
LREC-COLING 2024, pages 12633–12643
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

12633

Parsing Headed Constituencies

Katarzyna Krasnowska-Kieraś, Marcin Woliński
Institute of Computer Science, Polish Academy of Science

{k.krasnowska,wolinski}@ipipan.waw.pl

Abstract
In the paper, we present a parsing technique that generates headed constituency trees, which combine in-
formation typically contained in constituency and dependency trees. We advocate for using such structures
for syntactic representation. The parsing method combines prediction of dependency links with prediction of
constituency spines in a ‘parsing as tagging’ approach and outputs a hybrid structure. An interesting feature
is that the method can generate constituency trees with discontinuities. The parser is built on top of a BERT
model for the given language and uses a specially crafted classifier for predicting dependency links. With suit-
able training data the method can be applied to arbitrary language; we report evaluation results for Polish and German.

Keywords: neural syntactic parsing, constituency/dependency structures, discontinuities

1. Introduction

Syntactic parsing is an important NLP task often
used in various text processing pipelines. Syntac-
tic structures are usually represented using con-
stituency or dependency trees. Constituency struc-
tures give easy access to phrases that make up sen-
tences. Thus, they are preferred in tasks such as
nominal phrase extraction, identification of terminol-
ogy etc. Dependency trees are closer to predicate-
argument structures, so they are the preferred rep-
resentation for more semantic tasks, involving, e.g.,
the analysis of events and their actors.

Since constituency and dependency structures
are used for different tasks, it seems a practical
solution to have both available. Our goal in this
work is to fulfil one more requirement: the structures
have to be consistent with each other.

We plan to create a large parsebank of Polish
sentences annotated with both types of structures.
The treebank search engine will allow to query both
constituency and dependency structures and we
want to be sure that the results of these queries are
in line with each other. The goal of the present work
is to develop a hybrid parsing method which would
provide consistent constituency and dependency
structures.

In our first experiments (Krasnowska-Kieraś and
Woliński, 2023) we concentrated on the method
for predicting constituency structure consistent with
dependency trees. In this paper, we present a com-
plete parser for headed constituencies1 and test it
on the data in two languages.

1http://git.nlp.ipipan.waw.pl/
constituency/Parser

2. Headed Constituencies

To introduce the proposed method, let us take
a step back and look at the structures commonly
used to represent syntax. In dependency trees, the
relations between words are in the focus of interest:
the verb’s need of its complements, the relation
between a noun and its adjectival attribute, and so
on. The exact choice of relations is a matter of con-
vention, but, wisely chosen, it leads to binding all
words of a sentence in the form of a tree (cf. Fig. 1).

Constituency trees model the hierarchical nature
of the natural language by showing how longer
fragments are composed of shorter constituents
(cf. Fig. 2). The parent-child relation corresponds
to the child being a sub-span of the parent.

The grammatical features of words can be gener-
alised to constituents. Thus a constituent nowego
domu2 ‘new house’ can be considered to be in
the genitive case and in the singular, since these
are the features of the nominal form domu ‘house’
shared by the adjectival form nowego ‘new’.

Moreover, the relations of dependency syntax
can be thought of as occurring between con-
stituents: a verbal phrase pokazali i opisali ‘showed
and described’ subcategorises for a subject in the
nominative (e.g. dziennikarze ‘the journalists’) and
an object in the accusative (e.g. sytuację ‘the situa-
tion’).

These relations can be used to create a local de-
pendency structure among the children of a given
constituent. For the sentence node S, the local de-
pendencies can be understood as going from the
verbal phrase VP (marked as a head) to two nomi-
nal phrases (labelled subj and obj) and to a prepo-
sitional adjunct. (A technical relation punct is also

2We use examples in Polish, since its system of 7
grammatical cases makes the grammatical relations eas-
ier to observe than in English.

http://git.nlp.ipipan.waw.pl/constituency/Parser
http://git.nlp.ipipan.waw.pl/constituency/Parser

12634

Kilka miesięcy temu sytuację pokazali i opisali dziennikarze .
several months ago situation showed and described journalists .

ROOT
adjunct

comp

comp

obj

conjunct conjunct

subj

punct

Figure 1: Dependency tree for the sentence: Kilka miesięcy temu sytuację pokazali i opisali dziennikarze.
‘The journalists exposed and described the situation several months ago.’

S

PrepNP

NP

NumP

Num

Kilka

NP

N

miesięcy

Prep

temu

NP

N

sytuację

VP

VP

V

pokazali

Conj

i

VP

V

opisali

NP

N

dziennikarze

Punct

.

Figure 2: Constituency tree for the same sentence

S

PrepNP

NP

NumP

Num

Kilka

NP

N

miesięcy

Prep

temu

NP

N

sytuację

VP

VP

V

pokazali

Conj

i

VP

V

opisali

NP

N

dziennikarze

Punct

.

adjunct

comp

comp

obj

conjunct conjunct

subj punct

Figure 3: Headed constituency tree for the same sentence. Bold line joins a constituent with its head
child.

used to take care of punctuation.)
This procedure leads to the creation of a headed

constituency tree in which each constituent has
exactly one head among its children and each non-
head child is labelled with a dependency relation
(cf. Fig. 3). The constituency and dependency trees
can be rather trivially extracted from this structure.
However, we prefer to think of headed constituen-
cies as a model of syntax in its own right, which
includes both types of syntactic information.

There is one important catch in these consider-
ations: for the joint structure to be possible, the
constituency and dependency trees have to be
consistent with each other. This means that each

couple of a parent and its non-head child in the
constituency tree has to correspond to a depen-
dency edge between head tokens of these two con-
stituents.

Typically, constituency trees model surface syn-
tax, that is they reflect purely grammatical interac-
tions within a sentence (e.g. Marcus et al., 1993;
Brants et al., 2004). This is often not true in the
case of dependency trees, in particular Universal
Dependencies (Nivre et al., 2020), which involve
more semantic relations. In contrast, an example
of a surface syntax oriented dependency scheme
is SUD (Gerdes et al., 2018).

12635

3. The Datasets

The requirement of consistent constituency and de-
pendency trees severely limits the available data.
For the present experiment we were able to con-
struct two datasets: Polish and German. It is worth
noting that these languages belong to different lan-
guage groups, which allows for a more compre-
hensive testing of our method. The sizes of the
datasets are reported in Table 1.

3.1. Polish
The Polish dataset is built by merging information
from the Składnica constituency treebank (Woliński,
2019; Woliński and Hajnicz, 2021; Woliński, 2019;
Świdziński and Woliński, 2010) with the Pol-
ish Dependency Bank (PDB, Wróblewska, 2022;
Wróblewska, 2014).

Składnica consists of surface-syntactic con-
stituency trees which were manually selected
among parse forests generated by a rule based
parser. The trees include information on the heads
(syntactic centres) of constituents. However, de-
pendency labels are not present, so these are not
complete headed constituencies as we understand
them in this paper.

The starting point for PDB was converting the
trees of Składnica to dependency structures. The
result was enriched with dependency labels and
manually validated. From that moment, the two
resources were developed independently. How-
ever, PDB retains the surface-syntax character of
Składnica, which makes it easy to align the trees.

Składnica does not insist on binary trees. As
the authors explain (Woliński, 2019), for Polish,
with its free word order and a rich repertoire of
verbal complements, it is most natural to treat all
these as direct children of the S node. In result,
the trees are rather “flat” and similar in structure to
dependency trees (cf. Fig. 1 and 2). Coordination
is the source of most visible difference in these
structures: in the dependency tree in Fig. 1 almost
all edges fan out from the node for conjunction. The
tree in Fig. 2 provides a more readable structure
with a separate VP node for the coordinated verbal
structure which as a whole becomes a constituent
of the sentence S.

3.2. German
The concept of decorating edges of a constituency
tree with relations was used in the TIGER treebank
of German (Tiger Corpus Team, 2006; Brants et al.,
2004). Unfortunately, their structures are not strictly
headed (the relations do not form a dependency
tree).

These trees were later converted to dependency
structures (Falenska et al., 2020). In the prepara-

--

SB PD

MNR MO

realitätsnah
ADJD

ganz
ADJD

beide
PIS

Wir
PPER

sind
VAFIN

.
$.

APNP

S

VROOT

We are both very realistic .

Figure 4: Tree with a discontinuity from the German
dataset

tion of the dataset, we follow these dependencies
to determine heads for particular constituents. We
also reattach punctuation characters in the same
way (in original TIGER all punctuation is attached
to a virtual root node). However, we use the rep-
resentation of coordinated structures with the con-
junction (or a comma) as the head, as this leads
to dependency structure better harmonized with
constituencies.

The constituency trees of TIGER are somewhat
similar to Składnica (cf. Fig. 4), e.g., they attach
all dependents of a verb in one go. However, they
use smaller number of internal nodes, in result hav-
ing a larger average number of children per node.
They also sport a larger number of discontinuities
(Table 1).

Out of 50,472 structures in TIGER, we reject
4,207 degenerate ones. A vast majority of them
were rather trivial, e.g. “sentences” like dpa tb pe
dpa (4 tokens, all marked as roots) or 876 single-
token sentences.

4. Parsing Technique

4.1. Spines
If a headed constituency tree is visualised as in
Fig. 3 – with each node centred over its head con-
stituent – an interesting structure becomes visible.
The sequences of syntactic units having the same
token as their centre form vertical clusters which
we call spines.3 The spines are quite intuitive: in
a subordinate construction, the grammatical fea-
tures of a constituent take source (mainly) in its
head. Thus all nodes of a spine having a noun as
its base represent nominal constructions of various
levels of complication. When the nominal construc-
tion is, e.g., required by a verb, the nominal spine
does not grow higher, but gets attached to a verbal
spine. Spines with a conjunction as a base are
more context dependent: the higher nodes depend

3It seems that the first to use this term in this meaning
is Carreras et al. (2008).

12636

Polish German
discontinuous total discontinuous total

train trees 1,756 (9.9%) 17,659 12,201 (32.3%) 37725
tokens 40,515 (14.5%) 280,046 295,196 (41.6%) 709 074

avg token/tree 23.07 15.86 24.19 18.80
avg tree height/length 0.21 0.34 0.11 0.15

validation trees 231 (10.4%) 2,211 1,326 (30.8%) 4,312
tokens 5,034 (14.6%) 34,565 31,983 (40.2%) 79,588

avg token/tree 21.79 15.63 24.12 18.46
avg tree height/length 0.22 0.36 0.11 0.15

test trees 215 (9.8%) 2,205 1,267 (30.0%) 4,228
tokens 4,815 (14.4%) 33 344 29,982 (39.3%) 76,315

avg token/tree 22.40 15.12 23.66 18.05
avg tree height/length 0.21 0.37 0.11 0.16

Table 1: Dataset sizes for Polish and German

Polish German
length occurrences in the data
0 3155 0.9% 459724 53.2%
1 70133 20.2% 344606 39.8%
2 148987 42.8% 56857 6.6%
3 104049 29.9% 3665 0.4%
4 21619 6.2% 118 <0.1%
5 12 <0.1% 7 <0.1%
avg. length 2.21 0.54
spine types 110 299

Table 2: Spine lengths and the number of spine
types in the Polish and German data

on constituents being coordinated by the conjunc-
tion. In both cases the height of a spine is rather
limited. It depends on the way modifiers are at-
tached in a given grammar/treebank.

Prediction of a spine for a token can be seen as
generalised part of speech tagging. Nodes low in
the spine depend mainly on the base token, higher
nodes include more contextual information. We
think that it is an interesting model in view of the
fact that nowadays a large language model is usu-
ally used as an encoder for parsing. It seems rea-
sonable to attach the prediction of a constituent to
the token in its centre. The mechanism of attention
used in current models should be able to provide
the necessary data about the token and its context.

More formally, a spine is a maximum path follow-
ing head edges between the nodes. Each spine
ends with some token of the sentence and each to-
ken of the sentence is the end of exactly one spine
(we assume empty spines for tokens which are not
the head of any node). Suppose that token ti is
the dependency head of another token tj , and their

corresponding spines are si = ni,1 → ... → ni,k

and sj = nj,1 → ... → nj,l. This means that nj,1

(the topmost nonterminal of sj) is a non-head child
of some nonterminal along si.

For example, in the tree shown in Fig. 3, the
tokens t1 = Kilka ‘several’, t2 = miesięcy ‘months’
and t3 = temu ‘ago’ have following spines respec-
tively: s1 = NP → Num, s2 = N, s3 = PrepNP →
Prep. t2 is a dependent of t1, and the topmost (and
only) node of s2 (N) is a non-head child of the NP
node of s1; t1 is a dependent of t3, and the topmost
node of s1 (NP) is a non-head child of the PrepNP
node of s3.

4.2. Spine Based Parsing
Parsing of headed constituencies can be decom-
posed into (1) determining the spines for each token
of the input (2) determining the way their top nodes
are attached to other spines. For the latter part, it is
necessary to determine which spine is attached to
which other spine (2a) and through which node of
the head spine (2b). Finally, (3) dependency labels
have to be introduced on respective edges.

Tasks (2a) and (3) correspond exactly to building
a dependency tree. If we use a dependency parser
for this part, the resulting constituency trees will be
consistent with dependency trees produced by this
parser.4

A very desirable trait of the proposed method is
that if the task (2a) is performed by a dependency
parser capable of handling non-projective struc-
tures, the resulting constituency parser becomes
immune to the problem of discontinuity. Moreover,
with this technique the other typical problem in

4In other words, the tasks (1) and (2b) can be seen
as converting the dependency structure to constituen-
cies. Note, however, that the constituency trees are more
detailed, so this process adds information.

12637

token head deprel spine attachment
1 Jak 4 adjunct_mod AdvP → Adv VP-2
2 można 0 root ROOT → S → VP → V —
3 sobie 4 refl NP → N VP-2
4 radzić 2 comp_inf VP → VP → V S-1
5 ? 2 punct Punct ROOT-1

Table 3: The tree of Fig. 5 encoded with dependency heads and relations, spines and their attachments

punct

comp_inf

adjunct_mod refl

radzić
inf

V

VP

VP

V

można
pred

Punct

?
interp

sobie
siebie

NP

N

Jak
adv

Adv

ROOT

S

VP

AdvP

How is possible oneself cope ?

Figure 5: A tree with a discontinuity and a VP →
VP edge along a spine: ‘How can one cope?’

constructing constituency parsers, that of unary
branches, does not arise at all. Unary branches
in the tree are parts of some spines and they get
predicted as such.

One issue that needs addressing is that a spine
may contain a sequence of consecutive nodes bear-
ing the same syntactic category. For example, the
representation of the phrase Jak sobie radzić ‘how
to cope’ in the tree shown in Fig. 5 reflects its hier-
archical structure ((Jak)AdvP(sobie)NP(radzić)VP)VP,
with AdvP → Adv → Jak ‘how’ and NP → N → so-
bie ‘oneself’ attached to VP2 → VP1 → V → radzić
‘to cope’ as non-head children of VP2.5

The attachment information consists of the cate-
gory of the node a spine attaches to and its level in
the sequence of identical nodes in its spine, count-
ing from the bottom. Together with the dependen-
cies between tokens, such representation of spines
and attachments allows us to encode the complete

5We use the lower subscript VPi to differentiate be-
tween two different VP nodes, and not to introduce a sep-
arate category VPi.

headed constituency tree.
As an example, consider the tree from Fig. 5 and

its representation shown in Table 3. The spines
for radzić ‘to cope’ and the final punctuation are
attached as children of the only S and ROOT nodes
respectively along the ‘root’ spine for można ‘is pos-
sible’. Thererefore, they both have S-1 and ROOT-1
attachments. The spine for radzić contains a se-
quence of two VP nodes. The spines for its two
dependents, Jak ‘how’ and sobie ‘oneself’, are at-
tached to the second VP from the bottom (VP-2).
The ‘head’ and ‘deprel’ columns of the table contain
the dependency relations between tokens following
a CoNLL(-U)-like convention.

5. Parser Architecture

In our first experiments with this method
(Krasnowska-Kieraś and Woliński, 2023), we
used an external dependency parser for tasks
(2a) and (3) mentioned earlier. This of course led
to using separate instances of language models
for dependency and constituency. In the present
work, we build a complete parser in the form
of multiple classifiers attached to the output of
a single language model.

The input sentence is run through a BERT model
which computes contextualised vector representa-
tions for individual tokens. Those representations
are, in turn, passed to layers predicting particular
aspects of the syntactic structure (see Fig. 6). At
training time, those layers are optimised jointly, with
the BERT model being fine-tuned to all of them at
once. Therefore, there is no direct interaction be-
tween individual classifiers, only an indirect one
through the shared BERT model.

In Krasnowska-Kieraś and Woliński (2023) we
show that spine types are not very numerous in the
Polish data – 110 items – and can be represented
as atomic labels. There are more spine types for
German (see Table 2) but their number remains in
the same order of magnitude. In our architecture,
spines, attachment points (nonterminal type and
its height) and dependency relations are predicted
each by a single dense layer operating on BERT
output vectors (the layers are shown symbolically
as spines, att.nont., att.height and deprels in
Fig. 6).

12638

Ja
k

m
oż

na
so

bi
e

ra
dz

ić
?

BERT

SPINES

ATT. NONT.

HEADS

DEPENDENTS

ATT. HEIGHT

DEPRELS

… … … …

AdvP→Adv

adjunct_mod

VP
2

…
…

Figure 6: The model architecture

For prediction of dependency edges, we use
a classifier based on that used in COMBO (Kli-
maszewski and Wróblewska, 2021) which in turn
utilises an idea related to that of Dozat and Man-
ning (2017).6 The classifier, shown schematically
in Fig. 7, consists in two dense layers (heads and
dependents, also indicated in Fig. 6) producing
intermediate representations for all tokens. The
dot-product of the two layers is then calculated, re-
sulting in an n×n adjacency matrix for a sequence
of n tokens. The i-th row of the matrix represents
logits for particular tokens being the dependency
head of the i-th token.7

We implement our parser using a version of
the Huggingface Transformers8 TFBertForTo-
kenClassification architecture modified for
multiple classifiers on top of single BERT model.
We use HerBert9 (Mroczkowski et al., 2021) for
Polish and German BERT10 for German.

BERT-style models perform their own tokenisa-
tion as a preprocessing step, often splitting text

6The main difference between our approach and that
implemented in COMBO is that we directly use vectors
produced by fine-tuned BERT, while COMBO takes token
representations from frozen (not fine-tuned) language
models and passes them through a dedicated layer to ob-
tain task-specific vectors. This possibly contributes to the
improvement over COMBO’s performance as reported
in Section 7.

7We assume that the root token is its own head for
the purpose of adjacency matrix prediction.

8https://huggingface.co/docs/
transformers

9https://huggingface.co/allegro/
herbert-large-cased

10https://huggingface.co/
bert-base-german-cased

Ja
k

m
oż

na
so

bi
e

ra
dz

ić
?

PRODUCT

D
O

T

HEADS

D
EP

EN
D

EN
TS

BERT

Figure 7: How the adjacency matrix is predicted

words into smaller subtokens. Therefore, we use
the common technique of masking the BERT out-
puts for all but one (in our experiments: first) subto-
ken of each word when calculating the loss function.
At parsing time, we assign the label predicted for
the first subtoken to the whole word.

A headed constituency tree is reconstructed from
the model’s separate outputs as follows:

1. Apply row-wise softmax to the adjacency ma-
trix output and use the Maximum Spanning
Tree algorithm to obtain a dependency tree.11

2. Build spines on top of all tokens according to
the model’s predictions.

3. Attach each non-root token’s spine to its de-
pendency head’s spine at the node pointed to
by the two predicted attachment labels (cate-
gory and level).

4. Label the resulting non-spine edges with pre-
dicted dependency labels.

Step 3 of the procedure above may involve
some discrepancies between the dependency and
spine/attachment components of the model output.
In such cases we employ simple heuristic rules to
assure well-formedness of the resulting structure:

• Ensure that a spine contains a ROOT only as
its topmost node and iff it’s assigned to the
dependency root.

• Introduce additional nodes along spines when-
ever the attachment prediction calls for it
(e.g. a VP-2 attachment to VP → V requires
expanding the spine to VP → VP → V).

11This component situates our system among the
graph based approaches to parsing.

https://huggingface.co/docs/transformers
https://huggingface.co/docs/transformers
https://huggingface.co/allegro/herbert-large-cased
https://huggingface.co/allegro/herbert-large-cased
https://huggingface.co/bert-base-german-cased
https://huggingface.co/bert-base-german-cased

12639

• Attach to the topmost node if no node of
required category is found along the spine
(e.g. attach to VP if NP-1 attachment to VP
→ V spine is predicted by the model).

• If the models’ predictions call for attaching
to an empty spine, attach to the nearest de-
pendency ancestor with a non-empty spine
instead.

6. Related Work

The relation between dependency and constituency
structures has been explored in various works both
from the theoretical and practical, parsing perspec-
tive. In particular, several methods for hybrid or joint
parsing of such structures have been proposed. For
example the model of Fernández-González and
Gómez-Rodríguez (2022) includes two separate
decoders for the two types of trees. In result, no
structural dependence between the two structures
is imposed. (On the other hand, this work is related
to our approach in that its constituency component
leverages dependency parsing).

A more closely coupled prediction of both struc-
tures can be found in the work of Zhou and Zhao
(2019); Zhou et al. (2020), who call their joint struc-
ture “simplified HPSG”. However, the authors do
not assume full compatibility of the predicted struc-
tures, which leads to introducing additional techni-
cal devices to accommodate for the discrepancies.

Constituency structures with marked heads can
be traced back to lexicalised formalisms like PCFGs
(Collins, 1997) and LTAGs (Carreras et al., 2008).

The idea of the spine as a linguistic unit coincides
with the notion of the projection path in X-bar theory
(Jackendoff, 1977), although the annotations in our
training data do not have to conform to the X-bar
assumptions.

An example of a technique centered around the
notion of the syntactic spine are the transition-
based parsers that construct the spines in a step-
wise manner (constituency node by constituency
node) (Ballesteros and Carreras, 2015, 2017).

To the best of our knowledge, the present work is
the first to treat spines as atomic values in parsing.
In result, spines can be used in a graph-based
parser. The idea to predict spines at given token
positions is similar to the conception of ‘parsing as
tagging’ (e.g. Gómez-Rodríguez and Vilares, 2018).
It can also be related, albeit more loosely, to the
‘parsing as supertagging’ approach popular in the
90s (e.g. Bangalore and Joshi, 1999).

There is a substantial line of work devoted to
handling discontinuities in constituency parsing, in-
cluding the following. Fernández-González and
Martins (2015) present an approach that is very
related to ours in that it leverages dependency

parsing for (also discontinuous) constituency pars-
ing. Coavoux and Cohen (2019) acommodate the
transition-based approach by replacing the stan-
dard stack with a random-access set. Corro (2020)
proposes a chart parser with a neural component
that operates on discontinuous spans restricted to
a single gap. Fernández-González and Gómez-
Rodríguez (2021) train an additional component,
i.e. a pointer network that reorders tokens of a pos-
sibly discontinuous sentence so that a continuous
parser can be leveraged.

7. Experiments and evaluation

Models for both languages were trained using
Adam optimiser with a learning rate of 1 · 10−5

and categorical cross-entropy loss summed over
all classifiers. The best model was selected using
average accuracy on validation data across clas-
sifiers. The training patience was set to 4 epochs
(i.e. training was stopped when no improvement in
accuracy was achieved for 4 epochs).

Table 4 presents our parser’s performance on
Polish and German data, assessed by the following
metrics:

• UAS and LAS: Unlabeled/Labeled Attachment
Score, as typically used for dependency pars-
ing,

• brackets F1:12 correctly predicted con-
stituents (token spans only, possibly discontin-
uous),

• constituents F1: correctly predicted con-
stituents with correct category of their dom-
inating nonterminal,

• headed constituents F1: correctly predicted
constituents with correct category of their
dominating nonterminal and correct decision
whether the nonterminal is a head,

• edges F1: correctly predicted constituency
parent-child edges. In order to calculate this
measure, we encode each edge using the cat-
egories of its beginning and end node, the
indices of the two nodes’ spines, and the de-
pendency label along the edge (if present).13

For brackets and constituents metrics, for our
two main models, we also provide metric values
calculated on discontinuous constituents only.

There is a visible gap between the brackets and
constituents F1-scores for Polish and German data
(ca. 4–5pp). We also notice that the annotation
schemes adopted in the respective treebanks make
those measures somewhat less comparable across

12F1 is the harmonic mean of precision and recall.
13For example, in the tree from Fig. 4, the set of edges

is: <VROOT, S, 2, 2, _>, <S, sind, 2, 2, _>, <S, NP, 2,
1, SB>, <NP, Wir, 1, 1, _>, <NP, beide, 1, 3, MNR>,
<S, AP, 2, 5, PD>, <AP, ganz, 5, 4, MO>, <AP, real-
itätsnah, 5, 4, M)>, <VROOT, ., 2, 6, -->.

12640

lang. model train test UAS LAS brackets constit. h. constit. edges
PL our our our 96.29% 91.04% 97.80% 97.77% 97.25% 95.89%

discontinuous 53.04% 52.15% 51.75%

COMBO our our 94.63% 89.33% — — — —
our ud 2.9 ud 2.9 96.53% 94.94% — — — —

⋆ COMBO ud 2.9 ud 2.9 95.60% 93.93% — — — —
our our-c our-c 96.39% 91.12% 98.03% 97.93% 97.46% 96.02%

BeNePar our-c our-c — — 98.20% 98.10% — —
⋆ BeNePar spmrl spmrl — — — 97.15% — —
DE our our our 96.21% 94.96% 93.77% 92.58% 92.16% 94.80%

discontinuous 74.84% 73.88% 73.86%

our our-c our-c 96.38% 95.00% 94.43% 93.11% 92.64% 94.65%
BeNePar our-c our-c — — 95.59% 94.41% — —

⋆ BeNePar spmrl spmrl — — — 92.10% — —

Table 4: Evaluation results. Rows marked with ⋆ contain results reported by authors of respective parsers.

the two languages. The Tiger constituents have a
much flatter structure than the Składnica ones.14

This means that a local error in a tree predicted
by a parser can potentially affect a greater fraction
of Tiger constituents, leading to a higher penalty
in F1-score. This is why we also use the more
fine-grained edges measure. In line with our ex-
pectations, the absolute difference across edges
F1-scores is lower and amounts to ca. 1pp.

It is not straightforward to compare our results
directly with other parsers since, to our knowledge,
there were no experiments with parsing headed
constituencies for Polish nor German. Therefore,
we conducted some experiments concentrating on
either dependency or (non-headed) constituency
performance of our models in comparison with
two state-of-the art parsing systems: COMBO
(best available dependency system for Polish, Kli-
maszewski and Wróblewska, 2021) and Berkeley
Neural Parser (BeNePar, constituency, Kitaev et al.,
2019). The additional experiments, together with
relevant results reported by the authors of both
parsers, are also listed in Table 4.15

For the purpose of comparison with COMBO, we
trained and tested COMBO on the dependency
component of our Polish dataset. In addition,
we trained and tested the dependency classifiers
(heads and dependency relations) of our model

14Compare, for example, the trees from Figures 4 and
5: similarly short sentences have trees with 4 (German)
and 12 (Polish) nonterminals. Also note the different
distributions of spine lengths in Table 2.

15The empty cells in the table correspond to situations
where either the evaluated system does not perform de-
pendency/constituency parsing or the test data does not
contain dependency/constituency annotations.

on Polish ud 2.9 data, which has a different de-
pendency annotation scheme, to provide compar-
ison with the results reported by Klimaszewski
and Wróblewska (2021). Our model outperforms
COMBO on both datasets.

Comparison with BeNePar is less straightforward
since the spmrl data (Seddah et al., 2013) on
which it was tested by its authors does not con-
tain trees with annotations suitable for our parser.16

Instead, in order to achieve a meaningful compari-
son, we trained and evaluated both our model and
BeNePar on subsets of our respective dataset splits
containing continuous trees only (our-c). Nonethe-
less, we include the results17 given in Kitaev et al.
(2019), since their test data is very similar to our-c:
the Polish dataset in spmrl is an older continuous
version of Składnica (including short sentences and
a limited set of grammatical constructions), and the
German set is a continuous version of Tiger. Re-
assuringly, these figures turn out to be similar to
ours.

Our model performs worse than BeNePar
(ca. 1.3 pp on German data and ca. 0.2 pp on Pol-
ish data). Nevertheless, we consider those results
encouraging, especially taking into account the fact
that our models are able to analyse discontinuous
structures.

16The spmrl data contains both constituency and de-
pendency structures for the same sets of sentences, but
they are not fully consistent with each other and therefore
do not easily provide headed constituencies as required
by our approach.

17Note that they use the spmrl EVALB evaluation
which is different from ours in that it, e.g., excludes some
labels.

12641

8. Limitations

One limitation of our approach to parsing lies in data
availability. The method requires headed con-
stituencies: a specific form of syntactic annotation
that is not readily available for many languages.
In result, the method has only been tested on two
languages. The parser architecture does not in-
clude any language-dependent elements and var-
ious BERT-style models, either single- or multi-
language, are available. Thus, the method can
be reasonably expected to work with any language.
However, since we do not have an exact picture,
it may be that for some structurally very different
language the results would be different.

Both tested datasets are based on constituency
schemes where a node may have an arbitrary
number of children. This results in rather short
spines. A treebank comprising binary trees would
have longer and potentially more numerous spines,
which might cause a problem with handling them as
atomic labels. In that case the method of predicting
spines could be changed to recurrently generate
individual nodes within spines, which seems possi-
ble with current neural architectures. However, we
haven’t explored this path yet.

9. Conclusions

We have proposed a method for parsing headed
constituencies, which are structures combining con-
stituency and dependency information. The struc-
ture exploits strengths of both representations. In
particular constituents provide natural representa-
tion for coordinated structures (which are problem-
atic in dependency trees), but the dependencies
between tokens (and constituents) are also avail-
able in the structure.

In the present paper, we describe a complete
parser, generating headed constituency trees. We
introduce an architecture combining the ideas of
spines and attachments and ‘parsing as tagging’,
leveraging COMBO-like adjacency matrix predic-
tion and BERT fine-tuning. To the best of our
knowledge, we present the first graph-based parser
based on spines. We show that, thanks to the
power of BERT models, the spines can be suc-
cessfully predicted as atomic values. An important
feature of the proposed method is the ability to
analyse discontinuous structures.

Our test results show that the architecture gen-
erates state-of-the-art results for both constituency
and dependency trees. In particular, we improve
SOTA for Polish dependency parsing by 1 pp (UAS
and LAS).

10. Acknowledgements

Work supported by POIR.04.02.00-00-D006/20-00
national grant (Digital Research Infrastructure for
the Arts and Humanities DARIAH-PL).

11. Bibliographical References

Miguel Ballesteros and Xavier Carreras. 2015.
Transition-based spinal parsing. In Proceedings
of the Nineteenth Conference on Computational
Natural Language Learning, pages 289–299, Bei-
jing, China. Association for Computational Lin-
guistics.

Miguel Ballesteros and Xavier Carreras. 2017. Arc-
standard spinal parsing with stack-LSTMs. In
Proceedings of the 15th International Conference
on Parsing Technologies, pages 115–121, Pisa,
Italy. Association for Computational Linguistics.

Srinivas Bangalore and Aravind K. Joshi. 1999.
Supertagging: An approach to almost parsing.
Computational Linguistics, 25(2):237–265.

Sabine Brants, Stefanie Dipper, Peter Eisenberg,
Silvia Hansen, Esther König, Wolfgang Lez-
ius, Christian Rohrer, George Smith, and Hans
Uszkoreit. 2004. TIGER: Linguistic interpretation
of a German corpus. Journal of Language and
Computation, 2:597–620.

Xavier Carreras, Michael Collins, and Terry Koo.
2008. TAG, dynamic programming, and the
perceptron for efficient, feature-rich parsing. In
CoNLL 2008: Proceedings of the Twelfth Confer-
ence on Computational Natural Language Learn-
ing, pages 9–16, Manchester, England. Coling
2008 Organizing Committee.

Maximin Coavoux and Shay B. Cohen. 2019. Dis-
continuous constituency parsing with a stack-free
transition system and a dynamic oracle. In Pro-
ceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
204–217, Minneapolis, Minnesota. Association
for Computational Linguistics.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In 35th Annual
Meeting of the Association for Computational
Linguistics and 8th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 16–23, Madrid, Spain. Associa-
tion for Computational Linguistics.

https://doi.org/10.18653/v1/K15-1029
https://aclanthology.org/W17-6316
https://aclanthology.org/W17-6316
https://doi.org/10.1007/s11168-004-7431-3
https://doi.org/10.1007/s11168-004-7431-3
https://aclanthology.org/W08-2102
https://aclanthology.org/W08-2102
https://doi.org/10.18653/v1/N19-1018
https://doi.org/10.18653/v1/N19-1018
https://doi.org/10.18653/v1/N19-1018
https://doi.org/10.3115/976909.979620
https://doi.org/10.3115/976909.979620

12642

Caio Corro. 2020. Span-based discontinuous con-
stituency parsing: a family of exact chart-based
algorithms with time complexities from O(n6)
down to O(n3). In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 2753–2764,
Online. Association for Computational Linguis-
tics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency
parsing.

Agnieszka Falenska, Zoltán Czesznak, Kerstin
Jung, Moritz Völkel, Wolfgang Seeker, and Jonas
Kuhn. 2020. GRAIN-S: Manually annotated syn-
tax for German interviews. In Proceedings of
the Twelfth Language Resources and Evalua-
tion Conference, pages 5169–5177, Marseille,
France. European Language Resources Associ-
ation.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2021. Reducing discontinuous to con-
tinuous parsing with pointer network reordering.
In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing,
pages 10570–10578, Online and Punta Cana,
Dominican Republic. Association for Computa-
tional Linguistics.

Daniel Fernández-González and André F. T. Mar-
tins. 2015. Parsing as reduction. In Proceedings
of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages
1523–1533, Beijing, China. Association for Com-
putational Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2022. Multitask Pointer Network
for multi-representational parsing. Knowledge-
Based Systems, 236:107760.

Kilian Gebhardt, Mark-Jan Nederhof, and Heiko
Vogler. 2017. Hybrid Grammars for Parsing
of Discontinuous Phrase Structures and Non-
Projective Dependency Structures. Computa-
tional Linguistics, 43(3):465–520.

Kim Gerdes, Bruno Guillaume, Sylvain Kahane,
and Guy Perrier. 2018. SUD or Surface-Syntactic
Universal Dependencies: An annotation scheme
near-isomorphic to UD. In Universal Dependen-
cies Workshop 2018, Brussels, Belgium.

Carlos Gómez-Rodríguez and David Vilares. 2018.
Constituent parsing as sequence labeling. In Pro-
ceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages

1314–1324, Brussels, Belgium. Association for
Computational Linguistics.

Ray Jackendoff. 1977. X-bar Syntax: A Study of
Phrase Structure. Number 2 in Linguistic Inquiry
Monographs. MIT Press.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019.
Multilingual constituency parsing with self-
attention and pre-training. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3499–3505,
Florence, Italy. Association for Computational
Linguistics.

Mateusz Klimaszewski and Alina Wróblewska.
2021. COMBO: State-of-the-art morphosyntactic
analysis. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pages 50–62,
Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Katarzyna Krasnowska-Kieraś and Marcin Woliński.
2023. Constituency parsing with spines and at-
tachments. In Computational Science – ICCS
2023. 23rd International Conference, Prague,
Czech Republic, July 3–5, 2023, Proceedings,
Part I, volume 14073 of Lecture Notes in Com-
puter Science, pages 191–205, Cham. Springer
Nature Switzerland.

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building a large
annotated corpus of English: The Penn Tree-
bank. Computational Linguistics, 19(2):313–330.

Robert Mroczkowski, Piotr Rybak, Alina
Wróblewska, and Ireneusz Gawlik. 2021.
HerBERT: Efficiently pretrained transformer-
based language model for Polish. In Proceedings
of the 8th Workshop on Balto-Slavic Natural Lan-
guage Processing, pages 1–10, Kiyv, Ukraine.
Association for Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Jan Hajic, Christopher D. Manning,
Sampo Pyysalo, Sebastian Schuster, Francis M.
Tyers, and Daniel Zeman. 2020. Universal De-
pendencies v2: An evergrowing multilingual tree-
bank collection. CoRR, abs/2004.10643.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler,
Marie Candito, Jinho D. Choi, Richárd Farkas,
Jennifer Foster, Iakes Goenaga, Koldo Go-
jenola Galletebeitia, Yoav Goldberg, Spence
Green, Nizar Habash, Marco Kuhlmann, Wolf-
gang Maier, Joakim Nivre, Adam Przepiórkowski,
Ryan Roth, Wolfgang Seeker, Yannick Vers-
ley, Veronika Vincze, Marcin Woliński, Alina
Wróblewska, and Eric Villemonte de la Clerg-
erie. 2013. Overview of the SPMRL 2013 shared

https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
https://aclanthology.org/2020.lrec-1.636
https://aclanthology.org/2020.lrec-1.636
https://doi.org/10.18653/v1/2021.emnlp-main.825
https://doi.org/10.18653/v1/2021.emnlp-main.825
https://doi.org/10.3115/v1/P15-1147
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107760
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107760
https://doi.org/10.1162/COLI_a_00291
https://doi.org/10.1162/COLI_a_00291
https://doi.org/10.1162/COLI_a_00291
https://hal.inria.fr/hal-01930614
https://hal.inria.fr/hal-01930614
https://hal.inria.fr/hal-01930614
https://doi.org/10.18653/v1/D18-1162
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://aclanthology.org/2021.emnlp-demo.7
https://aclanthology.org/2021.emnlp-demo.7
https://doi.org/https://doi.org/10.1007/978-3-031-35995-8_14
https://doi.org/https://doi.org/10.1007/978-3-031-35995-8_14
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://www.aclweb.org/anthology/2021.bsnlp-1.1
https://www.aclweb.org/anthology/2021.bsnlp-1.1
http://arxiv.org/abs/2004.10643
http://arxiv.org/abs/2004.10643
http://arxiv.org/abs/2004.10643
https://aclanthology.org/W13-4917

12643

task: A cross-framework evaluation of parsing
morphologically rich languages. In Proceedings
of the Fourth Workshop on Statistical Parsing
of Morphologically-Rich Languages, pages 146–
182, Seattle, Washington, USA. Association for
Computational Linguistics.

Marcin Woliński. 2019. Automatyczna analiza
składnikowa języka polskiego. Wydawnictwa
Uniwersytetu Warszawskiego, Warsaw.

Marcin Woliński and Elżbieta Hajnicz. 2021. Skład-
nica: a constituency treebank of Polish har-
monised with the Walenty valency dictionary.
Language Resources and Evaluation, 55:209–
239.

Alina Wróblewska. 2014. Polish Dependency
Parser Trained on an Automatically Induced De-
pendency Bank. Ph.D. dissertation, Institute of
Computer Science, Polish Academy of Sciences,
Warsaw.

Junru Zhou, Zuchao Li, and Hai Zhao. 2020. Pars-
ing all: Syntax and semantics, dependencies
and spans. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
4438–4449, Online. Association for Computa-
tional Linguistics.

Junru Zhou and Hai Zhao. 2019. Head-Driven
Phrase Structure Grammar parsing on Penn
Treebank. In Proceedings of the 57th Annual
Meeting of the Association for Computational
Linguistics, pages 2396–2408, Florence, Italy.
Association for Computational Linguistics.

Marek Świdziński and Marcin Woliński. 2010. To-
wards a bank of constituent parse trees for Polish.
In Text, Speech and Dialogue: 13th International
Conference, TSD 2010, Brno, Czech Republic,
number 6231 in Lecture Notes in Artificial Intel-
ligence, pages 197–204, Heidelberg. Springer-
Verlag.

12. Language Resource References

Tiger Corpus Team. 2006. TIGER Corpus.
Universität Stuttgart, Institut für Maschinelle
Sprachverarbeitung. PID https://www.ims.uni-
stuttgart.de/en/research/resources/corpora/tiger.

Woliński, Marcin. 2019. Składnica. Institute of
Computer Science, Polish Academy of Sciences.
PID http://zil.ipipan.waw.pl/Składnica.

Wróblewska, Alina. 2022. Polish Dependency Bank.
Institute of Computer Science, Polish Academy
of Sciences. PID http://zil.ipipan.waw.pl/PDB.

https://aclanthology.org/W13-4917
https://aclanthology.org/W13-4917
https://www.wuw.pl/data/include/cms/Automatyczna_analiza_skladnikowa_Wolinski_Marcin_2019.pdf
https://www.wuw.pl/data/include/cms/Automatyczna_analiza_skladnikowa_Wolinski_Marcin_2019.pdf
https://doi.org/10.1007/s10579-020-09511-7
https://doi.org/10.1007/s10579-020-09511-7
https://doi.org/10.1007/s10579-020-09511-7
http://nlp.ipipan.waw.pl/Bib/wro:14.pdf
http://nlp.ipipan.waw.pl/Bib/wro:14.pdf
http://nlp.ipipan.waw.pl/Bib/wro:14.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.398
https://doi.org/10.18653/v1/2020.findings-emnlp.398
https://doi.org/10.18653/v1/2020.findings-emnlp.398
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230
http://nlp.ipipan.waw.pl/Bib/swi:wol:10.pdf
http://nlp.ipipan.waw.pl/Bib/swi:wol:10.pdf
https://www.ims.uni-stuttgart.de/en/research/resources/corpora/tiger
https://www.ims.uni-stuttgart.de/en/research/resources/corpora/tiger
http://zil.ipipan.waw.pl/Składnica
http://zil.ipipan.waw.pl/PDB

	Introduction
	Headed Constituencies
	The Datasets
	Polish
	German

	Parsing Technique
	Spines
	Spine Based Parsing

	Parser Architecture
	Related Work
	Experiments and evaluation
	Limitations
	Conclusions
	Acknowledgements
	Bibliographical References
	Language Resource References

