of places in the Middle-Earth can be predicted by
just using the co-occurence matrix extracted from
the Lord of the Rings novels. Faisal and Anasta-
sopoulos (2022) build networks from geographical
representations based on monolingual and multi-
lingual models of different sizes. They show that
all models embed more accurate geographical rep-
resentations for countries of the Global North.

This geographical discrepancy can be explained
by biases that are inherent to the datasets used
for pretraining Faisal et al. (2022). Imbalanced fre-
quency distributions of geographical references in
pretraining data causes distortions in the represen-
tational space (Zhou et al., 2021). These distortions

lead to a loss in the models’ ability to differentiate
between under-represented locations.

Recently, Gurnee and Tegmark (2023) have
probed large language models from the Llama-2
suite (Touvron et al., 2023) to extract coordinates
of prompted locations from hidden representations
across layers. They show that models ranging from
7B to 70B parameters are able to convincingly em-
bed geographical coordinates on a world map when
representing basic prompts.

In this work, we propose to extend the analysis by
Gurnee and Tegmark (2023) to smaller language
models, in order to observe how scale affects the
ability of models to implicitly embed geographical
information from raw training data. We show that
such ability consistently improves with model size,
and that even tiny models are able to produce visu-
ally meaningful world maps.

We make several contributions:
• We show that geographical information can be

extracted to a certain extent from representa-
tions at every model scale;

• We observe that larger models are more geo-
graphically biased than their smaller counter-
parts;

• We find that the performance of models in
terms of geographical probing is correlated
with the frequency of corresponding country
names in the training data.

2. Scaling Laws of Geographical
Probing

In this section, we train geographical probes for a
wide variety of models at different scales.
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(a) Pythia 14M (R2 = 34.34) (b) Pythia 160M (R2 = 55.28)

(c) Pythia 1B (R2 = 67.94) (d) Pythia 2.8B (R2 = 74.97)

Figure 1: Predicted coordinates of test set instances for different model sizes. Each color represents a
different continent.

2.1. Methodology
We use the World dataset from Gurnee and
Tegmark (2023) as a geographical data source.
It contains 39,504 location names from the whole
world along with corresponding longitude and lati-
tude. We use the same train-test split strategy as
in the original article, thus keeping 20% of samples
for testing purposes.

For each location name X, we prompt models
with the text: “Where is X in the world?”. We then
infer with a given model on the whole dataset, and
use the last token belonging to the entity X as the
model’s representation. To follow the linear probing
paradigm used in Gurnee and Tegmark (2023), we
train a Ridge linear regressor (Hoerl and Kennard,
1970) to predict latitude and longitude based on
the model’s representations. We then measure the
probe’s performance on the test set using the R2

correlation coefficient.

2.2. Results
In Figure 1, we display the predictions of the probe
for the most performant layer, which is generally the
last one. We observe that geographical information
can be extracted from models even for a very small
parameter count. The performance of the probes
seem to increase with the model size.

We show in Figure 2 that the performance of
language models evolves consistently with model
size, regardless of the architecture. We validate this
property on several decoder model families: GPT-2
(Radford et al., 2019), OPT (Zhang et al., 2022),

(a) Decoder models

(b) Encoder models

Figure 2: Evolution of the R2 coefficient on the test
set for various model suites.

Pythia (Biderman et al., 2023), GPT-Neo (Black
et al., 2021), the multilingual mGPT (Shliazhko
et al., 2023), and Llama-2 (Touvron et al., 2023).
We also display results for several encoder mod-
els: BERT (Devlin et al., 2019; Turc et al., 2019),
RoBERTa (Liu et al., 2019), ELECTRA (Clark et al.,
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2020), and DeBERTa-v3 (He et al., 2020). This
property also applies for encoder models, for which
we notice that the BERT suite unexpectedly out-
performs its counterparts. The performance of en-
coder models is comparable with the one of equiv-
alent decoder models. We can underline the fact
that BERT-Large (336M parameters) is as accurate
as the three times larger Pythia-1B.

Interestingly, the multilingual XLM-R (Conneau
et al., 2020) underperforms its counterparts, even
though multilingual data must have increased the
training data’s geographical diversity to some extent
(Faisal and Anastasopoulos, 2021). The mGPT
suite also slightly underperforms Pythia models at
equivalent model sizes.

We verified that the better performance of larger
models was not solely related with the ability of
the probes to extract better patterns from their
higher-dimensionality hidden representations. We
achieved this by concatenating representations
with themselves to increase dimensionality with-
out introducing novel knowledge. It led to slightly
worse performance for all tested models, thus show-
ing that performance was not a consequence of
dimensionality alone.

3. Geographical Bias and Scale

In Figure 1, it seems at first glance that as the
model size increases, the predictions tend to be
more accurate for locations of the Southern Hemi-
sphere. In this section, we propose to quantify
this hypothesized behavior by measuring the bias
across countries and continents for various scales.
We also correlate the models’ accuracy with both
lexical and geographical factors.

3.1. Measuring bias
We group probe performance as measured by
mean-squared error (MSE) on predicted coordi-
nates, and average measures by continent in Fig-
ure 3. While we notice that the performance in-
creases consistently for every continent, we do not
observe a significant reduction in the performance
gap across continents as model size increases.

To measure the heterogeneity of the probing per-
formance of language models across countries, we
use the Gini coefficient (Gini, 1912) that is widely
used in economics. Given a series of observed
variables (xi)i∈[1,N ], the Gini coefficient is defined
as:

Gini(x) =

∑
i,j∈[1,N ] |xi − xj |

N ·
∑N

i=1 xi

A Gini coefficient of 1 reflects perfect heterogene-
ity, while a Gini of 0 implies perfect homogeneity.

Figure 4 shows that the larger the model is, the
more heterogeneous the probe performance is

Figure 3: Average MSE by continent for different
sizes in the Pythia suite.

Figure 4: Gini coefficients of MSE on the test set
averaged by country or by continent, as model size
increases.

across countries and continents. This contradicts
the impression given by Figure 1, and shows that
scale does not solve the geographical discrepancy
caused by bias inherent to the training data.

In Figure 5, we locally average log-MSE on a
World map, and report results agglomerated ac-
corded to latitude and longitude. We clearly ob-
serve that the model performs poorly in Oceania,
South Asia and South America. We also see that
the error is minimal around the latitude of North
America and Europe, while it increases in the South-
ern Hemisphere.

3.2. Identifying sources of bias
We attempt to correlate the performance of our
geographical probes with several factors. First, the

Figure 5: Test log-MSE for Pythia-1B as plotted on
a World map.
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Figure 6: Pearson correlation coefficients of various
factors with location-wise MSE, for several Pythia
model sizes. *: Tests that yielded p-values above
0.05.

dataset from (Gurnee and Tegmark, 2023) provides
each location with an estimate of the corresponding
population count when relevant. We also consider
training data distribution as a potential factor of
heterogeneity. Finally, we consider latitude and
longitude as potential factors of bias.

To account for training data distribution, we look
for exact string matches of country names from the
Gurnee and Tegmark (2023) dataset in an extract
of The Pile (Gao et al., 2020) containing 3.5 million
samples 1. We select this dataset as it was used to
pretrain the models from the Pythia suite (Biderman
et al., 2023) we evaluate in this section. We find
15 million matches, covering 98% of the countries
of the dataset.

We do not count occurrences of location names
directly, as matching locations on the basis of their
names does not account for named entity ambi-
guity. An example of ambiguous location name
is Fully, which is a town in Switzerland. An ex-
act match strategy overestimates by large margins
the occurrence count of this location, because of
the corresponding English word fully. Disambigua-
tion techniques have been designed (Hoffart et al.,
2011; Orr et al., 2020), but we prefer to avoid the
risk of bias propagation and the cost of using such
methods on a large corpus.

We display Pearson correlations between each
of the aforementioned factors and the entity-level
MSE for each model size in Figure 6. As in Fig-
ure 1a, we observe that the error on coordinates
prediction is negatively correlated with the latitude,
i.e. southern locations are less accurately identi-
fied. This correlation slowly decays as the model
size increases. Meanwhile, longitude seems to be
mildly correlated with the probe performance.

Interestingly, the population count is not corre-
lated with the error level. The occurrence count of
the location country is negatively correlated with
the error level, thus showing that the more country
names appear in the training dataset, the more the

1https://huggingface.co/datasets/ola13/
small-the_pile

probes are able to recover coordinates from loca-
tions in these countries. However, this correlation
is mild and even below the significance threshold
for the smallest model.

We also measure the correlation between coun-
try occurrences and other metrics to account for the
bias inherent to the data. We observe that country
name occurrences are positively correlated with
latitude with a p-value of 0.06, and not correlated
with the longitude. More importantly, the popula-
tion count of a country and the count of this country
name in the data are heavily correlated (factor of
+0.52 and p-value of 3e-23). Thus, even though the
data seems guided by demographic factors, this is
not the case of the model’s representations.

4. Discussion

We believe that quantifying sociocultural bias in
representations of language models and pretraining
datasets allows to better understand the roots of
the biases that can be observed during generation.

Bender et al. (2021) discuss the relevance of scal-
ing models to ever larger magnitudes, with regard
to environmental and financial costs. Our study
shows that scale can also increase language mod-
eling bias when it comes to geographical represen-
tation, given a pretraining dataset. We advocate
in favor of measuring and mitigating bias in pre-
training datasets to avoid scaling bias along with
performance.

Conclusion

In this study, we show that a wide variety of lan-
guage models, varying in architecture and sizes,
implicitly embed geographical data to some extent.
As we consider larger models, the performance
of geographical probes consistently increases to-
wards levels shown in Gurnee and Tegmark (2023).

We show numerically that the geographical probe
performance is correlated with latitude across
model sizes, but also with the number of occur-
rence of corresponding country names in the pre-
training data. Conversely, the population count
of the location seems uncorrelated with the probe
performance. This indicates that a minority of peo-
ple benefit from better geographical understanding
when using language models, which does not max-
imize the social utility of these systems.

While it may initially seem that this performance
increase mitigates heterogeneity between South-
ern and Northern countries, we actually show that
larger models tend to be more biased according to
the Gini coefficient taken on prediction error. This
tends to show that scaling language models can
amplify discrepancies in their geographical knowl-
edge.

https://huggingface.co/datasets/ola13/small-the_pile
https://huggingface.co/datasets/ola13/small-the_pile
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