
LREC-COLING 2024, pages 12585–12591
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

12585

Palmyra 3.0: A User-Friendly Cloud-Based Platform
for Morphology and Dependency Syntax Annotation

Muhammed AbuOdeh,1 Long Phan,1 Ahmed Elshabrawy,1,2 and Nizar Habash1

1Computational Approaches to Modeling Language (CAMeL) Lab, New York University Abu Dhabi
2Mohamed bin Zayed University of Artificial Intelligence

{m.abuodeh,lvp243,nizar.habash}@nyu.edu, ahmed.elshabrawy@mbzuai.ac.ae
Abstract

We present Palmyra 3.0, a cloud-based, configurable, and user-friendly platform for morphology and syntax annota-
tion through dependency-tree visualization. Palmyra 3.0 implements a robust system that stores data on the cloud.
By default, Palmyra 3.0 comes with an Arabic dependency parser that generates highly accurate trees, but it is easily
configurable to support dependency parsers in other languages. Palmyra 3.0 provides default configuration files for a
number of predefined formalisms, such as UD and CATiB, and a number of user-friendly features to support annotators.

Keywords: Annotation, Morphology, Syntax, Parsing, Treebanking, Universal Dependencies, Arabic

1. Introduction

Treebank development is an important step in many
research areas in natural language processing
(NLP). Treebanks have been used to study linguis-
tic phenomena and train parsing models (Jurafsky
and Martin, 2009). In the neural age, the interest
in using syntactic structures remains: they can be
used as support tools for (a) studying large lan-
guage models (Kulmizev, 2023), (b) guiding data
augmentation for neural machine translation (Duan
et al., 2023), (c) semantic role labeling (Tian et al.,
2022), and grammatical error correction (Li et al.,
2022; Zhang et al., 2022), etc.

High-quality treebanking is resource intensive.
Well-known treebanks such as the Prague Depen-
dency Treebank (Böhmová et al., 2003), the Penn
Treebank (Marcus et al., 1993), and the Penn Ara-
bic Treebank (Maamouri et al., 2004) are produced
as a result of decade-long efforts by teams of ex-
perts and all involved the development of tools to
support the annotation processes.

Of course, treebanks vary in terms of the syntac-
tic formalism they use (e.g., the various types of
dependency and constituency representations), the
level of richness of their syntactic labels and mor-
phological tags, not to mention language-specific
tokenization decisions, among other details that
should be carefully documented in predefined
guidelines. The more complex the formalisms and
guidelines, the more difficult it is to train annotators,
and to annotate the data consistently, accurately,
and efficiently. Hence, there is a great need for
tools that facilitate the annotators’ work to create
quality data, while supporting different formalisms.

While many syntactic and morphological annota-
tion tools exist (Pajas, 2008;Heinecke, 2019; Gui-
bon et al., 2020; Little and Tratz, 2016; Klie et al.,
2018), many are lacking in different functionalities
that allow for faster annotation, configurability, ease

of use, error prevention, and convenience. Many
tools are designed with English or other European
languages in mind and are cumbersome to use
with morphologically rich and complex languages
such as Arabic.

In this demo paper, we present Palmyra 3.0,
an open-source web-based tool for syntactic and
morphological annotation of texts.1,2 Palmyra 3.0
is natural-language agnostic, configurable, and
cloud-based. It also provides offline capabilities.
Palmyra 3.0 was designed to easily annotate mor-
phologically rich languages, as it was originally cre-
ated for Arabic text annotation (Habash et al., 2022).
Palmyra 3.0 helps annotate efficiently by providing
keyboard shortcuts to traverse and annotate trees,
and also helps reduce erroneous annotations by
providing undo/redo functionality.

In Section 2, we present a survey and com-
parison with some existing treebank annotation
tools. Section 3 discusses the design decisions and
methodology behind developing Palmyra 3.0. In
Section 4, we evaluate our tool in terms of accuracy
and speed on two Arabic treebanking formalisms
as a case study.

2. Related Work

Since we focus on aspects that provide online capa-
bilities, morphosyntactic annotation features, and
custom configurations and shortcuts, in this sec-
tion we will show examples of some existing tools
and point out limitations with respect to our require-
ments. While these tools may have other function-
alities that Palmyra 3.0 does not have, our focus
on our design decisions is intentional; Palmyra 3.0
is meant to be lightweight and easy to use. Table 1
provides a summary of the tools we compare.

1https://palmyra.camel-lab.com/
2https://github.com/CAMeL-Lab/palmyra

https://palmyra.camel-lab.com/
https://github.com/CAMeL-Lab/palmyra

12586

TrEd ConlluEditor ArboratorGrew Palmyra2.0 Palmyra3.0

Online interface ✓ ✓ ✓

Online storage ✓ ✓

Online parsing ✓ ✓

Word tokenization ✓ ✓ ✓

Configurable formalisms ✓ ✓ ✓ ✓

Keyboard shortcuts ✓ ✓ ✓ ✓

Undo/Redo ✓ ✓ ✓ ✓

Table 1: We compare Palmyra 3.0 to four other systems across seven features.

Perl-based TrEd (Pajas, 2008) is not web-based
and must be downloaded in order to be used. While
TrEd has many functionalities, it sometimes is unin-
tuitive which makes it difficult for less experienced
annotators to use, and does not have a simple op-
tion for word-level tokenization.

ConlluEditor (Heinecke, 2019) is similar to
Palmyra 3.0 in many ways, except that it is not
web-based.

ArboratorGrew (Guibon et al., 2020) is an on-
line annotation platform. It provides accounts for
its users, and users can store their data in private
or public repositories. Users can train dependency
parsing models and use pre-trained models, and
users may also syntactically annotate and add fea-
tures to trees. It is limited to the UD formalism, and
annotating trees can be slow since users cannot
use keyboard shortcuts, nor collapse parts of trees
for longer sentences in order to focus on specific
subtrees.

Palmyra 2.0 (Taji and Habash, 2020) is a plat-
form independent graphical dependency tree visu-
alization and editing software. Palmyra 2.0 also
allows users to either use predefined configuration
files or to create their own in order to add keyboard
shortcuts. For example, if a user wishes to tag a to-
ken as prep they would move to the token using the
arrow keys then press the letter p. If multiple tags
require the shortcut p, e.g. part, pron, etc., then
the user would press the letter p multiple times to ro-
tate through the different tags. Users can also edit
the morphological features (e.g., case, state, gen-
der, ...) of tokens. Palmyra 2.0 added these fea-
tures to the previous version, Palmyra 1.0 (Javed
et al., 2018), which extended EasyTree (Little and
Tratz, 2016). Palmyra 2.0, however, lacks online
features which forces users to download their trees
regularly to prevent loss of work, and the lack of
an undo/redo features may introduce annotation
errors.

Palmyra 3.0 was inspired by the tools above,
and was built on Palmyra 2.0; Palmyra 3.0 con-
tains an online interface, as well as morphosyntac-
tic annotation, word tokenization, and configurable
formalisms. As shown in Table 1, Palmyra 3.0

provides additional web-based functionality, both
default and customizable configurations, undo/redo
features and keyboard shortcuts.

There are other tools primarily used for syntactic
annotation which we did not cover here, some of
which can be found on the Universal Dependen-
cies website.3 Other, more generic tools such as
INCEpTION (Klie et al., 2018) are not exclusively
focused on syntactic annotation. While INCEp-
TION is web-based and has many features such
as configurability and undo/redo functionality, the
system design does not help improve the treebank
annotator efficiency.

3. Design Decisions & Methodology

In this section, we describe the features we added
to Palmyra 2.0 as part of developing Palmyra 3.0
to enhance annotator efficiency. We discuss on-
line capabilities (persistence and dependency pars-
ing), configurability, and efficient error prevention
(through the undo/redo feature).

3.1. Cloud-based Accounts
With some online tools including Palmyra 2.0,
once the user closes or reloads the browser, all
progress is lost. This is because the progress is
stored as Document Object Model (DOM) objects:
once the browser is reloaded or closed, the DOM
objects are unmounted and not stored anywhere.
DOM objects could be forcibly stored as strings in
the browser’s local storage; however, since local
storage has a limited memory and data can only
be stored as strings, this is far from an acceptable
solution. The only way to make the user’s progress
persistent is to store it on a server; and in order to
distinguish between different users’ progress, an
account system must be in place.

Palmyra 3.0 aims to be both lightweight and
highly secure at the same time, which is why
we integrated access to Google Drive into the

3https://universaldependencies.org/
tools.html

3HSB Arabic transliteration (Habash et al., 2007)

https://universaldependencies.org/tools.html
https://universaldependencies.org/tools.html

12587

Figure 1: The upload page of Palmyra 3.0. In addition to uploading a CoNLL-U/X file, users may also
paste sentences in the ‘Enter Text’ section, and run the built-in parser by clicking on the ‘Parse’ button.
Users may also click on the ‘Authenticate with Google Drive’ button to work on a file stored on the cloud.

Figure 2: An example of a tree on Palmyra 3.0. The waterfall structure makes longer trees clearer to read,
and the configurability allows for formalisms besides UD; in this example, CATiB is used. The automatically
parsed example sentence is .

�
é
�
JK
Ym

Ì'@
	
àYÖÏ @ Z @ñk.

@ð Õç'
Y

�
®Ë@ ÕË AªË @ Qm�� 	áÓ l .

�'

	QÖß.

�
éJ.

	
kA�

�
é
	
JK
YÓ ¼ñº

	
KAK. bAnkwk

mdynh̄ SAxbh̄ bmzyj mn sHr AlςAlm Alqdym wÂjwA’ Almdn AlHdyθh̄. ‘Bangkok is a bustling city with a
mix of old-world charm and modern-city vibe.’

Palmyra 3.0 platform. Google APIs allow users to
log in with their Google account, browse, and store
files on their own Drive.

3.2. Dependency Parser
By default, Palmyra 3.0 comes with Camel-
Parser2.0 (Elshabrawy et al., 2023), a state-of-
the-art Arabic dependency parser, that allows users
to annotate by starting from highly accurate trees
in Universal Dependency (UD) (Nivre, 2014; Taji
et al., 2017) and Columbia Arabic Treebank (CATiB)

(Habash and Roth, 2009) formalisms. Camel-
Parser2.0 uses a BERT embedding layer with
a neural dependency parser with biaffine atten-
tion (Dozat and Manning, 2016; Devlin et al., 2018;
Zhang, 2021), and is trained on the Penn Arabic
Treebank (PATB) (Maamouri et al., 2004) and the
CamelTreebank (Habash et al., 2022). The pars-
ing pipeline also includes a disambiguation step
to predict part-of-speech tags and ATB tokeniza-
tion (Inoue et al., 2022). Figure 1 shows the upload
screen where a sample of sentences was entered,

12588

Dev Set Statistics

Performance

Time in Seconds

Predicted Tokenization Gold Tokenization

Sentences
Words
Tokens
Tokens/Sentence

CATiB UD CATiB UD
Tokenization Accuracy
LS
UAS
LAS

CATiB UD CATiB UD
Reading Input
Preprocessing
Loading Model
Parsing
Printing Output
Total time
Sentence/Second
Words/Second
Tokens/Second

1,986
63,042

74,609 73,945
37.6 (σ = 27.5) 37.2 (σ = 27.6)

99.1 99.1 100.0 100.0
96.9 94.7 97.6 94.9
92.8 91.1 93.4 91.6
91.6 88.7 92.4 89.1

4.2 4.1 n/a n/a
141.2 141.4 n/a n/a

2.6 2.8 4.1 3.5
14.6 14.5 15.3 14.6
0.4 0.4 0.6 0.2

163.0 163.2 20.0 18.3

12.2 12.2 99.4 108.5
386.7 386.3 3,154.8 3,443.5
457.7 457.2 3,700.4 4,039.1

Table 2: Scores of various dependency parsing systems trained on the either CATiB or UD and evaluated
on the development set of PATB-CATiB and PATB-UD/NUDAR.

and Figure 2 shows the parsed tree of the first sen-
tence. Since Palmyra 3.0 is open-source, other
researchers may fork our frontend and backend
repositories and add their own parsers.

3.3. Default Configuration Files

Additionally, Palmyra 3.0 provides users with pop-
ular configurations such as the Universal Depen-
dencies (UD) for both Arabic and English, and the
Columbia Arabic Treebank (CATiB). Interface-wise,
there is a drop-down of default configurations for
users to choose from. Currently, these configura-
tions are stored on Palmyra 3.0’s GitHub reposi-
tory, and GitHub provides APIs that can be used to
conveniently retrieve these files. Configuration files
specify the tags and labels used in the formalism,
and their keyboard shortcuts. As with Palmyra 2.0,
Palmyra 3.0 allows users to create and upload
their own custom configuration files.

3.4. Undo/Redo Feature

Palmyra 3.0 fixes a major drawback of
Palmyra 2.0 by helping annotators quickly
recover from previous mistakes using a simple
linear undo/redo model. The dependency tree
is stored in a history buffer (stack), and only the
most recent action may be undone by performing

an inverse operation (Jakubec et al., 2014). An
important point to note is that when the user
carries out a new action, the history buffer must be
cleared (i.e. there is no action to be redone). We
optimize for space by limiting the size of the undo
stack to latest ten elements, and by clearing the
stack every time the user moves to a different tree.

4. Evaluation

4.1. Experimental Setup
As a case study, we evaluate the performance of the
CamelParser2.0 parser we use in Palmyra 3.0 in
terms of accuracy and speed. We evaluate parsing
both CATiB and UD formalisms on the Dev set of the
PATB (Maamouri et al., 2004), using corresponding
models. We also report results under both gold
and predicted tokenization to study the effect of
tokenization errors on overall quality.

The CATiB model is trained on data from both the
CamelTreebank (Habash et al., 2022) and PATB
parts 1v4.1, 2v3.1 and 3v3.2 (Maamouri et al.,
2004,Maamouri et al., 2010a,b, 2011) converted to
CATiB (Habash and Roth, 2009). The UD model is
trained only on data from PATB-UD/NUDAR (Taji
et al., 2017). For PATB data, we followed the splits
specified by Diab et al. (2013). Since the speed
metrics rely on the hardware, we ran our parser on

12589

20 cores of the AMD EPYC 7742 64-Core Proces-
sor at 2.25 GHz, a single Nvidia Tesla A100 GPU,
and 75 GB of memory.

4.2. Accuracy
We report tokenization accuracy for predicted to-
kenization in the performance section of Table 2,
Label Score (LS), Unlabeled Accuracy Score (UAS),
and the Labeled Accuracy Score (LAS). The parser
achieves highly accurate results for all metrics in
both CATiB and UD under gold and predicted con-
ditions. These results suggest the annotators will
only need to correct about one of every ten tokens
in the parsed trees.

4.3. Speed
We report the time taken for various steps in the
parsing pipeline. If the parser is given anno-
tated data with existing tokenization in the form
of a CoNLL-X or CoNLL-U file (as opposed to raw
text/white-space tokenized text in the predicted tok-
enization case), parsing is much quicker as there
is no preprocessing and disambiguation. The pars-
ing time numbers are averages over 10 runs of
the parser, and we observe that gold tokenization
parsing is approximately 10 times quicker than pre-
dicted tokenization parsing. We observe similar
speeds between CATiB and UD parsing with gold
tokenization parsing being able to process approx-
imately 100 sentences per second and predicted
tokenization parsing being able to process approxi-
mately 12 sentences per second (with ∼ 38 tokens
per sentence on average). Although slower, the
predicted tokenization speed is still satisfactory for
Palmyra 3.0 interface users.

5. Conclusion & Future Work

We presented Palmyra 3.0, a tool for morphology
and dependency syntax annotation. Palmyra 3.0
is web-based, supports using an automatic parser,
and can be linked to the cloud. It is lightweight, eas-
ily extensible, and was designed with annotators
in mind, to help increase annotator efficiency while
providing a low entry barrier.

In the future, we plan to continue improving
Palmyra 3.0’s functionality, and extend its use
to other languages and annotation projects.

Acknowledgements

We would like to thank Go Inoue and Ossama
Obeid for helpful conversations. This work was
supported in part through the resources, services,
and staff expertise of the High Performance Com-
puting Center at New York University Abu Dhabi.

6. Bibliographical References

Alena Böhmová, Jan Hajič, Eva Hajičová, and
Barbora Hladká. 2003. The Prague Dependency
Treebank, pages 103–127. Springer Nether-
lands, Dordrecht.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding.

Mona Diab, Nizar Habash, Owen Rambow, and
Ryan Roth. 2013. LDC Arabic treebanks and as-
sociated corpora: Data divisions manual. arXiv
preprint arXiv:1309.5652.

Timothy Dozat and Christopher D. Manning. 2016.
Deep biaffine attention for neural dependency
parsing. CoRR, abs/1611.01734.

Sufeng Duan, Hai Zhao, and Dongdong Zhang.
2023. Syntax-aware data augmentation for neu-
ral machine translation. IEEE/ACM Transactions
on Audio, Speech, and Language Processing,
31:2988–2999.

Ahmed Elshabrawy, Muhammed AbuOdeh, Go In-
oue, and Nizar Habash. 2023. CamelParser2.0:
A State-of-the-Art Dependency Parser for Ara-
bic. In Proceedings of The First Arabic Natural
Language Processing Conference (ArabicNLP
2023).

Gaël Guibon, Marine Courtin, Kim Gerdes, and
Bruno Guillaume. 2020. When collaborative tree-
bank curation meets graph grammars. In Pro-
ceedings of The 12th Language Resources and
Evaluation Conference, pages 5293–5302, Mar-
seille, France. European Language Resources
Association.

Nizar Habash, Muhammed AbuOdeh, Dima Taji,
Reem Faraj, Jamila El Gizuli, and Omar Kallas.
2022. Camel treebank: An open multi-genre
Arabic dependency treebank. In Proceedings of
the Thirteenth Language Resources and Evalu-
ation Conference, pages 2672–2681, Marseille,
France. European Language Resources Associ-
ation.

Nizar Habash and Ryan Roth. 2009. CATiB: The
Columbia Arabic Treebank. In Proceedings of the
Joint Conference of the Association for Computa-
tional Linguistics and the International Joint Con-
ference on Natural Language Processing (ACL-
IJCNLP), pages 221–224, Suntec, Singapore.

Nizar Habash, Abdelhadi Soudi, and Tim Buckwal-
ter. 2007. On Arabic Transliteration. In A. van den

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
https://doi.org/10.1109/TASLP.2023.3301214
https://doi.org/10.1109/TASLP.2023.3301214
https://www.aclweb.org/anthology/2020.lrec-1.651
https://www.aclweb.org/anthology/2020.lrec-1.651
https://aclanthology.org/2022.lrec-1.286
https://aclanthology.org/2022.lrec-1.286

12590

Bosch and A. Soudi, editors, Arabic Computa-
tional Morphology: Knowledge-based and Em-
pirical Methods, pages 15–22. Springer, Nether-
lands.

Johannes Heinecke. 2019. Conllueditor: a fully
graphical editor for universal dependencies tree-
bank files. In Proceedings of the Third Workshop
on Universal Dependencies (UDW, SyntaxFest
2019), pages 87–93.

Go Inoue, Salam Khalifa, and Nizar Habash. 2022.
Morphosyntactic tagging with pre-trained lan-
guage models for Arabic and its dialects. In Find-
ings of the Association for Computational Lin-
guistics: ACL 2022, pages 1708–1719, Dublin,
Ireland. Association for Computational Linguis-
tics.

Karel Jakubec, Marek Polák, Martin Nečaskỳ, and
Irena Holubová. 2014. Undo/redo operations
in complex environments. Procedia Computer
Science, 32:561–570.

Talha Javed, Nizar Habash, and Dima Taji. 2018.
Palmyra: A Platform Independent Dependency
Annotation Tool for Morphologically Rich Lan-
guages. In Proceedings of the Language Re-
sources and Evaluation Conference (LREC),
Miyazaki, Japan.

Dan Jurafsky and James H. Martin. 2009. Depen-
dency Parsing. Pearson Prentice Hall.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The inception platform: Machine-assisted
and knowledge-oriented interactive annotation.
In Proceedings of the 27th International Con-
ference on Computational Linguistics: System
Demonstrations, pages 5–9. Association for
Computational Linguistics. Event Title: The 27th
International Conference on Computational Lin-
guistics (COLING 2018).

A Kulmizev. 2023. The Search for Syntax: Inves-
tigating the Syntactic Knowledge of Neural Lan-
guage Models Through the Lens of Dependency
Parsing. Ph.D. thesis, Uppsala University.

Zuchao Li, Kevin Parnow, and Hai Zhao. 2022. In-
corporating rich syntax information in grammat-
ical error correction. Information Processing &
Management, 59(3):102891.

Alexa Little and Stephen Tratz. 2016. Easytree: A
graphical tool for dependency tree annotation.
In Proceedings of the Language Resources and
Evaluation Conference (LREC), Portorož, Slove-
nia.

Mohamed Maamouri, Ann Bies, Tim Buckwalter,
and Wigdan Mekki. 2004. The Penn Arabic Tree-
bank: Building a Large-Scale Annotated Ara-
bic Corpus. In Proceedings of the International
Conference on Arabic Language Resources and
Tools, pages 102–109, Cairo, Egypt.

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building a large
annotated corpus of English: The Penn Tree-
bank. Computational Linguistics, 19(2):313–330.

Joakim Nivre. 2014. Universal dependencies for
Swedish. In Proceedings of the Swedish Lan-
guage Technology Conference (SLTC).

Dima Taji and Nizar Habash. 2020. Palmyra 2.0:
A configurable multilingual platform independent
tool for morphology and syntax annotation. In
Proceedings of the Fourth Workshop on Univer-
sal Dependencies (UDW 2020), pages 168–177.

Dima Taji, Nizar Habash, and Daniel Zeman. 2017.
Universal dependencies for Arabic. In Proceed-
ings of the Workshop for Arabic Natural Lan-
guage Processing (WANLP), Valencia, Spain.

Yuanhe Tian, Han Qin, Fei Xia, and Yan Song.
2022. Syntax-driven approach for semantic role
labeling. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference,
pages 7129–7139, Marseille, France. European
Language Resources Association.

Yue Zhang, Bo Zhang, Zhenghua Li, Zuyi Bao,
Chen Li, and Min Zhang. 2022. SynGEC: Syntax-
enhanced grammatical error correction with a tai-
lored GEC-oriented parser. In Proceedings of the
2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2518–2531,
Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

7. Language Resource References

Mohamed Maamouri, Ann Bies, Seth Kulick, Fatma
Gaddeche, Wigdan Mekki, Sondos Krouna,
Basma Bouziri, and Wadji Zaghouani. 2010a.
Arabic treebank: Part 1 v 4.1. Linguistic Data
Consortium (LDC2010T13).

Mohamed Maamouri, Ann Bies, Seth Kulick, Fatma
Gaddeche, Wigdan Mekki, Sondos Krouna,
Basma Bouziri, and Wadji Zaghouani. 2011. Ara-
bic treebank: Part 2 v 3.1. Linguistic Data Con-
sortium (LDC2011T09).

https://doi.org/10.18653/v1/2022.findings-acl.135
https://doi.org/10.18653/v1/2022.findings-acl.135
http://tubiblio.ulb.tu-darmstadt.de/106270/
http://tubiblio.ulb.tu-darmstadt.de/106270/
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/2022.lrec-1.772
https://aclanthology.org/2022.lrec-1.772
https://doi.org/10.18653/v1/2022.emnlp-main.162
https://doi.org/10.18653/v1/2022.emnlp-main.162
https://doi.org/10.18653/v1/2022.emnlp-main.162

12591

Mohamed Maamouri, Ann Bies, Seth Kulick, Son-
dos Krouna, Fatma Gaddeche, and Wajdi Za-
ghouani. 2010b. Arabic treebank: Part 3 v 3.2.
Linguistic Data Consortium (LDC2010T08).

Petr Pajas. 2008. Tred: Tree editor. http://ufal.
mff.cuni.cz/~pajas/tred.

Yu Zhang. 2021. SuPar GitHub repository - v1.1.4.

http://ufal.mff.cuni.cz/~pajas/tred
http://ufal.mff.cuni.cz/~pajas/tred
https://github.com/yzhangcs/parser

	Introduction
	Related Work
	Design Decisions & Methodology
	Cloud-based Accounts
	Dependency Parser
	Default Configuration Files
	Undo/Redo Feature

	Evaluation
	Experimental Setup
	Accuracy
	Speed

	Conclusion & Future Work
	Bibliographical References
	Language Resource References

