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Abstract
In an era characterized by the rapid proliferation of information, the pervasive issues of misinformation and
disinformation have significantly impacted numerous individuals. Consequently, the evaluation of information’s
truthfulness and accuracy has attracted substantial attention among researchers. In this work, we present a novel
fact-checking framework called PACAR, fact-checking based on Planning And Customized Action Reasoning using
LLMs. It comprises four modules: a claim decomposer with self-reflection, an LLM-centric planner module, an
executor for carrying out planned actions, and a verifier module that assesses veracity and generates explanations
based on the overall reasoning process. Unlike previous work that employs single-path decision-making and
single-step veracity prediction, PACAR focuses on the use of LLMs in dynamic planning and execution of actions.
Furthermore, in contrast to previous work that relied primarily on general reasoning, we introduce tailored actions
such as numerical reasoning and entity disambiguation to effectively address potential challenges in fact-checking.
Our PACAR framework, incorporating LLM-centric planning along with customized action reasoning, significantly
outperforms baseline methods across three datasets from different domains and with varying complexity levels.
Additional experiments, including multidimensional and sliced observations, demonstrate the effectiveness of
PACAR and offer valuable insights for the advancement of automated fact-checking.
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1. Introduction

The wide spread of misinformation has prompted a
pressing need to develop automated fact-checking
tools. Verifying the veracity of claims is an in-
tricate task that requires a thorough understand-
ing of both the claim itself and the accompany-
ing evidence that either substantiates or contra-
dicts it. Previous works (Rao and Daumé III, 2019;
Majumder et al., 2021) have primarily focused on
verifying atomic claims, which could not encom-
pass the intricacies of real-world claims encoun-
tered in practical scenarios. More recent studies
(Ousidhoum et al., 2022; Pan et al., 2023) have
acknowledged the significance of addressing com-
plex claims. Nevertheless, existing studies often
rely on idealized “gold” evidence for predictions,
which is unrealistic due to its limited availability in
real-world scenarios. Moreover, they largely ig-
nore how to effectively handle the integration of
multiple sources of information and the intricate
reasoning processes required for veracity predic-
tion.

In this work, we propose a novel automated
fact-checking framework called PACAR, compris-
ing four key components: a claim decomposer with
self-reflection to break down complex claims into
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sub-claims, a planner module that utilizes a cus-
tomized toolset to manage actions at each reason-
ing step, an executor that executes the planned
actions, and a verifier module that assesses the
veracity of the original claim and generates expla-
nations based on the overall reasoning process.
All four modules in our framework are built upon
large language models (LLMs) and operate in a
zero-shot manner. LLMs are chosen as basis due
to they are trained on vast amounts of data, making
them a valuable knowledge source for veracity pre-
diction. What’s more, LLMs can comprehensively
employ diverse data sources, facilitating the com-
prehension and comparison of facts across vari-
ous subjects and domains.

While LLMs have shown remarkable instruction-
following capabilities in various domains and ap-
plications (Qin et al., 2023), simply querying them
with claims may not yield satisfactory performance
and lacks explainability due to the black-box na-
ture of prompting-based LLM utilization (Pan et al.,
2023). PACAR incorporates multiple strategies, in-
cluding self-reflection and global planner shown
in Fig. 1, to effectively conquer the potential
problems may arise when applying LLMs in fact-
checking. Claim decomposer is adopted not only
because complex claims often consist of multi-
ple subclaims, but also because simplifying the
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Figure 1: Approach Comparison.

query for LLMs holds promise as LLMs are al-
ready proven to be more adept at answering sim-
ple queries (Choudhary and Reddy, 2023); The
self-reflection mechanism acts like a “semantic”
gradient signal by asking LLMs to reevaluate the
response according to the prior interaction history
and improve the response with a concrete direction
(Shinn et al., 2023); Our global planner for actions
offers a more explicit reasoning process, synchro-
nized with action results, in contrast to the implicit
Chain-of-Thought prompt (Wei et al., 2022).

Besides, our PACAR surpasses the previous
work by taking into account the characteristics of
veracity reasoning. In contrast to previous ap-
proaches that rely on single-path decision-making
(i.e., following a linear sequence of actions) (Pan
et al., 2023) and single-step veracity prediction
(i.e., making veracity judgments based on col-
lected evidence in one step) (Chen et al., 2023) us-
ing LLMs, our PACAR framework leverages LLMs
as a central component for planning actions and
execution as planned in a dynamic manner, where
actions can be conducted synthetically, and verac-
ity prediction is based on the multi-step reason-
ing process. Furthermore, as opposed to previ-
ous methodologies that invariably pursued exter-
nal retrieval, our planner-based retrieval stands out
as more efficient since it engages time-consuming
external retrieval only when necessary. Addition-
ally, in contrast to previous work that exclusively
relied on general reasoning, we introduce tailored
actions such as numerical reasoning and entity dis-
ambiguation to effectively address the challenges
that may arise in the context of fact-checking.

In addition, we conduct experiments on three
datasets (i.e., SciFact (Wadden et al., 2020),
FEVEROUS (Aly et al., 2021), HOVER (Jiang
et al., 2020)), spanning diverse domains and claim
complexities. The results show that our zero-shot
framework outperforms ChatGPT, few-shot meth-
ods and conventional finetuning methods. Fur-
ther experiments focusing on instances associated
with numerical reasoning and entity disambigua-
tion challenges reveal that our customized tool set
plays a significant role in addressing the corre-

sponding challenges which are common in verac-
ity prediction. In brief, our main contributions are:
• We propose a novel automated fact-checking

framework comprising four components, each
designed to enhance the utility of LLMs or tai-
lored to accommodate the specific characteris-
tics of fact-checking tasks.

• We design a pioneering self-reflection module to
proactively address potential error accumulation
within the pipeline. Additionally, our customized
agents are strategically crafted to adeptly im-
prove the inference process, ensuring accurate
reasoning from multiple evidence sources.

• Our proposed zero-shot framework outperforms
all the baselines, spanning various categories,
such as LLM-based, few-shot, and conventional
fine-tuning methods. Further experiments involv-
ing multidimensional and sliced observations
demonstrate the efficacy of PACAR.

2. Related work

2.1. Fact-checking
The landscape of automated fact-checking has wit-
nessed significant advancements over the years.
Previous models (Jiang et al., 2021; Liu et al.,
2020) predominantly tackled claims verifiable via
singular evidence (Jiang et al., 2020; Hanselowski
et al., 2019). However, complex claims in the real
world often necessitate multi-evidence reasoning.
To bridge this, recent fact-checking models (Kr-
ishna et al., 2022; Barnabò et al., 2023) have incor-
porated retrieval techniques, enabling reasoning
across diverse evidence. Notably, Chen et al. pro-
posed an automated retrieval-based pipeline tai-
lored for complex political claims. Pan et al. pro-
posed a fact-checking system that decomposes
the claim into a series of subtasks using program-
guided reasoning and delegates each subtask to
the corresponding handler sequentially. However,
existing approaches (Soleimani et al., 2020; Nie
et al., 2020; Chen et al., 2023; Pan et al., 2023) of-
ten serve as “black boxes” with limited explainabil-
ity and the heavy interdependence of these com-
ponents in the proposed unidirectional pipeline hin-
ders their effectiveness when employed.

2.2. Explanation Generation
Explanation generation is important for persuasive
automated fact-checking (Guo et al., 2022; Thakur
et al., 2021; Shi et al., 2023). Numerous tech-
niques have been proposed to address the limita-
tions of solely providing a veracity label, aiming to
enhance its effectiveness in explanation. Strate-
gies range from utilizing attention metrics to em-
phasize evidence (Yang et al., 2019; Lu and Li,
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2020), leveraging knowledge graphs for justifica-
tion (Gad-Elrab et al., 2019; Ahmadi et al., 2019),
and enriching context from sourced documents to
aid task-specific response generation (Lewis et al.,
2020; Borgeaud et al., 2022; Khattab et al., 2022;
Peng et al., 2023). Unlike the previous works, our
PACAR framework augments explainability, recti-
fies current pipeline shortfalls, and adapts to a
broader spectrum of real-world situations.

3. Model

3.1. Problem Formulation
Our system’s primary objective is to evaluate the
veracity of a given claim C. This process poten-
tially together with provided golden evidence, de-
noted as Egold = {egold1 , egold2 , ..., egold|Egold|}), where
|Egold| represents the total number of golden ev-
idence pieces. The output is a label y indicating
the claim’s veracity as true or false. Additionally,
we aim to provide an explanatory justification X
supporting the predicted label. Without specifying,
our veracity prediction and justification generation
are not reliant on golden evidence.

3.2. Our Fact-Checking Framework
3.2.1. Claim Decomposor with

Self-Reflection

Claims that accurately reflect real-world scenar-
ios are often intricate, demanding a multitude
of supporting evidence for predicting their verac-
ity. Hence, given an input C, we propose to de-
compose it into various sub-claims, denoted as
{c1, c2,…, ck}, where ci is the i-th sub-claim. Each
sub-claim ci is a sub-claim in natural language that
represents a specific aspect of the claim. Typically,
such a decomposition process relies heavily on in-
structing LLMs with specific prompts. The decom-
position process cannot guarantee that LLMs can
consistently generate reasonable sub-claims.

To address the above issue, we propose a novel
technique called backward self-reflection, aimed at
enhancing the reliability of the decomposition pro-
cess. We achieve this self-reflection by prompting
LLMs to attempt to generate a claim C

′ that is se-
mantically equivalent to C based on the decom-
posed sub-claims c1, c2,…, ck. If LLMs cannot gen-
erate such an equivalent claim, we then prompt
them to generate new sub-claims after the above
reflection. We summarize the entire forward de-
composition and backward reflection process as:

C ↔ {c1, c2,…, ck} (1)

where ↔ indicates that the decomposition has
been verified bidirectionally and k is the number
of decomposed sub-claims.

3.2.2. Toolsets for Retrieval and Action

The toolset module offers two options: evidence
retrieval and the LLM’s reasoning capabilities.
We utilize external retrieval as a supplementary
method to obtain more comprehensive and accu-
rate information. To ensure the overall efficiency
of the verification process, our framework incorpo-
rates a retrieval planner that initiates external re-
trievals only when deemed necessary.

In contrast to previous work (Chen et al., 2023)
that relies on black-box reasoning based on col-
lected evidence, we first propose a set of tailored
reasoning actions for fact-checking tasks and em-
ploy multi-step reasoning to do the fact-checking.
Each agent specializes in addressing a specific
challenge encountered during the fact-checking
task. We summarize the challenge into three as-
pects: multi-hop reasoning in numerical, multi-hop
reasoning in entity disambiguation, and multi-hop
reasoning in other general scenarios. For this
situation, we define the corresponding toolset in
action, including numerical reasoning (Anr), en-
tity disambiguation (Aed), and general reasoning
(Agr). Considering the varying characteristics and
requirements of different sub-claims and reason-
ing tasks, the toolsets for retrieval and action mod-
ule can dynamically select suitable tools to support
the reasoning process.

3.2.3. Planner and Executor

Retrieval Planner. After the claim decomposi-
tion, a list of sub-claims is generated. To optimize
the overall claim assessment process and mini-
mize reliance on external sources, we introduce
a retrieval planner denoted as R. The planner R
is responsible for suggesting whether the LLMs
can independently verify the decomposed claims.
Concretely, we define r = R(ci), where the vari-
able r captures the result obtained from R after
analyzing the sub-claim ci. It’s important to note
that the return value r is strictly boolean, i.e., r ∈
{Yes,No}. This binary output signifies whether the
model requires supplementary evidence for valida-
tion. The incorporation of such a retrieval planner
helps streamline the claim assessment process by
initiating external retrieval only when deemed nec-
essary, ensuring efficiency in the overall verifica-
tion procedure.

Evidence Executor. If the result obtained from
the advisor retrieval is “Yes” then we conduct an ev-
idence collection process, denoted as S. We cate-
gorize the retrieval of evidence into two distinct set-
tings: Open-Book and Gold-Evidence. The Open-
Book setting implies that the system has the ca-
pability to actively access and reference external
knowledge sources (e.g., Wikipedia) during its re-
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Claim: Harriet Shing of the Liberal party has always been a member of the Eastern Victoria Region from 2006 until 2018.
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Australian Labor Party 
(ALP), …
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of the Australian Labor 
Party. 

Sub-claim 2: …
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Figure 2: Our LLM-centric PACAR automated fact-checking framework with customized actions.
trieval process. In contrast, the Gold-Evidence
setting can access gold evidence documents in
the dataset, which ensure the high quality of the
sources of evidence. We summarize the evidence
collection as follows:

ei ← S(ci) (2)

where ei represents the retrieved evidence for the
i-th sub-claim. The retrieved evidence bank, de-
noted as E = {e1, e2, ..., ek}, will be utilized in the
subsequent veracity reasoning processes.

Action Planner. We design an action planner,
denoted asP, which is responsible for selecting an
agent, denoted as a. Planner P chooses an agent
from the set of available agents Anr,Aed,Agr

based on the challenging reasoning features of the
content in the claim, formulated as:

a← P({{c1, e1}, {c2, e2}, ..., {ck, ek}}) (3)

The selected reasoning action a guides the
decision-making process, based on the set of sub-
claims {c1, c2, . . . , ck} and their corresponding ev-
idence E. The planner P plays a crucial role in
planning this reasoning process, ensuring that the
most appropriate action is chosen at each step to
facilitate the veracity prediction.

Action Executor. To obtain the veracity analysis
of each sub-claim, we employ the selected agent
with an explicit role description to generate rea-
soning analysis among all the sub-claims. Specif-
ically, we define the role of the selected agent by
providing specific prompts. By leveraging LLMs’
instruction-following capabilities, the agent gener-
ates reasoning analysis among all the sub-claims

with their corresponding retrieved/generated evi-
dence. This process ultimately yields justification
ji for fact-checking the sub-claim, formulated as:

{j1, · · · , jk} ← a(C, {(c1, e1), · · · , (ck, ek)}) (4)

3.2.4. Verifier Module

To enhance the veracity assessment and predic-
tion explainability of the whole fact-checking pro-
cess, we employ a verifier module to generate rea-
soning analysis among all the sub-claims. Specif-
ically, we define the role of verifier by providing
specific prompts. By leveraging LLMs’ instruction-
following capabilities, the verifier generates rea-
soning analysis among all the sub-claims ci with
their corresponding justifications ji. This process
ultimately yields veracity label y and a comprehen-
sive explanation exp for fact-checking the original
claim, formulated as:

(y, exp)← a(C, {(c1, j1), · · · , (ck, jk)}) (5)

The method of generating reasoning explana-
tions through the guidance of specific agents cou-
pled with the instruction-following capabilities rep-
resents a novel technique for complex claim fact-
checking. By adopting this technique, we aim to
improve the accuracy and interpretability of fact-
checking results. The use of specialized agents
allows us to address specific challenges inherent
in the reasoning process among the sub-claims,
thereby facilitating a more comprehensive evalu-
ation of the veracity of claim. The resulting rea-
soning analysis contributes to a more robust and
nuanced understanding of the fact-checking task.
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Dataset Domain Claim Complexity # of Eval

SciFact Biomedical Brief 300

FEVEROUS Wikipedia Brief, Complex 2,962

HOVER Wikipedia
2-hop claims 1,126

3-hop claims 1,835

4-hop claims 1,039

Table 1: Statistics of Datasets.

4. Experimental Setup

4.1. Datasets
We evaluate our automated fact-checking model
on three datasets, i.e., HOVER (Jiang et al., 2020),
FEVEROUS (Aly et al., 2021), and SciFact (Wad-
den et al., 2020). These datasets span diverse do-
mains and levels of complexity, which are widely
adopted by researchers to benchmark the perfor-
mance of automated fact-checking systems. And
they cover broad topics (Wikipedia vs. biomed-
ical), and different text types (news articles vs.
research publications). Table 1 summarizes the
datasets used in experiments. As we can see that,
HOVER is divided into subsets based on the num-
ber of reasoning “hops” needed for claim verifica-
tion. FEVEROUS, on the other hand, is designed
for fact-checking over unstructured and structured
data, annotating claims with evidence from sen-
tences or cells from tables in Wikipedia. We use
the same setup as the previous method (Pan et al.,
2023), only selecting claims that require only sen-
tence evidence. SciFact focuses on verifying sci-
entific claimsby utilizing evidence extracted from
abstracts of scientific papers in the research liter-
ature. These datasets provide a comprehensive
platform to assess and improve the performance
of fact-checking.

4.2. Baselines
To demonstrate the effectiveness of PACAR, we
conducted comprehensive experiments compar-
ing it against various baseline approaches cate-
gorized into three groups: Fine-tuning, Few-shot
Prompting, and Zero-shot Prompting.

(1) The Fine-tuning methods aim to fine-tune
pretrained language models specifically for per-
forming fact-checking as a downstream task. The
following baselines were employed: BERT-FC
(Soleimani et al., 2020): This method involves fine-
tuning the pretrained BERT language model using
two loss functions, namely pointwise and pairwise.
LIST5 (Jiang et al., 2021): It explored listwise evi-
dence reasoning by utilizing the pretrained T5 lan-
guage model for fact-checking. ROBERTA-NLI (Nie

et al., 2020): This baseline involves fine-tuning the
RoBERTa model using NLI datasets. MULTIVERS
(Wadden et al., 2022): This method predicts fact-
checking labels and identifies explanations using
a multi-task learning approach.

(2) The Few-shot prompting approaches lever-
age the powerful in-context learning capabilities of
large language models. These approaches pro-
vide the model with a limited set of examples be-
fore prompting it with specific test cases. The fol-
lowing baselines were considered: CODEX (Chen
et al., 2021): This approach first provides the
CodeX model with 20 in-context examples and
then prompts it with a template containing the test
case. FLAN-T5 (Chung et al., 2022): It prompts
the Flan-T5 model for fact-checking by supplying
20 few-shot examples. PROGRAMFC (Pan et al.,
2023): This baseline utilizes the LLMs (CodeX
and Flan-T5) to generate reasoning programs that
guide the verification process, assuming the avail-
ability of a few in-domain examples.

(3) The Zero-shot prompting methods involve
feeding the language models with test cases with-
out providing any examples. We employed the fol-
lowing baseline: CHATGPT: This method involves
directly prompting the ChatGPT model to collect
evidence first and then generate a judgment to ver-
ify the veracity of claims.

4.3. Implementation Details and
Evaluation

We run all experiments using the gpt-3.5-turbo-
0301 model. We leverage the Google service pro-
vided by Serper API as the retriever for our PACAR
model. By incorporating this service, we are able
to obtain a comprehensive collection of web page
rankings, snippets, and other relevant metadata
associated with a given query. For each sub-claim,
we utilize the top paragraph (Recall@1) retrieved
from the provided online website as supporting ev-
idence. We adopt macro-F1 score to evaluate the
fact-checking results by following (Pan et al., 2023;
Feng et al., 2023).

5. Experimental Results

5.1. Main Comparison Results
Table 2 presents a comprehensive comparison be-
tween our proposed PACAR model and state-of-
the-art models across all settings. We have the
following observations based on Table 2.

The Effectiveness of PACAR in General Do-
mains. The HOVER and FEVEROUS datasets
are challenging as they contain lengthy and intri-
cate claims that often necessitate the integration of
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Models
OPEN-BOOK GOLD-EVIDENCE

HOVER FEVEROUS SciFact HOVER FEVEROUS SciFact
2-hop 3-hop 4-hop 2-hop 3-hop 4-hop

Fine-tuning
BERT-FC 50.68 49.86 48.57 51.67 - 53.40 50.90 50.86 74.71 -
LisT5 52.56 51.89 50.46 54.15 - 56.15 53.76 51.67 77.88 -
RoBERTa-NLI 63.62 53.99 52.40 57.80 - 74.62 62.23 57.98 88.28 -
MULTIVERS 60.17 52.55 51.86 56.61 44.90 68.86 59.87 55.67 86.03 72.54

Few-shot
CodeX 65.07 56.63 57.27 62.58 - 70.63 66.46 63.49 89.77 -
FLAN-T5 69.02 60.23 55.42 63.73 - 73.69 65.66 58.08 90.81 -
ProgramFC 69.36 60.63 59.16 67.80 56.34 74.10 66.13 65.69 91.77 71.82

Zero-shot
ChatGPT 66.94 60.56 58.73 55.72 45.32 71.42 64.87 63.65 83.49 65.60
PACAR (Ours) 73.13 64.07 63.82 72.61 61.24 76.86 70.10 69.95 94.43 75.06

Table 2: Main results (macro-F1 in %) on of HOVER, FEVEROUS, and SciFact datasets. The best and
second-best results in each column are in bold and underlined respectively.

multiple pieces of evidence. As shown in Table 2,
our PACAR model exhibits superior performance
compared to the baselines, with improvements of
4.66% and 4.81% in the open-book settings in
HOVER’s 4-hop claims and FEVEROUS dataset,
respectively. These results highlight the model’s
exceptional analytical and reasoning capabilities
when dealing with complex claims. Moreover, the
strong baseline ProgramFC operates in a few-shot
setting which requires 20 in-domain examples, im-
posing a significant burden on the LLM. In the zero-
shot setting, the baseline ChatGPT demonstrates
its impressive fact-checking abilities while its per-
formance is suboptimal. However, our model is
both in zero-shot learning and further improves the
performance by utilizing claim decomposition with
self-reflection, allowing for dynamic evidence col-
lection.

The Effectiveness of PACAR in Professional
Domains. In the SciFact dataset, claims are
expert-written sentences from scientific literature,
requiring fact-checking models to gather external
evidence for verification. In Table 2, there are
4.9%, and 3.24% improvements on the SciFact
dataset in open-book setting and gold-evidence
setting, respectively. The results surpass the per-
formance of strong baselines such as ProgramFC
and ChatGPT. It demonstrates the effectiveness
of our retrieval planner and evidence executor
strategies in addressing the need to retrieve perti-
nent evidence for fact-checking purposes. Further-
more, the diverse experimental datasets encom-
pass real-world claim scenarios, spanning general
and specialized domains with claims of varying
lengths and complexities, facilitating a comprehen-
sive evaluation of PACAR’s effectiveness.

2-hop 3-hop 4-hop FEVEROUS SciFact

PACAR 76.86 70.10 69.95 94.43 75.06
-w/o SR&Agents 75.51 68.39 67.82 92.78 74.02
-w/o SR 76.25 69.03 69.36 93.65 74.54
-w/o Agents 75.83 68.95 68.57 93.24 74.33

Table 3: Ablation results of PACAR.

5.2. Ablation Study

We conduct an ablation study to further assess the
effectiveness of the proposed mechanisms.

5.2.1. The Effectiveness of Self-Reflection

Through our experimental analysis, the backward
self-reflection module serves two purposes: cor-
rection and refinement of sub-claims. The back-
ward self-reflection module appropriately adjusts
the sub-claims and can occasionally modify the
sentence structure of correct sub-claims to make
it more sound. The proper decomposition of sub-
claims is facilitated by forward claim decomposi-
tion with a backward self-reflection module affects
the model’s retrieval process and contributes to
performance gains, as shown in Table 3. We eval-
uate two ablation scenarios: PACAR without the
self-reflection module (marked as w/o SR) and
PACAR excluding both self-reflection and agents
(marked as w/o SR&Agents). The experimental
results at different hop levels, namely 2-hop, 3-
hop, and 4-hop, demonstrate the increasing promi-
nence of the benefits brought about by the self-
reflection module. Specifically, we observed im-
provements of 1.35%, 1.71%, and 2.13% for per
hop level, respectively. We also observed signif-
icant performance gain in complex claims such
as HOVER, and FEVEROUS, while the improve-
ments in SciFact are less pronounced.
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5.2.2. The Effectiveness of Specific Agent

In Table 3, we evaluate the removing numeri-
cal reasoning (nr) and entity disambiguation (ed)
agents (marked as w/o Agents). To thoroughly in-
vestigate the effectiveness of these two agents, we
further analyze the distribution of claims by differ-
ent agents in the dataset and the resulting improve-
ments. Figure 3 (a) displays the proportions of nu-
merical reasoning, entity disambiguation, and gen-
eral reasoning claims based on the original anno-
tations in the FEVEROUS dataset. Figure 3 (b)
analyzes the proportions of operations performed
by the numerical reasoning agent, entity disam-
biguation agent, and general reasoning agent in
our PACAR model. We observed that the cate-
gory distribution of numerical reasoning, entity dis-
ambiguation, and other multi-hop reasoning ob-
tained by the PACAR model is inconsistent with the
category distribution in the FEVEROUS dataset.
This discrepancy arises because the FEVEROUS
dataset primarily categorizes claims based on the
claims themselves, while our model simultane-
ously analyzes both the claims and evidence, re-
sulting in a representation that better aligns with
real-world scenarios.

Additionally, Figure 4 illustrates the improve-
ment achieved by the numerical reasoning agent
and the entity disambiguation agent on their re-
spective claims. Specifically, we present the re-
sults of PACAR w/o nr agent and w/o ed agent on
the numerical reasoning data and the entity disam-
biguation data, respectively, as shown in Figure 3
(b). The results demonstrate the significant impact
of the agent modules, particularly when they pro-
vide explicit and useful clues for reasoning, lead-
ing to better explanations. This highlights the im-
portance of tailored reasoning actions performed
by specific agents. We observed that claims in-
volving changes in numerical values or years are
often assigned to the numerical reasoning agent
by the coordination mechanism. The claims with
different nouns tend to be arranged to the en-
tity disambiguation reasoning agent. Through the
involvement of the planner mechanism, our se-
lected agents gain a clearer understanding of the
types of claims, which provides useful explana-
tions and more detailed insights behind the predic-
tions. These findings emphasize the importance
of the agent modules in our framework, as they
enable customized reasoning operations based on
the characteristics of the claims. This customiza-
tion plays a crucial role in enhancing the perfor-
mance of the veracity prediction.

18%

7%

75%

Numerical Reasoning Entity Disambiguation General Reasoning

5% 4%

91%

(a) Action Distribution on

Feverous Dataset

(b) Action Distribution

of Our Method

Figure 3: The proportions of numerical reasoning,
entity disambiguation, and general reasoning cat-
egories in the original annotations of FEVEROUS
dataset and the actions performed by PACAR.
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Figure 4: The ablation results of numerical rea-
soning agent and entity disambiguation agent.

5.3. Quantitative Analysis

5.3.1. The Comparison with ChatGPT

In our section, we compare our proposed model,
PACAR, with the base model ChatGPT in vari-
ous settings to further evaluate their performance.
We considered four different models for compari-
son: (i) Prompt-only ChatGPT (Prompt): ChatGPT
only takes the prompt and claim as input, with-
out any additional evidence. (ii) ChatGPT with
gold evidence (ChatGPT-G): ChatGPT is provided
with the prompt containing the claim along with
the corresponding gold evidence. (iii) Chain of
Thought with gold evidence (CoT-G): ChatGPT is
given gold evidence and a specific prompt “Let’s
think step by step” to guide its reasoning process.
(iv) PACAR with gold evidence (PACAR-G): Our
proposed PACAR in the gold-evidence setting.

The results shown in Table 4, demonstrate that
ChatGPT exhibits sub-optimal performance in fact-
checking tasks, both in leveraging its notable infer-
ence ability and when provided with gold evidence.
These findings highlight the inherent limitations
of LLMs in effectively addressing fact-checking
tasks, such as the problem of hallucination and
the limited reasoning ability. In contrast, our pro-
posed PACAR model addresses the shortcomings
of LLMs by incorporating forward claim decomposi-
tion with backward self-reflection, and customized
reasoning actions performed by specific agents.
By leveraging these strategies, PACAR can incor-
porate diverse sources of evidence and effectively
integrate them, leading to more reliable and ex-
plainable fact-checking performance.
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2-hop 3-hop 4-hop FEVEROUS SciFact

Prompt 58.73 52.65 49.39 52.56 36.71
ChatGPT-G 71.42 64.87 63.65 83.49 65.60
CoT-G 72.85 65.61 64.08 84.22 67.85
PACAR-G 76.86 70.10 69.95 94.43 75.06

Table 4: Comparison results of our proposed
PACAR and variants based on ChatGPT.
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Figure 5: Distribution of the length of claims, the
number of sub-claims, and whether need to re-
trieve evidence, respectively.

5.3.2. Distribution

The claim decomposition with self-reflection strat-
egy leverages LLMs to divide claims into sub-
claims and reflect the correctness of the decom-
position. To evaluate the strategy, we manually
analyzed 50 claims and performed statistical anal-
ysis on the claim decomposition results. Figure 5
shows the distribution of the length of claims, the
number of sub-claims at forward claim decompo-
sition and backward self-reflection, and whether
need to retrieve evidence. Our analysis identi-
fied three linguistic cues considered during the de-
composition process. First, keywords, i.e., words
or phrases, indicate important concepts related
to a claim. Second, logical connections reveal
the interdependency and structure within a claim.
Finally, semantic relationships involve analyzing
the underlying meaning and connections between
words and phrases. The LLM employs these lin-
guistic cues to identify potential sub-claims that
contribute to the overall claim. By dividing claims
into sub-claims during the decomposition and self-
reflection stages, our framework enhances the de-
composition process.

5.4. Qualitative Analysis
We conducted a comprehensive analysis of the in-
terpretability of our proposed model, PACAR. To
evaluate its interpretability, we selected a sample
of 30 claims from the FEVEROUS datasets. We
observe that PACAR effectively enhances the in-

terpretability of fact-checking compared to previ-
ous models. This improvement is attributed to
the explicit claim decomposition, dynamic action
planner, and executor, which aid in human un-
derstanding of the fact-checking process. Specif-
ically, Table ?? presents an illustrative analysis
example where the PACAR model successfully
identifies both supporting and refuting evidence.
Through the generation of informative and contex-
tually relevant explanations for the predicted verac-
ity labels, the PACAR model significantly improves
the transparency and interpretability of the fact-
checking process. Moreover, the model exhibits
a remarkable capability to incorporate diverse evi-
dence sources and seamlessly integrate them, re-
sulting in more robust and reliable fact-checking
outcomes. These findings underscore the efficacy
and potential of the PACAR model in advancing the
field of automated fact-checking.

Moreover, we also conducted an error analysis
during this manual checking process to examine
the error types encountered in our PACAR model.
We manually classify the errors into three cate-
gories: (i) Syntax errors, which pertain to issues
with the grammatical structure or composition of
the subclaims, (ii) Semantic errors, which involve
inaccuracies or inconsistencies in the meaning or
interpretation of the subclaims, and (iii) Reason-
ing errors, which encompass flaws in the logical
or rational connection between the subclaims and
the overall claim. We think these are the persist-
ing challenges encountered by fact-checking mod-
els. Hope to provide valuable insights for future
improvements and advancements in the field.

6. Conclusion

In summary, our work introduces PACAR, an inno-
vative fact-checking framework featuring four dis-
tinct modules. These modules are each designed
to inspire the utility of LLMs to tackle the specific
complex characteristics of fact-checking. Unlike
previous approaches, PACAR optimally leverages
LLMs, adopting dynamic planning and tailored
actions to tackle the challenges in fact-checking.
Extensive experiments show the effectiveness of
PACAR.
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