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Abstract
Out-of-Domain (OOD) intent detection is vital for practical dialogue systems, and it usually requires considering
multi-turn dialogue contexts. However, most previous OOD intent detection approaches are limited to single dialogue
turns. In this paper, we introduce a context-aware OOD intent detection (Caro) framework to model multi-turn
contexts in OOD intent detection tasks. Specifically, we follow the information bottleneck principle to extract robust
representations from multi-turn dialogue contexts. Two different views are constructed for each input sample and the
superfluous information not related to intent detection is removed using a multi-view information bottleneck loss.
Moreover, we also explore utilizing unlabeled data in Caro. A two-stage training process is introduced to mine OOD
samples from these unlabeled data, and these OOD samples are used to train the resulting model with a bootstrap-
ping approach. Comprehensive experiments demonstrate that Caro establishes state-of-the-art performances
on multi-turn OOD detection tasks by improving the F1-OOD score of over 29% compared to the previous best method.

Keywords: OOD Detection

1. Introduction

Intent detection is vital for dialogue systems (Chen
et al., 2017). Recently, promising results have been
reported for intent detection under the closed-world
assumption (Shu et al., 2017), i.e., the training and
testing distributions are assumed to be identical,
and all testing intents are seen in the training pro-
cess. However, this assumption may not be valid
in practice (Dietterich, 2017), where a deployed
system usually confronts an open-world (Fei and
Liu, 2016; Scheirer et al., 2012), i.e., the testing dis-
tribution is subject to change and Out-of-Domain
(OOD) intents that are not seen in the training pro-
cess may emerge in testing. It is necessary to
equip intent detection modules with OOD detec-
tion abilities to accurately classify seen In-Domain
(IND) intents while rejecting unseen OOD intents
(Yan et al., 2020).

Various methods are proposed to tackle the
issue of OOD detection on classification prob-
lems (Geng et al., 2020). Existing approaches
include using thresholds (Zhou et al., 2021) or
(k + 1)-way classifiers (k is the number of IND
classes) (Zhan et al., 2021). Promising results are
reported to apply these OOD detection methods on
intent detection modules (Zhou et al., 2022). How-
ever, most existing OOD intent detection studies
only focus on single-turn inputs (Yan et al., 2020;
Lee and Shalyminov, 2019), i.e., only the most re-
cently issued utterance is taken as the input. In
real applications, completing a task usually neces-
sitates multiple turns of conversations (Weld et al.,
2021). Therefore, it is important to explicitly model
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multi-turn contexts when building OOD intent detec-
tion modules since users’ intents generally depend
on turns of conversations (Qin et al., 2021).

However, it is non-trivial to directly extend pre-
vious methods to the multi-turn setting (Ghosal
et al., 2021). Specifically, we usually experience
long distance obstacles when modeling multi-turn
dialogue contexts, i.e., some dialogues have ex-
tremely long histories filled with irrelevant noises
for intent detection (Liu et al., 2021). It is challeng-
ing to directly apply previous OOD intent detection
methods under this obstacle since the learned rep-
resentations may contain superfluous information
that is irrelevant for intent detection tasks (Federici
et al., 2019).

Another challenge for OOD detection in multi-
turn settings is the absence of OOD samples in
the training phase (Zeng et al., 2021a). Specifi-
cally, it is hard to refine learned representations for
OOD detection without seeing any OOD training
samples (Shen et al., 2021), and it is expensive to
construct OOD samples before training, especially
when multi-turn contexts are considered (Chen and
Yu, 2021). Fortunately, unlabeled data (i.e., a mix-
ture of IND and OOD samples) provide a conve-
nient way to access OOD samples since these
unlabeled data are almost “free” to collect from a
deployed system. However, few studies have ex-
plored utilizing unlabeled data for OOD detection
in the multi-turn setting.

In this study, we propose a novel context-aware
OOD intent detection framework Caro to address
the above challenges for OOD intent detection in
multi-turn settings. Specifically, we follow the in-
formation bottleneck principle (Tishby et al., 2000)
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to tackle the long-distance obstacle exhibited in
multi-turn contexts. Robust representations are ex-
tracted by retaining predictive information while dis-
carding superfluous information unrelated to intent
detection. This objective is achieved by optimizing
an unsupervised multi-view information bottleneck
loss, during which two views are built based on
the global pooling approach and adaptive recep-
tion fields. A gating mechanism is introduced to
adaptively aggregate these two views to obtain an
assembled representation. Caro also introduces a
two-stage self-training scheme to mine OOD sam-
ples from unlabeled data. Specifically, the first
stage builds a preliminary OOD detector with OOD
samples synthesized from IND data. The second
stage uses this detector to select OOD samples
from the unlabeled data and use these samples
to further refine the OOD detector. We list our key
contributions:

1. We propose a novel framework Caro to ad-
dress a challenging yet under-explored problem
of OOD intent detection considering multi-turn dia-
logue contexts.

2. Caro learns robust representations by build-
ing diverse views of inputs and optimizing an unsu-
pervised multi-view loss following the information
bottleneck principle. Moreover, Caro mines OOD
samples from unlabeled data to further refine the
OOD detector.

3. We extensively evaluate Caro on multi-turn
dialogue datasets. Caro obtains state-of-the-art
results, outperforming the best baseline by a large
margin (29.6% in the F1-OOD score).

2. Related Work

OOD Detection is a widely investigated machine
learning problem (Geng et al., 2020; Lang et al.,
2023). Recent approaches try to improve the OOD
detection performance by learning more robust
representations on IND data (Zhou et al., 2021; Yan
et al., 2020; Zeng et al., 2021a; Zhou et al., 2022;
Wu et al., 2022) and use these representations
to develop density-based or distance-based OOD
detectors (Lee et al., 2018b; Tan et al., 2019; Liu
et al., 2020; Podolskiy et al., 2021). Some works
also try to build OOD detectors with generated
pseudo OOD samples (Hendrycks et al., 2018; Shu
et al., 2021; Zhan et al., 2021; Marek et al., 2021;
Lang et al., 2022) or thresholds based approaches
(Gal and Ghahramani, 2016; Lakshminarayanan
et al., 2017; Ren et al., 2019; Gangal et al., 2020;
Ryu et al., 2017; Dai et al., 2023).

Some OOD detection methods also make use of
unlabeled data. Existing approaches either focus
on utilizing unlabeled IND data (Xu et al., 2021; Jin
et al., 2022) or adopting a self-supervised learning
framework to handle mixtures of IND and OOD

samples (Zeng et al., 2021b). These approaches
do not explicitly model multi-turn contexts.

Modeling Multi-turn Dialogue Contexts is the
foundation for various dialogue tasks (Li et al.,
2020; Ghosal et al., 2021; Chen et al., 2021). How-
ever, few works focus on detecting OOD intents in
the multi-turn setting. Lee and Shalyminov (2019)
proposed to use counterfeit OOD turns extracted
from multi-turn contexts to train the OOD detector,
and Chen and Yu (2021) augmented seed OOD
samples that span multiple turns to improve the
OOD detection performance. Nevertheless, these
approaches either suffer from the long distance ob-
stacle or require expensive annotated OOD sam-
ples. In this study, we attempt to learn robust rep-
resentation by explicitly identifying and discarding
superfluous information.

Representation Learning is also related to our
work. Recent approaches for representation learn-
ing include optimizing a contrastive loss (Caron
et al., 2020; Gao et al., 2021) or maximizing the
mutual information between features and input
samples (Poole et al., 2019). However, these ap-
proaches cannot tackle the long distance obstacle
exhibited in multi-turn contexts. In this study, we
follow the information bottleneck principle (Tishby
et al., 2000; Federici et al., 2019) to remove super-
fluous information from long contexts.

3. Problem Setup

We start by formulating the problem: Given k IND
intent classes I = {Ii}ki=1, we denote all samples
that do not belong to these k classes as the (k+1)-
th intent Ik+1. Our training data contain a set of
labeled IND samples DI = {⟨xi, yi⟩} and a set of
unlabeled samples DU = {⟨x̃i, ỹi⟩}, where yi ∈ I
and ỹi ∈ I ∪ {Ik+1} is the label of input sample
xi and x̃i, respectively. ỹi labels are not observed
during training. Our testing data contain a mixture
of IND and OOD samples DT = {⟨x̃i, ỹi⟩}, where
ỹi ∈ I ∪ {Ik+1}. For a testing input x̃, our OOD
intent detector aims to classify the intent label of x̃
if it belongs to an IND intent or reject x̃ if it belongs
to the OOD intent Ik+1. We also assume a vali-
dation set DV that only contains IND samples is
available. Moreover, each input sample x from DI ,
DU , DV , and DT consists of an utterance u and a
multi-turn dialogue history h = u1, . . . ,ut, (t ≥ 0)
prior of u: x = ⟨h,u⟩. ui is the utterance issued in
each dialogue turn.

4. Method

Caro tackles the OOD intent detection problem
by training a (k + 1)-way classifier F on DI ∪ DU .
Specifically, samples classified into the (k+1)-th in-
tent Ik+1 are considered as OOD samples. There
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Figure 1: Framework of Caro. For each input sample x = ⟨h,u⟩, two views v1(x) and v2(x) are obtained
and a multi-view information bottleneck loss LIB is optimized to learn robust representations. A two-stage
training process is introduced to mine OOD samples DO from unlabeled data DU , and optimize the cross
entropy loss LCE with DO ∪ DI

are mainly two challenges to be addressed in Caro:
(1) How to alleviate the long distance obstacle
and learn robust representations from multi-turn
dialogue contexts; (2) How to effectively leverage
unlabeled data for OOD intent detection. These
two issues are tackled with two key ingredients in
Caro (see Figure 1): 1. A multi-view information
bottleneck method (Section 4.1); 2. A two-stage
self-training scheme (Section 4.2).

4.1. Multi-View Information Bottleneck

The major challenge for learning robust represen-
tations from multi-turn dialogue contexts is the long
distance obstacle, i.e., information that is irrelevant
for intent detection may degenerate the extracted
representation if the dialogue history h becomes
too long. In this study, we follow the information
bottleneck principle (Tishby et al., 2000) to alle-
viate this issue, i.e., only the task-relevant infor-
mation is retained in the extracted representations
while all the superficial information is discarded.
Specifically, we adopt a more general unsuper-
vised multi-view setting for the information bottle-
neck method (Federici et al., 2019). For each input
sample xi, two semantic invariant views are con-
structed: v1(xi), v2(xi). These two views preserve
the same task-relevant information (Zhao et al.,
2017). The mutual information between v1(xi)
and v2(xi) are maximized while the information not
shared between v1(xi) and v2(xi) are eliminated.
To achieve this goal, we adopt the multi-view infor-
mation bottleneck loss introduced by Federici et al.
(2019).

Constructing Multiple Views for an input sam-
ple x is the key to the success of the unsupervised
information bottleneck method. In this study, we
construct these two views v1(xi), v2(xi) by adjust-
ing the receptive fields of the final representation.
This scheme is inspired by the observation in the
neuroscience community that human brains pro-
cess information with multiple receptive fields (Sce-
niak et al., 1999), i.e., the receptive field size for
neurons is adapted based on input stimuli (Spill-

mann et al., 2015) so that different regions of in-
puts are emphasized (Pettet and Gilbert, 1992).
This phenomenon has been demonstrated to be
effective in modeling more robust features (Pandey
et al., 2022) and inspired numerous successful neu-
ral models (Wang et al., 2021; Wei et al., 2017).

Specifically, for each input sample x = ⟨h,u⟩,
we first concatenate all utterances in x and then
use a pre-trained BERT model E (Devlin et al.,
2018) to encode the sequence of concatenated
tokens into a sequence of embedding vectors
E(x) = [e1, · · · en], where ei ∈ Rm. The following
two strategies are used to construct two different
views:

1. Global Pooling builds view v1(x) with a mean-
pooling layer on top of [e1, · · · en], v1(x) assumes
each token embedding is equally weighted:

v1(x) =

n∑
i=1

ei/n (1)

2. Adaptive Reception Field builds view v2(x) by
adapting the synaptic weight of each token embed-
ding based on the input x:

v2(x) =

n∑
i=1

exp(αi)∑n
j=1 exp(αj)

· ei

αi = σ(wi · ReLU(W1 · s)),
(2)

where s ∈ Rnm is the concatenation of all n embed-
dings [e1, · · · en]. σ is the Sigmoid activation func-
tion. wi ∈ R1×r1 (i = 1, · · ·n) and W1 ∈ Rr1×nm

are learnable parameters. r1 is the size of the
intermediate layer. Moreover, to enhance the gen-
eralization ability, we set a small value for r1 in our
implementation to form a bottleneck structure in
the weighting function (Hu et al., 2017).

Optimizing Information Bottleneck is per-
formed in an unsupervised setting based on the
two views of each sample. Specifically, we as-
sume the representation zi of each view vi(x),
(i = 1, 2) follows a distribution that is parameter-
ized by an encoder p(z|vi), where vi is short for
vi(x) for abbreviation. To facilitate the computation,
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we model p as factorized Gaussian distributions,
i.e., p(z|vi) = N [µ(vi),Σ(vi)], in which µ(vi) and
Σ(vi) are two neural networks that produce the
mean and deviation, respectively. The following
information bottleneck loss (Federici et al., 2019)
is optimized to remove superfluous information in
v1(x) and v2(x):

LIB = −I(z1;z2) +
1

2
(DKL[p(z|v1)||p(z|v2)]

+DKL[p(z|v2)||p(z|v1)]),
(3)

where I calculates the mutual information of two
random variables, and DKL calculates the KL di-
vergence between two distributions.

4.2. Two-stage Self-training

Although robust representations can be obtained
with the help of the information bottleneck loss LIB

from Section 4.1, we still lack the annotations for
OOD samples to train the (k + 1)-way classifier
F for OOD detection. In this study, we tackle this
issue with a two-stage self-training process, which
mines OOD samples from the unlabeled data DU

with a bootstrapping approach. Moreover, for each
input sample x, we also aggregate its two views
v1(x) and v2(x) with a dynamic gate to obtain as-
sembled representations in training.

Stage One synthesizes pseudo OOD samples
DP by mixing up IND features. Specifically, sam-
ples from DI are first mapped into IND represen-
tation vectors, and pseudo OOD samples are ob-
tained as convex combinations of these vectors
(Zhan et al., 2021). A preliminary OOD detector
F is trained using the classical cross-entropy loss
LCE on these synthesized pseudo OOD samples
and labeled IND samples DI . This stage endows
F with a preliminary ability to predict the intent
distribution of each input sample.

Stage Two predicts a pseudo label for each sam-
ple x ∈ DU using F , and then collects samples
that are assigned with the OOD label Ik+1 as a set
of mined OOD samples DO. With the help of DO,
we further train the classifier F on the following
loss:

L = E
x∈DI∪DO

LCE + λ E
x∈DU

LIB (4)

where λ is a scalar hyper-parameter to control the
weight of the information bottleneck loss.

Multi-view Aggregation is performed to ob-
tain assembled representations for input samples.
Specifically, whenever we need to extract the rep-
resentation v(x) for an input sample x in the train-

ing process, we use the following aggregation ap-
proach:

v(x) = β ⊗ v1(x) + (1− β)⊗ v2(x)

β = σ(W3 · ReLU(W2 · (v1(x) + v2(x))))
(5)

where ⊗ represents the element-wise product,
W2 ∈ Rr2×m and W3 ∈ Rm×r2 are learnable pa-
rameters. r2 is the size of the intermediate layer.

Algorithm 1: The training process of Caro
Input: IND data DI , unlabeled data DU .
Output: A trained OOD detector F .
// Stage 1

1 Synthesize pseudo OOD samples DP by
mixing up IND representations.

2 Train F using the cross-entropy loss LCE on
DI ∪ DP .

// Stage 2
3 Mine OOD samples DO from DU using F .
4 Train F using L (Eq. 4) on DI , DO, and DU

The training of Caro is given in Algorithm 1.

5. Experiments

5.1. Datasets

We perform experiments on two variants of the
STAR dataset (Mosig et al., 2020), i.e., STAR-Full
and STAR-Small. Specifically, STAR is a task-
oriented dialogue dataset that has 150 intents. It is
designed to model long context dependence, and
provides explicit annotations of OOD intents. Fol-
lowing Chen and Yu (2021), we regard samples
from intents “out_of_scope”, “custom”, or “ambigu-
ous” as OOD samples and all other samples as
IND samples. We also filter out generic utterances
(e.g., greetings) in the pre-processing stage.

STAR-Full contains all pre-processed samples
from the original STAR dataset. To construct un-
labeled data DU , we extract 30% of IND samples
and all OOD samples from the training set. The
intent labels of all these extracted samples are re-
moved, and the remaining samples in the training
set are used as the labeled data DI . STAR-Small is
constructed similarly, except that we down-sample
50% of the training set. We aim to evaluate the per-
formance of OOD detection in low-resource scenar-

Train Valid
DV

Test
DT

# Avg. Context
TurnsDI DU

STAR-Full 15.4K 7.9K 2.8K 2.9K 6.13
STAR-Small 7.7K 3.9K 2.8K 2.9K 6.12

Table 1: Dataset statistics.
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ios with STAR-Small. Table 1 shows the statistics
of these datasets.

5.2. Metrics

Following Zhang et al. (2021b); Shu et al. (2021),
the OOD intent detection performance of our model
is evaluated using the macro F1-score (F1-All) over
all testing samples (i.e., IND and OOD samples).
The fine-grained performance of our model is also
evaluated by the macro F1-score over all IND sam-
ples (F1-IND) and OOD samples (F1-OOD), re-
spectively. We use macro F1-scores to handle the
class imbalance issue of the test set.

5.3. Implementation Details

Our BERT backbone is initialized with the pre-
trained weights of BERT-base-uncased (Devlin
et al., 2018). We use AdamW, and Adam (Kingma
and Ba, 2014) to fine-tune the BERT backbone and
all other modules with a learning rate of 1e-5 and
1e-4, respectively. The Jensen-Shannon mutual
information estimator (Hjelm et al., 2018) is used to
estimate the mutual information I in Eq. 3. All re-
sults reported in our paper are averages of 3 runs
with different random seeds. Hyper-parameters are
searched based on IND intent classification perfor-
mances on the validation set. See Appendix A for
more implementation details. Note that Caro only
introduces little computational overhead compared
to other OOD detection models (See Appendix C).

5.4. Baselines

Our baselines can be classified into two categories
based on whether they use unlabeled data. The
first set of baselines only use labeled IND samples
DI in training: 1. MSP: (Hendrycks and Gimpel,
2017) utilizes the maximum Softmax predictions of
a k-way IND classifier to detect OOD inputs. We
set the OOD detection threshold to 0.5 following
Zhang et al. (2021a); 2. SEG: (Yan et al., 2020)
proposes a semantic-enhanced Gaussian mixture
model; 3. DOC: (Shu et al., 2017) employs k 1-
vs-rest Sigmoid classifiers and uses the maximum
predictions to detect OOD intents; 4. ADB: (Zhang
et al., 2021b) learns an adaptive decision bound-
aries for OOD detection; 5. DAADB: (Zhang et al.,
2021c) improves the baseline ADB with distance-
aware intent representations; 6. Outlier: (Zhan
et al., 2021) mixes convex interpolated outliers and
open-domain outliers to train a (k+1)-way classifier
for OOD detection; 7. CDA: (Lee and Shalyminov,
2019) utilizes counterfeit OOD turns to detect OOD
samples.

The second set of baselines uses both labeled
IND samples DI and unlabeled samples DU for
training. Specifically, Zeng et al. (2021b) proposes

a self-supervised contrastive learning framework
ASS to model discriminative features from unla-
beled data with an adversarial augmentation mod-
ule. We implement three variants of ASS by us-
ing different detection modules: 1. ASS+MSP:
uses the detection module from the baseline MSP;
2. ASS+LOF: (Lin and Xu, 2019) implements
the OOD detector as the local outlier factor; 3.
ASS+GDA: (Xu et al., 2020a) uses a generative
distance-based classifier with Mahalanobis dis-
tance as the detection module.

Moreover, we also report the performance of
a (k + 1)-way classifier trained on fully labeled
IND and OOD samples (Oracle), i.e., we preserve
all labels for samples in DI and DU . This model
is generally regarded as the upper bound of our
model since it uses all the annotations.

For fair comparisons, all baselines use the same
pretrained BERT-base backbones as our model.
Multi-turn dialogue contexts in all baselines are
modeled by concatenating utterances in dialogue
histories. Moreover, to further validate the impor-
tance of dialogue contexts for OOD detection, we
also implement a single-turn variant for the first
set of baselines by ignoring multi-turn dialogue
contexts (w/o h), i.e., only the latest user issued
utterance u is used as the input. Note that we
do not implement the single-turn variant for the
baseline CDA since CDA is specifically designed
to utilize multi-turn contexts. See Appendix B for
more details about baselines.

5.5. Main Results

The results for our model Caro and all baselines
are shown in Table 2. It can be seen that Caro
outperforms all other baselines on both datasets
with large margins. We highlight several observa-
tions: 1. Methods that model multi-turns of dia-
logue histories (e.g., MSP, SEG, DOC, ADB, DA-
ADB, and Outlier) generally outperform their single
turn counter (i.e., models marked with “w/o h”) with
large margins. This validates our claim that it is
necessary to consider multi-turn dialogue contexts
for OOD intent detection since users’ intents may
depend on prior turns. 2. Our method Caro outper-
forms all baselines that only use IND data DI . The
performance gain demonstrates the advantage of
incorporating unlabeled data for OOD detection,
which can be used to learn compact representa-
tions for both IND and OOD intents. 3. Caro also
outperforms baselines that utilize unlabeled data
DU . This validates Caro’s effectiveness in tackling
the long distance obstacle and modeling unlabeled
samples. Our baselines are prone to capture irrel-
evant noises for OOD intent detection, while Caro
incorporates multi-view information bottleneck loss
to remove superfluous information.

We also analyze the effect of unlabeled data
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Model STAR-Full STAR-Small
F1-All F1-OOD F1-IND F1-All F1-OOD F1-IND

Oracle 50.1 64.46 50 46.54 58.23 46.46

DI

MSP 40.83 19.74 40.97 37.17 18.1 37.31
MSP w/o h 17.29 14.12 17.31 17.12 13.49 17.14
SEG 17.45 6.85 17.53 11.66 7.39 11.69
SEG w/o h 0.06 2.77 0.04 0.05 2.27 0.04
DOC 26.53 16.80 26.60 3.47 11.78 3.41
DOC w/o h 11.31 14.16 11.29 0.08 11.04 0
ADB 44.64 20.56 44.80 41.36 18.23 41.51
ADB w/o h 23.27 17.63 23.30 20.08 21.27 20.07
DAADB 37.27 22.87 37.37 34.81 20.43 34.91
DAADB w/o h 17.87 15.15 17.88 16.34 17.03 16.33
Outlier 43.84 19.53 44.01 39.51 19.92 39.64
Outlier w/o h 23.35 16.75 23.39 19.56 15.42 19.59
CDA 43.76 5.26 44.03 40.02 10.48 40.22

DI+DU

ASS+MSP 41.97 25.15 42.08 40.85 19.47 40.99
ASS+LOF 39.87 17.65 40.02 39.54 18.49 39.68
ASS+GDA 43.73 21.24 43.88 40.86 16.72 41.02

Caro (ours) 48.75(±1.0) 54.75(±3.2) 48.71(±1.0) 45.02(±1.1) 46.78(±1.8) 45.01(±1.1)

Table 2: Performance of Caro and baselines. All results are averages of three runs and the best results
are bolded. The standard deviation of the performance of Caro is provided in parentheses.

Model STAR-Full STAR-Small
F1-All F1-OOD F1-IND F1-All F1-OOD F1-IND

Caro 48.75 54.75 48.71 45.02 46.78 45.01

w/o DU 45.97 21.45 46.14 42.24 23.23 42.37
w/o MV 47.71 53.35 47.67 44.42 38.89 44.46
w/o VA 47.34 50.85 47.32 44.14 43.88 44.15
w/o IB 48.23 49.37 48.22 44.14 37.06 44.19

Table 3: Ablation on different components of Caro.

size (Appendix E) and λ (Appendix F) on the OOD
intent detection performance and carry out a case
study (Appendix G).

5.6. Ablation Studies

To validate our motivation and model design, we
ablate our model components and loss terms.

Model Components: Ablation studies are car-
ried out to validate the effectiveness of each com-
ponent in Caro. Specifically, the following variants
are investigated: 1. w/o DU removes training stage
two, i.e., only DI is used for training. 2. w/o MV
ablates the multi-view construction approach intro-
duced in Caro. Specifically, we adopt the approach
used by Gao et al. (2021) to perform two dropouts
with two different masks when constructing these
two views. 3. w/o VA ablates the multi-view ag-
gregation approach, i.e., the representations of
two views are directly added instead of using the
adaptive gate in Eq. 5. 4. w/o IB removes the

Model STAR-Full STAR-Small
F1-All F1-OOD F1-IND F1-All F1-OOD F1-IND

Caro 48.75 54.75 48.71 45.02 46.78 45.01

InfoMax 47.27 49.92 47.25 44.27 36.66 44.32
MVI 48.46 51.99 48.44 44.70 36.16 44.76
CL 48.18 52.54 48.15 44.59 35.31 44.65
SimCSE 47.73 47.74 47.73 44.30 27.02 44.42

Table 4: Ablation on the representation learning
loss.

information bottleneck loss LIB. We implement
this variant by setting λ = 0 in Eq.4.

Results in Table 3 indicate that Caro outperforms
all ablation variants. Specifically, we can also ob-
serve that: 1. Training models without unlabeled
data (i.e., w/o DU ) degenerate the performance of
Caro by a large margin. The F1-OOD score suf-
fers an absolute decrease of 33.3% and 23.6% on
STAR-FULL and STAR-Small, respectively. This
validates our claim that effective utilization of un-
labeled data improves the performance of OOD
detection. 2. Our multi-view construction approach
helps to improve the OOD detection performance
(see w/o MV), and our multi-view aggregation ap-
proach also benefits the extracted representation
(see w/o VA). 3. Removing the multi-view informa-
tion bottleneck loss (i.e., w/o IB) degenerates the
OOD performance. This validates our claim that
multi-turn contexts may contain irrelevant noises
for OOD intent detection.
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Figure 2: Comparing representations obtained by
different objectives on the STAR-Full dataset. A
lower score means that the learned representa-
tion discards more superficial information. See
Appendix D for measurements used to produce
the graph.

Information Bottleneck Loss: We further
demonstrate the effectiveness of our information
bottleneck loss LIB by replacing LIB in Eq. 4
with other alternatives of representation learning.
Specifically, assume x is an input sample. 1. In-
foMax (Poole et al., 2019) maximizes the mutual
information between x and its representation z:
I(x; z); 2. MVI (Bachman et al., 2019) is similar
to InfoMax except that it maximizes the mutual in-
formation between x’s two views I(v1(x); v2(x));
Note that both InfoMax and MVI do not attempt
to remove superficial information from representa-
tions. 3. CL (Caron et al., 2020) uses a contrastive
learning loss. Positive pairs in this variant are ob-
tained using our multi-view construction approach.
4. SimCSE (Gao et al., 2021) is similar to CL ex-
cept that it acquires positive pairs by two different
dropouts on the BERT encoder.

Results in Table 4 show that the information bot-
tleneck loss used in Caro performs better than all
other variants. We also want to highlight that the
approach of explicitly removing superficial infor-
mation in Caro makes it outperform InfoMax and
MVI by 4.83% and 2.76%, respectively, on the F1-
OOD score. This validates our claim that long
contexts may contain superficial information that
degenerates intent detection, and the multi-view
information bottleneck loss used in Caro effectively
removes this superficial information.

Moreover, we also perform fine-grained analy-
sis of the learned representations following Tishby
et al. (2000). Specifically, for an input sample
x with a label of y and an extracted representa-
tion of z, two scores are calculated: 1. Observa-
tional information score (measured by I(x; z)); 2.
Predictive ability score (measured by I(z; y)). An
ideal representation would be maximally predictive
about the label while retaining a minimal amount
of information from the observations (Tishby et al.,
2000; Federici et al., 2019). Here we report the
score of I(x; z) − I(z; y) for Caro, MVI and Infor-
Max in Figure 2. It can be seen that the information

Context Len F1-All F1-OOD F1-IND

Long w/o IB 44.14 37.06 44.19
w IB 45.02 (+0.88) 46.78 (+9.72) 45.01 (+0.82)

Short w/o IB 43.61 40.68 43.63
w IB 43.70 (+0.09) 43.32 (+2.64) 43.70 (+0.07)

Table 5: Benefit of LIB under different context
lengths on the STAR-Small dataset. Long context
means retaining all the original dialogue contexts
(6 turns on average), and short context means
truncating contexts longer than 3 turns. Scores
in parentheses is the performance improvement
brought by LIB

bottleneck loss helps Caro to achieve the lowest
I(x; z)−I(z; y) score. This indicates that represen-
tations learned in Caro retrain low observational
information while achieving a relatively high predic-
tive ability.

5.7. Further Analysis

Benefit of LIB in Different Context Lengths
We also validate the benefit of our information
bottleneck loss LIB (Eq. 3) under different con-
text lengths. Specifically, we construct a variant
of STAR-Small (denoted as “Short”) by truncating
contexts longer than 3 turns, i.e., the dialogue his-
tories before the latest 3 turns are discarded. We
also denote the original STAR-Small dataset as
“Long”, which has a maximum context length of 7
turns. Caro’s performance with and without LIB,
i.e., “w IB” and “w/o IB” is tested on these two
datasets.

Results in Table 5 show that Caro benefits more
from LIB in longer contexts. Specifically, the longer
the context, the larger improvement is brought by
LIB on the OOD detection performance. This fur-
ther validates our claim that our information bottle-
neck loss LIB helps remove superficial information
unrelated to intent detection.

Diversity of Adaptive Reception Field Our
multi-view information bottleneck objective expects
two diverse views for each input sample (Federici
et al., 2019). Here we validate the diversity of our
two views (Section 4.1) by visualizing the distribu-
tion of weight score αi in Eq. 2. Specifically, we first
calculate the average weight scores received at
each token index for samples from the same intent
(we use a max sequence length of 256). Then we
choose two intents (i.e., weather_inform_forecast
and trip_inform_simple_step_ask_proceed) and
visualize the difference between their averaged
weight score at each token index in Figure 3. It can
be seen that weight scores change sharply across
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Figure 3: Difference of averaged weight score at
each token index for testing samples from STAR-
Full.
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Figure 4: Difference of averaged aggregation
weights at each dimension for testing samples in
STAR-Full.

different intents and token indices. That means the
view v2(x) constructed for each sample is diverse.

Analysis of Aggregation Weights We also visu-
alize the weight β used in the multi-view aggrega-
tion process (Eq. 5). Specifically, we expect these
two views in Eq. 5 to receive different weights.
Concretely, we first calculate the averaged β vec-
tor for all testing samples from STAR-Small. Then
we calculate the difference of weights received by
these two views v1(x) and v2(x) in Eq. 5, and vi-
sualize values in each dimension in Figure 4. It
can be seen that diverse weights are used in the
multi-view aggregation process.

6. Conclusion

In this paper, we propose Caro, a novel OOD intent
detection framework to explore OOD detection in
multi-turn settings. Caro learns robust represen-
tations by building diverse views of an input and
optimise an unsupervised multi-view loss following
the information bottleneck principle. OOD samples
are mined from unlabeled data, which are used to

train a (k+1)-way multi-view classifier as the result-
ing OOD detector. Extensive experiments demon-
strate that Caro is effective as modeling multi-turn
contexts and outperforms SOTA baselines.

7. Limitations

One major limitation of this work is its input modal-
ity. Specifically, our method is limited to textual
inputs and ignores inputs in other modalities such
as audio, vision, or robotic features. These modali-
ties provide valuable information that can be used
to build better OOD detectors. In future works, we
will try to model multi-modal multi-turn contexts for
OOD intent detection.

8. Ethics Statement

This work does not present any direct ethical is-
sues. In the proposed work, we seek to develop
a context-aware method for OOD intent detection,
and we believe this study leads to intellectual mer-
its that benefit from a reliable application of NLU
models. All experiments are conducted on open
datasets.
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A. More Implementation Details

We use Huggingface’s Transformers library (Wolf
et al., 2020) and train with the backbone of BERT
(Devlin et al., 2018). The max_seq_length is 256
for BertTokenize. The classification head is imple-
mented as two-layer MLPs with the LeakyReLU
activation (Xu et al., 2020b), while the projection
heads in µ(vi) and Σ(vi) as three-layer MLPs. The
projection dimension is 64. Following (Zhan et al.,
2021), We use AdamW (Kingma and Ba, 2014) to
fine-tune BERT using a learning rate of 1e-5 and
Adam (Wolf et al., 2019) to train the MLP heads
using a learning rate of 1e-4. Following (Federici

et al., 2019), we use Jensen-Shannon mutual infor-
mation estimator (Hjelm et al., 2018) to maximize
mutual information between two random variables.
In the training stage, 15 epochs of pre-training are
first conducted, and then 10 epochs of training
are conducted by adding the process of unsuper-
vised representation learning on unlabeled data
with early stopping. The batch size is 25 for IND
and unlabeled datasets, respectively. We set the
weight λ for LIB to be 0.5 in all experiments. And
we set r1 = 16 and r2 = 48. All results reported
in our paper are averages of 3 runs with differ-
ent random seeds, and each run is stopped when
we reach a plateau on the validation performance.
Hyper-parameters are searched based on IND in-
tent classification performances on the validation
set. All experiments are conducted in the Nvidia
Tesla V100-SXM2 GPU with 32G graphical mem-
ory.

B. More Details about Baselines

We get the baseline results (MSP, SEG, DOC, ADB,
and DA-ADB) using the OOD detection toolkit TEX-
TOIR (Zhang et al., 2021a). We get the baseline
result of Outlier by running their released codes
(Zhan et al., 2021). We re-implement CDA by using
counterfeit OOD turns (Lee and Shalyminov, 2019).
We re-implement ASS (Zeng et al., 2021b) based
on the code of authors (Zeng et al., 2021a). For
fair comparisons, all baselines are implemented by
using BERT as the backbone.

C. Computational Cost Analysis

Methods #Para. Training Time Testing Time

Outlier 111.47 M 7.26 min 14.46 s
Caro 116.80 M 8.75 min 14.53 s

Table 6: Number of parameters (Million), average
training time for each epoch (minutes) and the total
time for testing (seconds) on STAR-Full dataset.

We compare the computational cost of a vanilla
OOD detector Outlier (Zhan et al., 2021) and Caro.
We use the STAR-Full dataset for this analysis. As
shown in Table 6, Caro only introduces marginal
parameter overhead. We can also observe that
using Caro only introduces a little time overhead
compared to Outlier.

D. More Details about Measurements
Used to Produce the Graph

The mutual information estimation (I(x; z) and
I(z;y)) reported in Figure 2 are computed by train-
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ing two estimation networks from scratch on the
final representation of Caro. Following (Federici
et al., 2019), we use Jensen-Shannon mutual infor-
mation estimator (Hjelm et al., 2018) to maximize
mutual information between two random variables.
The two estimation architectures consist of three-
layer MLPs. We report average numerical estima-
tions of mutual information using an energy-based
bound (Poole et al., 2019) on the test dataset. To
reduce the variance of the estimator, the lowest
and highest 5% are removed before averaging.

E. Analysis for Unlabeled Data Size

Table 7 demonstrates the effect of unlabeled data
size for Caro. We downsample 100%, 75%, 50%,
and 25% of the unlabeled data from STAR-Small
and evaluate the performance of Caro. It can be
seen that our method Caro achieves superior OOD
detection performance in term of F1-OOD along
with the increase of unlabeled data.

DownSample-Rate F1-All F1-OOD F1-IND

100% 45.02 46.78 45.01
75% 44.40 37.77 44.44
50% 45.04 30.13 45.15
25% 44.47 20.76 44.62

Table 7: Effect of unlabeled data size on the OOD
intent detection performance. The reported perfor-
mance are produced on the STAR-Small dataset.

F. Analysis for Loss Weight λ

Tabel 8 reports the OOD detection results as we
vary the weight λ for LIB in Eq. 4. The results
indicate that a relatively small weight is desirable.

λ F1-All F1-OOD F1-IND

0.3 47.57 55.68 47.51
0.4 48.10 51.44 48.08
0.5 48.75 54.75 48.71
0.6 47.15 50.84 47.12
0.7 47.83 50.60 47.81

Table 8: Effect of λ on the OOD intent detection
performance. The reported performance are pro-
duced on the STAR-Full dataset.

G. Case Study
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Dialogue
Prediction of

“Outlier”
Prediction of

“Caro”
Customer Agent

Somebody has transferred $500 from
my account.

bank_ask_pin OOD

Would you like to file a fraud report?
yes please

Could I get your full name, please?
Jane Doe

Can you tell me your account number,
please?

What am I doing on this chat?

Hey there! Can you tell me what the
weather will be tomorrow please?

weather
_inform

_forecast
OODIt will be Raining all day on Saturday

in Los Angeles, with temperatures of
around 19 degrees celsius.

oh dang when’s the next time it will be
sunny?

It will be Sunny all day on Friday in
Los Angeles, with temperatures of
around 11 degrees celsius.

Nice! I think I’ll head to La brea tar
pits. I’ve never been there. have you
seen those animals? Crazy

Schedule a viewing at Shadyside
apartment for Thursday at 8pm my
name is john

bank_inform
_cannot

_authenticate

OODHave you already paid the application
fee for the apartment?

I can’t remember
I am sorry, but there is no viewing
available at your preferred time.

I have a hot date by 8pm o Thursday
When would you like the viewing to
start?

How is the apartment like?

Table 9: Case study of classified intents on the OOD samples (from STAR-Full dataset) by Outlier and
Caro. OOD samples are classified as one of the IND classes by Outlier, which are detected as the OOD
intent by Caro.
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