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Abstract
Modern Transformers achieved impressive results on various Natural Language Processing tasks over the last few
years. The one downside of this success is the size of these models. Huge capacity, which sometimes surpasses
billions of parameters, improves generalization abilities, but makes it difficult to employ. Developing field of model
compression seeks to reduce the model size and inference latency. This research focuses on one of the compression
techniques — Post-Training Quantization. We present a methodology to effectively quantize at least 95% of
Transformer weights and corresponding activations to INT8 without any access to task-specific data so the drop in
performance does not exceed 0.02%. Furthermore, we provide intriguing observations that reflect cross-domain
nature of some of the quantization properties.
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1. Introduction

Natural Language Processing (NLP) enables ex-
tracting meaning and learning from text data and
achieved impressive progress in recent years. This
evolution is attributed to the continually evolving
models and techniques in NLP. However, with
growth comes the challenge of expanding model
sizes, with some models now encompassing bil-
lions of parameters as of this writing (Zhao et al.,
2023). This rapid growth in model dimensions
brings deployment challenges. Emerging domain
of model compression aims to tackle these by
streamlining model sizes, making it feasible for
NLP models to run efficiently on devices like smart-
phones or basic CPUs (Gupta and Agrawal, 2022).

Popular approaches in this area include distilla-
tion, quantization and pruning (Gou et al., 2021;
Liang et al., 2021; Gholami et al., 2021). Prun-
ing selectively trims certain parameters or param-
eter groups from a neural network without signifi-
cant performance loss (Frankle and Carbin, 2018),
whereas distillation involves a smaller neural net-
work (the student) learning in tandem with a pre-
trained, larger network (the teacher) (Hinton et al.,
2015). The strategies in quantization are primar-
ily categorized into Quantization-Aware Training
(QAT) (Jacob et al., 2018) and Post-Training Quan-
tization (PTQ) (Lee et al., 2022). While QAT of-
ten results in superior performance, it demands

additional computational resources and intricate
expertise for successful deployment. In contrast,
PTQ offers higher speed of obtaining a quantized
model, though potentially compromising optimal
performance. PTQ encompasses both static and
dynamic approaches. In the static method, quan-
tization parameters are determined after training,
relying on a representative calibration dataset, with
both weights and activations undergoing quantiza-
tion. Calibration dataset may be unavailable and
zero-shot quantization methods, which bypass this
need, often employ various heuristics, but tend to
underperform, particularly at ultra-low precision lev-
els. On the other hand, dynamic quantization calcu-
lates these parameters in real-time during inference
for each individual sample, focusing mainly on ac-
tivations. Both methods seek to balance model
accuracy with computational efficiency, and the se-
lection between them is influenced by the specific
needs of the application and hardware limitations.

In this study, we describe a quantization ap-
proach that compresses a minimum of 95% of
model parameters and activations while maintain-
ing marginal degradation in performance, when
fine-tune dataset is not available. We gradually
design the procedure that employs static PTQ on
layers specifically selected so that the quantiza-
tion has least impact on the model’s performance.
The quantization parameters calibration is executed
with samples obtained from publicly available cor-
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pora. Additionally, we refine the estimate of quan-
tization scaling, drawing from the inherent knowl-
edge of the GeLU (Hendrycks and Gimpel, 2016)
activation function. We test the proposed approach
through a series of experiments with a number of
encoder-based architectures, tasks and datasets.

The reminder is organized as follows. In Section
2 we overview prior works in the field of model com-
pression. Section 3 introduces proposed method-
ology, and Section 4 describes experimental setup,
tasks, datasets and models. Major results are re-
flected in Section 5 and Section 6 and the work is
concluded with a discussion of promising venues
for adopting quantization in NLP in Section 7.

2. Related Works

In the landscape of neural network compression,
quantization has emerged as a prominent tech-
nique to minimize computational and memory over-
heads. While many studies aim to lower model pa-
rameter precision for easier deployment on limited-
resource devices, this often leads to a decrease in
accuracy, which is considered a crucial challenge
in this research.

The one group of studies represented by works
(Junczys-Dowmunt et al., 2018; Bhandare et al.,
2019; Zafrir et al., 2019; Shen et al., 2020; Kim et al.,
2021; Stock et al., 2020; Darvish Rouhani et al.,
2020) adopted various forms of QAT when quan-
tizing Transformer (Vaswani et al., 2017) based
architectures. These research mainly explore appli-
cations of QAT employing PTQ methods as inferior
baselines. Among multiple challenges in QAT the
problem of overcoming outliers’ influence seems
to be crucial. The papers (Zafrir et al., 2019; Bon-
darenko et al., 2021; Wei et al., 2022; Bondarenko
et al., 2023; Xiao et al., 2023) focus on providing the
corresponding solutions with different compression-
accuracy trade-offs.

ZeroQuant (Yao et al., 2022) is a PTQ approach
tailored for large Transformer (Vaswani et al., 2017)
models combined with a layer-by-layer knowledge
distillation algorithm. Empirical results demonstrate
that ZeroQuant can effectively reduce precision to
INT8 for models like BERT (Devlin et al., 2019) and
GPT-3 (Brown et al., 2020) with minimal accuracy
loss. (Yvinec et al., 2023) provides REx — a data-
free post-training quantization method, leveraging
residual error expansion and group sparsity.

Alternative methods encompass the Hessian
Aware Quantization technique (Shen et al., 2020)
and approximate second-order strategies adapted
for quantizing large language models (Frantar et al.,
2023).

This research emphasizes static PTQ, adapting
ZeroQ (Cai et al., 2020) method originally applied
in Computer Vision (CV) to effectively select lay-

ers that undergo compression. We also address
the problem of complete unavailability of fine-tune
datasets by leveraging portions of open-source
data as it is proposed in (Yu et al., 2021) for the
domain of CV.

3. Methodology

In this work we design quantization procedure so
that the drop in performance does not surpass
0.02% while fine-tune dataset is not available. We
employ static PTQ on specifically selected layers
exploiting open-source data to calibrate quantiza-
tion parameters. Further in this chapter, we dis-
close the details on formulas and algorithms be-
hind terms used to describe the final quantization
algorithm.

3.1. Static Post Training Quantization
In static PTQ, the quantization operation Q for float-
ing point tensor x is defined as follows:

Q(x) = round
(x
s
+ z

)
(1)

The parameters s and z are scale and zero-point.
The goal of quantization method is to define s and
z. Static PTQ works only after the model train-
ing is complete. The procedure includes following
stages:

• Calibration. During this stage observers are at-
tached to selected layers and activations. The
observers analyze the distribution of values in
target tensors and estimate the parameters s
and z.

• Conversion. On the conversion stage all the
target tensors are converted to integer values
according to the equation 1.

3.2. Layers selection
We quantize 95% of model’s weights and activa-
tions to INT8 and the rest is left in the original
precision, which means the layers that undergo
compression still have to be carefully chosen con-
cerning the potential drop in performance. To ad-
dress the challenge of layers selection we adapt
corresponding algorithm that has been originally
introduced in CV. ZeroQ (Cai et al., 2020) supports
both uniform and mixed-precision quantization. For
the latter, the framework proposes a novel Pareto
frontier based method to automatically determine
the mixed-precision bit setting for all layers, with
no manual search involved. We construct a Pareto
frontier to show how sensitive a certain layer of
a neural network is to the quantization procedure
by calculating the Kullback-Leibler divergence be-
tween the output logits of the original model and its
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partially quantized counterpart. We then employ
it to determine the optimal combination of layers
for compression regarding their sensitivity to the
quantization.

3.3. Calibration Data
PTQ methods need access to original fine-tune
dataset to calibrate s and z parameters for a partic-
ular task. This is often not possible due to privacy
and security concerns.

We found that a dataset used in unsupervised
pre-training of the model can be employed to accu-
rately estimate layers’ sensitivity to the quantization
and hence to configure layer combinations for PTQ
as well as to calibrate quantization parameters with-
out access to the original fine-tune corpus. This
scheme works under the assumption that the initial
weights of the model were trained with one of the
openly available datasets. This assumption is ful-
filled for the majority of the NLP models and can
be adjusted in a handful of cases otherwise.

This study exploits BookCorpus dataset (Zhu
et al., 2015) since it has been used in pre-train
procedures of all models listed in Section 4.2.

3.4. Data-Independent Estimation
Estimate of the quantization parameters for PTQ
involves calculation of minimum and maximum val-
ues of the activations. Wide range of Transformer
(Vaswani et al., 2017) models including those in
Section 4.2 use GeLU (Hendrycks and Gimpel,
2016) activation function on some of their layers.
The GeLU (Hendrycks and Gimpel, 2016) function
has a defined absolute minimum, which means the
activation values do not fall below this minimum.
This allows one to make a better data-independent
estimate for the quantization offset parameter z by
calculating the lower bound for the activations. Em-
pirical results show that by adjusting procedures
that estimate the quantization region, we can im-
prove the quality of the quantized model.

4. Experiments

In this section, we describe a comprehensive set of
experiments, which test the quantization algorithm
performance relative to the most common tasks
required of NLP models.

4.1. Tasks and Datasets
The quantization process inevitably introduces an
activation error rate throughout the neural network.
In order to measure the influence of error rate on
the practical tasks, the following suit of tasks and
corresponding datasets is selected. This set covers
the mainstream tasks for language models and

Model Size Params
BERT 440 110M
RoBERTa 501 125M
TinyBERT 266 67M
XLNet 467 110M

Table 1: Number of parameters and size of the
models selected for testing proposed methodol-
ogy. Model refers to the type of architecture, Size
describes the size of a model in Megabytes and
Params accounts for the number of parameters in
a model, where M stands for million.

includes benchmarks that have been proven as
quality measure for such models.

Reading Comprehension. To solve reading com-
prehension task for language model means to pro-
vide an answer to a question given a text that sup-
posedly contains that answer. To evaluate models’
performance in this task we choose RACE (ReAd-
ing Comprehension dataset from Examinations)
(Lai et al., 2017), which is a dataset specifically
designed for testing human reading skills. By as-
sessing performance on RACE (Lai et al., 2017)
we also aim to analyze reasoning abilities of the
quantized models, since examples, which require
reasoning skills, constitute a significant part of the
dataset.

Text Classification. In classification tasks we ex-
amine quantized models’ capacity to jointly extract
information from the texts and grasp its emotional
palette. The latter is greatly highlighted in senti-
ment classification datasets. For binary task we
choose IMDB dataset (Maas et al., 2011) and for
multi-label classification we employ Amazon-2 (He
and McAuley, 2016), which is an updated version
of the Amazon review dataset (Zhang et al., 2015)
released in 2014. For the latter, it is usually used
to build recommender system, however, for text
classification task we acquire only review texts and
their ratings.

Natural Language Inference. Natural language
inference (NLI) is the task of determining whether a
hypothesis is true (entailment), false (contradiction),
or undetermined (neutral) given a premise. We se-
lected QNLI (Question-answering NLI) (Wang et al.,
2018) and MNLI (The Multi-genre NLI) (Williams
et al., 2018) datasets to ensure the variety of text
sources and test the quantized models’ potential to
generalize accross multiple domains. QNLI (Wang
et al., 2018) is derived from the Stanford Question
Answering Dataset v1.1 (SQuAD v1.1) (Rajpurkar
et al., 2016), while MNLI (Williams et al., 2018) of-
fers ten distinct genres (Face-to-face, Telephone,
9/11, Travel, Letters, Oxford University Press, Slate,
Verbatim, Goverment and Fiction) of written and
spoken English data.
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95% 0% ∆ 95% 0% ∆ 95% 0% ∆ 95% 0% ∆

RACE 65.93 65.91 0.02 72.86 72.86 0.00 59.27 59.27 0.00 66.34 66.35 -0.01
IMDB 92.65 92.64 0.01 94.33 94.35 -0.02 89.66 89.67 -0.01 93.94 93.94 0.00

Amazon-2 95.85 95.85 0.00 96.63 96.64 -0.01 96.15 96.15 0.0 96.48 96.48 0.00
QNLI 88.38 88.39 -0.01 91.95 91.96 -0.01 87.74 87.72 0.02 89.18 89.18 0.00
MNLI 81.08 81.10 -0.02 87.35 87.34 0.01 81.41 81.42 -0.01 86.26 86.27 -0.01

Dataset BERT RoBERTa TinyBERT XLNet

Table 2: The results of the models on different test sets of datasets listed in Section 4.1. We report the
average Accuracy of five consecutive runs. 95% stands for performance of the fine-tuned model with at
least 95% of weights and activations quantized to INT8 according to the proposed methodology, 0% refers
to the fine-tuned unquantized model, ∆ shows difference between obtained results, which is calculated as
performance of quantized model minus performance of full model. Positive differences indicate Accuracy
of the quantized model is higher.

4.2. Models
To test the proposed methodology we use a num-
ber of encoder-based architectures. The choice of
encoder-based models is decided due to limitations
of computational resources.

BERT (Devlin et al., 2019) We use base uncased
pre-trained checkpoint from the official GitHub
repository1.

RoBERTa (Liu et al., 2019) is built upon BERT
(Devlin et al., 2019), but with much more careful
design of hyperparameters and pre-train procedure.
Again we employ base pre-trained checkpoint from
model’s GitHub repository2.

TinyBERT (Jiao et al., 2020) The distilled version
of BERT(Devlin et al., 2019). We acquire second
version of six layer checkpoint with only general
distillation from the official GitHub repository3.

XLNet (Yang et al., 2019) Represents autore-
gressive style of pre-train procedures. We use
base pre-trained checkpoint from official GitHub
repository4.

The sizes of models and corresponding number
of parameters are provided in Table 1.

4.3. Procedure
To obtain results that correspond to full unquantized
architectures we fine-tune models described in Sec-
tion 4.2 on each task and dataset mentioned in Sec-
tion 4.1 separately with batch size of 32, AdamW
optimizer (Loshchilov and Hutter, 2018) with a con-
stant learning rate of 3e-05 for ten epochs with
early stopping criterion, which is estimated on a de-
velopment subset. The resulting checkpoints are
evaluated on corresponding test sets.

1https://github.com/google-research/
bert

2https://github.com/facebookresearch/
fairseq/tree/main/examples/roberta

3https://github.com/huawei-noah/
Pretrained-Language-Model/tree/master

4https://github.com/zihangdai/xlnet

We then quantize obtained checkpoints. We use
ten randomly sampled mini-batches of 256 sam-
ples from BookCorpus (Zhu et al., 2015) to estimate
layers’ sensitivity to the quantization and build cor-
responding Pareto frontier. The latter is used to
determine the optimal combination of layers to per-
form quantization on considering the overall num-
ber of parameters of the selected layers exceed
95% of the model’s weights. We then execute PTQ
on the chosen layers. Calibration of z and s is done
with the same data employed when selecting opti-
mal combination of layers. The quantized model is
evaluated then on test sets of the original fine-tune
dataset. The results are provided in Table 2.

5. Results

Table 2 summarizes main results obtained in this
research. The received metrics indicate drop in
performance does not exceed 0.02%. Moreover,
several evaluations report quantized models reach
even higher Accuracy score than the original ones.
This trend is consistent across all the models but
XLNet (Yang et al., 2019). We address this finding
to regularization properties of the quantization. Al-
though performance drops fluctuate around zero
for all evaluated models, the intrinsic structure of
target dataset may still affect the results. All the
models but RoBERTa (Liu et al., 2019) suffer de-
crease in metric on the test set of MNLI (Williams
et al., 2018) dataset. We assume this is due to
complex nature of source data present in MNLI
(Williams et al., 2018).

6. Discussion

The findings obtained offer compelling evidence re-
garding the efficacy of the proposed method. The
algorithm demonstrates the capability to quantize
over 95% of a model’s weights without requiring
access to the original dataset, with a performance
degradation of less than 0.02%. The process in-
volves two key stages: the identification of layers

https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/facebookresearch/fairseq/tree/main/examples/roberta
https://github.com/facebookresearch/fairseq/tree/main/examples/roberta
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master
https://github.com/zihangdai/xlnet
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based on their sensitivity to quantization and the
subsequent calibration of quantization parameters
utilizing data from publicly available corpora. While
seemingly straightforward, these steps are under-
pinned by several assumptions.

Firstly, the method leverages the uneven distri-
bution of information across the layers of the archi-
tecture, enabling the quantization of a significant
portion of layers with minimal impact on the over-
all signal fidelity. However, the applicability of this
concept is contingent upon the inner workings of a
specific model, potentially limiting its transferability
to diverse architectural configurations.

Second, the calibration of quantization parame-
ters relies on text samples from open datasets uti-
lized during the model’s pre-train phase. Notably,
experimental results suggest that fine-tune data
may not be imperative for reducing quantization er-
rors. Nonetheless, it remains unclear whether the
effectiveness of calibration hinges on the source of
the text samples, i.e., whether they must align with
the datasets used for pre-train procedure.

These topics reveal the promising venues for the
future work for both the refinement of the presented
methodology and unveiling properties of quantiza-
tion in general.

7. Conclusion

To address challenges of model size expansion we
formulated a strategy to quantize NLP Transformer
(Vaswani et al., 2017) models without compromis-
ing their performance. Two central observations
stand out in proposed approach. First, we demon-
strate that it is possible to achieve high-quality PTQ
of pre-trained then fine-tuned models without rely-
ing on a fine-tune dataset. Second, we expanded
the application of ZeroQ (Cai et al., 2020) method,
which was previously exclusive to computer vision
models, to NLP tasks. A significant part of method-
ology involved leveraging the BookCorpus dataset
(Zhu et al., 2015) for the quantization process. This
approach effectively bypasses the need to access
task-specific datasets on which the models were
originally fine-tuned. We believe that provided find-
ings open venues for further exploration of simple
yet effective PTQ methods and their applicability to
NLP models.

8. Limitations

The potential domain shift in NLP models when
applied to different datasets remains a concern,
with its impact on performance yet to be fully under-
stood. Our method’s reliance on the BookCorpus
dataset (Zhu et al., 2015) raises questions about
its generalizability to other datasets. The approach
is tailored to specific NLP model architectures, and

its adaptability to other architectures is uncertain.
Further research is needed to address these chal-
lenges.

9. Ethics Statement

We understand the importance of maintaining ethi-
cal principles throughout the course of presented
work. We take the following aspects of the research
into consideration to appeal to potential ethical im-
plications.

Biases. Transformer (Vaswani et al., 2017)
based models employed in this work have been
pre-trained on datasets that embody a consider-
able portion of texts gathered from the Internet.
These texts are likely to contain a number of biases
that may be passed to pre-trained models. We rec-
ognize the possibility of biases to appear in models’
predictions. Still thorough evaluation is needed to
exploit models’ sustainability considering various
ethical aspects.

Carbon footprint. Training Transformer
(Vaswani et al., 2017) models requires significant
portion of compute resources, which inevitably af-
fects the environment due to considerable amount
of CO2 emissions (Strubell et al., 2019). In this re-
search we proposed a PTQ procedure that neither
relies on additional fine-tuning nor expects exten-
sive pre-training. Further research in the field of
model compression may also help to reduce carbon
footprint and degrade environmental impact.
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