@inproceedings{zhang-etal-2024-opinions,
title = "Opinions Are Not Always Positive: Debiasing Opinion Summarization with Model-Specific and Model-Agnostic Methods",
author = "Zhang, Yanyue and
Lai, Yilong and
Wang, Zhenglin and
Li, Pengfei and
Zhou, Deyu and
He, Yulan",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1094",
pages = "12496--12513",
abstract = "As in the existing opinion summary data set, more than 70{\%} are positive texts, the current opinion summarization approaches are reluctant to generate the negative opinion summary given the input of negative opinions. To address such sentiment bias, two approaches are proposed through two perspectives: model-specific and model-agnostic. For the model-specific approach, a variational autoencoder is proposed to disentangle the input representation into sentiment-relevant and sentiment-irrelevant components through adversarial loss. Therefore, the sentiment information in the input is kept and employed for the following decoding which avoids interference of content information with emotional signals. To further avoid relying on some specific opinion summarization frameworks, a model-agnostic approach based on counterfactual data augmentation is proposed. A dataset with a more balanced emotional polarity distribution is constructed using a large pre-trained language model based on some pairwise and mini-edited principles. Experimental results show that the sentiment consistency of the generated summaries is significantly improved using the proposed approaches, while their semantics quality is unaffected.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2024-opinions">
<titleInfo>
<title>Opinions Are Not Always Positive: Debiasing Opinion Summarization with Model-Specific and Model-Agnostic Methods</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yanyue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yilong</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhenglin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pengfei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deyu</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>As in the existing opinion summary data set, more than 70% are positive texts, the current opinion summarization approaches are reluctant to generate the negative opinion summary given the input of negative opinions. To address such sentiment bias, two approaches are proposed through two perspectives: model-specific and model-agnostic. For the model-specific approach, a variational autoencoder is proposed to disentangle the input representation into sentiment-relevant and sentiment-irrelevant components through adversarial loss. Therefore, the sentiment information in the input is kept and employed for the following decoding which avoids interference of content information with emotional signals. To further avoid relying on some specific opinion summarization frameworks, a model-agnostic approach based on counterfactual data augmentation is proposed. A dataset with a more balanced emotional polarity distribution is constructed using a large pre-trained language model based on some pairwise and mini-edited principles. Experimental results show that the sentiment consistency of the generated summaries is significantly improved using the proposed approaches, while their semantics quality is unaffected.</abstract>
<identifier type="citekey">zhang-etal-2024-opinions</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1094</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>12496</start>
<end>12513</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Opinions Are Not Always Positive: Debiasing Opinion Summarization with Model-Specific and Model-Agnostic Methods
%A Zhang, Yanyue
%A Lai, Yilong
%A Wang, Zhenglin
%A Li, Pengfei
%A Zhou, Deyu
%A He, Yulan
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F zhang-etal-2024-opinions
%X As in the existing opinion summary data set, more than 70% are positive texts, the current opinion summarization approaches are reluctant to generate the negative opinion summary given the input of negative opinions. To address such sentiment bias, two approaches are proposed through two perspectives: model-specific and model-agnostic. For the model-specific approach, a variational autoencoder is proposed to disentangle the input representation into sentiment-relevant and sentiment-irrelevant components through adversarial loss. Therefore, the sentiment information in the input is kept and employed for the following decoding which avoids interference of content information with emotional signals. To further avoid relying on some specific opinion summarization frameworks, a model-agnostic approach based on counterfactual data augmentation is proposed. A dataset with a more balanced emotional polarity distribution is constructed using a large pre-trained language model based on some pairwise and mini-edited principles. Experimental results show that the sentiment consistency of the generated summaries is significantly improved using the proposed approaches, while their semantics quality is unaffected.
%U https://aclanthology.org/2024.lrec-main.1094
%P 12496-12513
Markdown (Informal)
[Opinions Are Not Always Positive: Debiasing Opinion Summarization with Model-Specific and Model-Agnostic Methods](https://aclanthology.org/2024.lrec-main.1094) (Zhang et al., LREC-COLING 2024)
ACL