
LREC-COLING 2024, pages 12679–12689
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

12679

PEaCE: A Chemistry-Oriented Dataset for Optical Character
Recognition on Scientific Documents

Nan Zhang∗♣, Connor Heaton∗♣, Sean Timothy Okonsky†,
Prasenjit Mitra♣♠, Hilal Ezgi Toraman†‡♢

♣College of Information Sciences and Technology, The Pennsylvania State University, USA
†Department of Chemical Engineering, The Pennsylvania State University, USA

♠L3S Research Center, Leibniz University Hannover, Germany
‡Department of Energy and Mineral Engineering, The Pennsylvania State University, USA

♢Institutes of Energy and the Environment, The Pennsylvania State University, USA
{njz5124, czh5372, sto5087, pmitra, hzt5148}@psu.edu

Abstract
Optical Character Recognition (OCR) is an established task with the objective of identifying the text present in an
image. While many off-the-shelf OCR models exist, they are often trained for either scientific (e.g., formulae) or
generic printed English text. Extracting text from chemistry publications requires an OCR model that is capable in
both realms. Nougat, a recent tool, exhibits strong ability to parse academic documents, but is unable to parse tables
in PubMed articles, which comprises a significant part of the academic community and is the focus of this work.
To mitigate this gap, we present the Printed English and Chemical Equations (PEaCE) dataset, containing both
synthetic and real-world records, and evaluate the efficacy of transformer-based OCR models when trained on this
resource. Given that real-world records contain artifacts not present in synthetic records, we propose transformations
that mimic such qualities. We perform a suite of experiments to explore the impact of patch size, multi-domain
training, and our proposed transformations, ultimately finding that models with a small patch size trained on multiple
domains using the proposed transformations yield the best performance. Our dataset and code is available at
https://github.com/ZN1010/PEaCE.

Keywords: Optical Character Recognition (OCR), Chemistry-Oriented Document Analysis, OCR Dataset,
Image to Text

1. Introduction

For documents that are available only as scans,
before text processing and natural language pro-
cessing can be applied, we must convert the im-
ages that represent the text in these documents
into digital characters before they can be processed
to understand their content. In order to do so, Opti-
cal Character Recognition (OCR) is widely used to
extract texts from images in various real-world ap-
plications (Memon et al., 2020; Ye et al., 2018) and
can complement other data extraction pipelines
(Zhang et al., 2022; Wang et al., 2020). Extracting
text from images of both scientific texts (e.g., math
and physics formulae) and generic printed English
plays a vital role in data extraction of scientific ar-
ticles. A model that is capable in both realms is
necessary. Important information in scientific doc-
uments is often presented in the form of tables,
making data extraction even more difficult.

However, existing open-source OCR models and
datasets tend to focus on either scientific texts or
generic printed English. Thus, their performance
on the documents that contain both is suboptimal.
For example, Pix2tex (Blecher, 2020), a pre-trained
model that achieves competitive performance on

*Equal contribution.

images of math formulae, is less capable on im-
ages containing printed English texts. Tesseract is
commonly used to extract vanilla printed English,
but it cannot be fine-tuned directly on images of
scientific texts, because it outputs plain text strings
without formatting for contents such as superscript
and subscript (Smith, 2007).

Furthermore, simply combining a vanilla printed
English and scientific training corpora is unlikely
to yield strong performance on records that are
a hybrid of the domains for two reasons. First,
there will likely be inconsistencies in the way labels
from each corpus are presented - records from the
scietific corpus may contain LATEX formatting not
present in the vanilla printed English corpus. While
this may be able to be rectified, a second issue still
remains - the model will be presented with records
containing each type of text separately, but will
never be presented with records containing both
types of text. That is, a model trained on such a
corpus will never see scientific text interspersed
with vanilla printed English.

In this work, we seek to address the inability of ex-
isting tools to format text including super/subscripts
and other special characters in academic and sci-
entific papers. Such text is predominantly printed in
English, but often have specially-formatted and im-

https://github.com/ZN1010/PEaCE
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portant characters. For example, a document may
contain mentions of chemical compounds such as
Na2CO3. An OCR model needs to recognize both
subscripts, and also discern the values in the sub-
scripts as they denote important physical properties
of the compound.

Although one may assume it reasonable to seg-
ment the text by plain English/special characters
and apply domain-specific models on each result-
ing group, we believe doing so is not the ideal
solution. First, doing so would introduce redun-
dant computation into the pipeline. That is, each
segment of the image would have to be analyzed
twice - once in order to classify the textual con-
tent, and again to synthesize it. Furthermore, in
doing so, a model would not be able to lever-
age the temporal dependency in the text. For
example, the text “Na2CO3 (Sodium carbonate)”
would get segmented into “Na”, “2”, “CO”, “3”, and
“(Sodium carbonate)”, and the model would need to
synthesize each segment in isolation. We believe
a stronger model can be learned processing the en-
tire record at once, leveraging the temporal depen-
dency between the chemical compound, Na2CO3,
and its name in English, Sodium carbonate.

Nougat, a newly released model, can perform
OCR on entire pages of academic documents, in-
cluding parsing tables, but struggles significantly
in parsing tables from documents published in
PubMed1 (Blecher et al., 2023). As the authors
describe, PubMed papers often present tables as
embedded images. So they could not access the
ground-truth text present therein without an expen-
sive annotation process. As such, the model often
fails to recognize tables in such documents, and
when tables are recognized, they are rarely parsed
correctly. PubMed hosts a large portion of papers
in the life-sciences and biomedical domains, leav-
ing a significant portion of the academic community
unaddressed or under-addressed.

We aim to address the above shortcomings by
proposing a new data resource, since there does
not exist an OCR dataset that contains images
of both scientific texts and printed English to the
best of our knowledge. Thus, we introduce PEaCE
(Printed English and Chemical Equations) dataset,
containing synthetic and real-world images of text
from academic articles, with a particular focus on
chemistry papers. Each record in PEaCE is in-
tended to resemble a cell in a table that may ap-
pear in an academic document (a handful of words
across two or three lines), and the code we re-
lease exposes parameters that make it easy for re-
searchers to generate records of any length and for-
mat they desire. A model trained on PEaCE could
then be combined with a state-of-the-art (SOTA)
table parsing model such as Multi-Type-TD-TSR

1https://www.ncbi.nlm.nih.gov/pmc/

(Fischer et al., 2021) to parse the content of tables
identified in scientific documents, addressing the
market Nougat cannot.

PEaCE has two parts: 1) synthetic records and
2) real-world records. The synthetic portion of
the dataset contains 1M images of printed English
text, 100k images of numerical artifacts, and 100k
images of (pseudo-)chemical equations, subset
in mutually exclusive training/dev/test splits. The
real-world test set comprises 319 carefully curated
records and assesses the performance of OCR
models on text from actual chemistry scholarly pa-
pers. Figure 1 shows a data instance from the
real-world test set of PEaCE. All labels in PEaCE
are LATEX2 markup as it is a versatile typesetting tool
that can express the multitude of non-alphanumeric
characters often found in academic papers such as
“
∑

”, “+”, and “R”, and can format super/subscripts.
Given that the real-world records contain corruption
not found in synthetic records, we propose three
transformations - pixelation, bolding, and white-
space padding - to mimic these artifacts.

Figure 1: A data instance of PEaCE. The source
image is outlined in blue, the LATEX label in green.

We explore how two different versions of the Vi-
sion Transformer (ViT) perform when trained on
PEaCE, and our findings can be summarized in
three folds. First, although all models perform well
on the synthetic tests sets, they exhibit a sharp
decline in performance on the real-world test set.
This reinforces our motivation for proposing PEaCE,
as existing datasets to not reveal this shortcoming.
Then, we observe that the patch size parameter has
a significant impact on resulting performance, with
smaller patches leading to better performance. Fur-
ther, we see that models trained in a multi-domain
setting, i.e. both PEaCE and im2latex-100k, yield
better performance in each domain than a model
trained on a single domain. Finally, we also observe
that our proposed image transformations improves
performance in two of our three test datasets.

This paper mainly contributes the following:

1. We propose a novel dataset that contains im-
ages of both scientific texts and printed English
for training and testing OCR models on articles
from the hard sciences, with an emphasis on
Chemistry.

2. We demonstrate how models that perform well
on related datasets perform significantly worse

2https://www.latex-project.org/

https://www.ncbi.nlm.nih.gov/pmc/
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on our PEaCE real-world dataset, highlighting
the value of this new resource.

3. We present a set of quantitative evaluations
to show the effect of patch size, multi-domain
training, and image transformations.

2. Related Work

2.1. “Hybrid” Dataset for OCR
We did not find any relevant datasets that contain
images of both scientific texts and printed English
for OCR models on scientific documents. There-
fore, we list the recent efforts here that are clos-
est to this paper. Zharikov et al. (2020) proposed
DDI-100, a dataset of distorted document images.
Since the labels of DDI-100 are text strings with
corresponding locations, this work concentrates
vanilla printed English (i.e. no formatting for su-
per/subscripts) and is not as effective on scientific
documents. Furthermore, this dataset contains
images of entire documents, but we are primarily
concerned with recovering text from smaller scope
images without figures (e.g., individual table cells).

Deng et al. (2019) proposed a large table recog-
nition dataset, which they dubbed TABLE2LATEX-
450K from scientific documents. Its images contain
complete tables whereas ours is focused on cells
in tables in images. It is infeasible to match cell
contents (in LATEX format) with their corresponding
pixels in the table images. Thus, we cannot create a
dataset of images that contain scientific text. In ad-
dition, work has been done to collect photographs
of random academic papers under factors such
as non-uniform lighting, strong noise, sharpening,
skew, and blur (Kišš et al., 2019). For our purposes,
artifacts such as sub-optimal lighting are not overly
important as the models will be presented with im-
ages from PDF, or sometimes scanned documents,
which may incur their own distinct set of artifacts.

2.2. Vision Transformer
Transformers have been used in a variety of disci-
plines, including in computer vision (CV), where the
variant was simply dubbed the Vision Transformer
(ViT) (Dosovitskiy et al., 2020). The ViT retains
many of the features of the original transformer
designed for machine translation but processes a
sequence of image patches instead of token em-
beddings. As described in Figure 2, images are first
segmented in to P ∗ P patches of non-overlapping
pixels before each patch is projected RP∗P ⇒ RDM

where DM is the internal dimension of the model.
After exploring patch sizes of 32 ∗ 32, 16 ∗ 16 and

14 ∗ 14, the authors of ViT ultimately conclude that
smaller patch sizes allow for better performing mod-
els at the cost of computation. Strudel et al. (2021),

Figure 2: Patch projection in the ViT.

reinforce this conclusion, observing “... the perfor-
mance is better for large models and small patch
sizes”. They primarily investigated patch sizes of
32 ∗ 32 and 16 ∗ 16, only training a single model with
the smaller 8 ∗ 8 patch size. For the 8 ∗ 8 model
that was trained, they found conflicting results: one
performance metric shows improvement while the
other a degradation.

Than et al. (2021) explored patch sizes ranging
from 16 ∗ 16 to 256 ∗ 256 when classifying chest
x-rays by whether or not the patient had COVID-
19, with best performance achieved using a patch
size of 32 ∗ 32. In general, the community has
seemingly adopted a patch size of 16*16 as the de
facto standard for the ViT, in line with the originally
proposed ViT-Base.

2.3. Pix2Tex
Pix2Tex (Blecher, 2020) is a competitive OCR
model for scientific text that employs both a ViT
encoder and decoder. Its ViT encoder comes with
a ResNet backbone (He et al., 2015), which means
that several ResNet layers are adopted to extract
features from source images that are then fed into
the ViT encoder. That is, the ResNet backbone is
used in place of a patch-projection module. The
training data for the released model checkpoint was
a combination of im2latex-100k and math formu-
lae collected from other sourcs on the web. By
training Pix2Tex from stracth on PEaCE, we are
able to evaluate the capability of this architecture
on scientific text, printed English, or both.

2.4. Tesseract
Tesseract (Smith, 2007) is a popular OCR model
that was originally trained for generic printed En-
glish. By fine-tuning it on PEaCE under a multi-
domain training setup, Tesseract can possibly de-
tect specicial characters such as super/subscripts
on scientific documents by incorporating more vo-
cabulary. The core of Tesseract is an LSTM net-
work (Hochreiter and Schmidhuber, 1997). How-
ever, since there was a significant performance
gap between Tesseract and Pix2Tex in our prelimi-
nary experiment, we do not pursue Tesseract as a
baseline in this paper.
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2.5. Math OCR

MI2LS is currently the best performing model we
are aware of on the im2latex dataset (Wang and
Liu, 2021). The model consists of a CNN encoder
and RNN decoder, augmented with attention (Bah-
danau et al., 2014). Training the model consisted
of two phases: token level and sequence level.
During token level training, training is based on
traditional maximum likelihood estimation (MLE).
That is, the model predicts the token most likely
to be present at each timestep. During sequence
level training, the model is further trained using
a reinforcement learning (RL) scheme designed
to optimize reward for the emitted sequence as
a whole. Here, the reward is an increase in the
BLEU score (Papineni et al., 2002). This results
in a slightly different training objective than during
token-level training. The authors ultimately found
that performing sequence level reinforcement learn-
ing after token level training did improve the quality
of the model, but not to a tremendous extent.

Other efforts towards OCR for math often em-
ploy a similar architecture, such as the CNN-LSTM
architecture proposed by Mirkazemy et al. (2022)
or the U-net architecture proposed by Ohyama et al.
(2019). Very recent efforts have began exploring
how the transformer architecture can be applied to
the OCR task, such as Zhao et al. (2021) exploring
how the transformer can be used to synthesize text
in handwritten mathematical expressions. MathPix
is purported to be proficient at this task, but is a
commercial offering with unclear implementation
as is thus not considered in this study (Mathpix).

2.6. Nougat

Nougat is a recently proposed model for neural
optical understanding for academic documents
(Blecher et al., 2023). Trained on 8.2M pages
of academic documents, primarily from arXiv, the
model takes as input a PDF page and outputs the
identified text, including tables, in a markup lan-
guage. While the training corpus does contain
documents from PubMed Central3 (PMC), such
documents typically present tables as images, so
Nougat’s pre-processing pipeline is unable to iden-
tify the text therein when creating a ground-truth
record. Accordingly, although the model performs
well in the general academic domain, it struggles
when parsing tables from PMC, and often fails to
recognize them altogether. Seeing as PMC hosts
articles for a significant portion of the scientific com-
munity, an approach to filling this gap is of value.
The introduction of PEaCE provides a high-quality
training resource for this type of document.

3https://www.ncbi.nlm.nih.gov/pmc/

3. PEaCE Dataset

To mitigate the bottleneck of not having a good OCR
dataset that contains images (and corresponding
labels) of both scientific texts and printed English,
PEaCE contains 1M images of printed English text,
100k images of numerical artifacts, and 100k im-
ages of pseudo-chemical equations, along with
their LATEX labels. Furthermore, for an understand-
ing of real-world performance, the dataset also
contains 319 images from real-world scientific doc-
uments, again with LATEX ground-truth strings, to
serve as a real-world test set. A summary of the
records in PEaCE is presented in Table 1. Scripts
to generate the dataset are included in our code
release so practitioners can generate different ver-
sions of the dataset as they see fit, modifying both
the corpus that is sampled to generate the records
and the formatting applied to the sampled text.

Printed English
# Total Characters 33M

# Unique Characters 405
Avg # Characters / Record 32.92

# Records 1M
(Pseudo) Chemical Equations

# Total Characters 7.9M
# Unique Characters 101

Avg # Characters / Record 78.72
# Records 100k
Numeric Records

# Total Characters 1.9M
# Unique Characters 51

Avg # Characters / Record 18.83
# Records 100k
Real-world Test

# Total Characters 5,286
# Unique Characters 101

Avg # Characters / Record 16.57
# Records 319

Table 1: Summary statistics of PEaCE.

As stated above, the labels accompanying each
record are in the form of LATEX strings. To be ren-
dered in a LATEX environment, however, the strings
need to be surrounded by “$” characters - i.e. in
math mode. In all cases, the python library mat-
plotlib (Hunter, 2007) was used to render text as
it has the ability to render LATEX strings, the format in
which all of our ground-truth labels are presented.

PEaCE exposes an OCR model to a substan-
tial amount of special characters related to chem-
istry domain. Artifacts such as benzene rings and
cubane cube are not included, since they contain
many visual artifacts typically not presented in-line
with other text and recognizing them does not fall
under the umbrella of OCR. While existing datasets

https://www.ncbi.nlm.nih.gov/pmc/
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may contain similar components of our dataset
(e.g., printed english, latex characters, and chemi-
cal equations), PEaCE is the first to integrate these
components on a record level.

3.1. Printed English Records
To construct our synthetic printed English records,
we repurpose the arXiv4 and PubMed3 datasets
originally proposed for long-document abstractive
summarization (Cohan et al., 2018), and supple-
ment them with a crawl of chemRxiv5 abstracts
via the paperscraper6 python package. In to-
tal, the aggregate dataset used to create our syn-
thetic records contains 100M words from 31k pa-
pers. This dataset is then used to create (rendered
text, LATEX ground-truth) pairs.

Specifically, we randomly sample an academic
document from which to sample text, and then se-
lect a sample of up to w = 10 consecutive words
to serve as the ground truth text. It is uncommon
to find exclusively vanilla printed English in scien-
tific documents, so we perturb the ground truth text
to make it more realistic. First, we randomly add
a superscript/subscript to a word in the sampled
text with probability of p1 = 3.75% and p2 = 1.25%,
respectively. Next, LATEX characters (ϕ, ∞,

∑
,
∏

,
etc.) are randomly inserted to the sequence with
probability of p3 = 15%. For LATEX characters that re-
quire arguments (\bar{}, \dot{}, etc.), English
characters are sampled 50% of the time, integers
the rest. Finally, up to four carriage returns (line
breaks) are inserted into sequence with probability
p4 = 15%. The weight associated with inserting i
carriage returns is computed as 1

i2 .
Once the text is sampled, it is rendered using

one of eight randomly selected fonts in one of six
randomly selected font sizes. This process is com-
pleted n = 1M times to assemble the printed En-
glish section of PEaCE. The python library mat-
plotlib (Hunter, 2007) is used to render the text.
We would like to note that all of the parameters men-
tioned above - w, p1, p2, p3, p4, and n - are exposed
to the end user such that they can easily modify the
record generation process. Although not exposed
as command line parameters, the potential fonts
and font sizes can also be easily modified.

3.2. (Pseudo-) Chemical Equation
Records

We also create 100k pseudo-chemical equations
such that our model will be exposed to this form of

4https://arxiv.org/
5https://chemrxiv.org
6https://github.com/

PhosphorylatedRabbits/paperscraper

language during training. These constructed chem-
ical equations are likely to not abide by the laws of
chemistry. However, in order to perform OCR on
scientific documents, they are useful for exposing
our model to this structure of text (i.e. sequences
of 1-2 characters with subscripts interspersed). We
do not pursue existing chemical databases to cre-
ate chemical compounds and equations, because
there does not exist a database that renders dif-
ferent chemical compounds/equations in markup
languages (e.g., LATEX) to the best of our knowl-
edge.

Figure 3: Example pseudo-chemical equation.

To create a pseudo-chemical equation, we first
randomly sample a number ncompound from 1 to 4
to determine the number of compounds that will be
used in the equation. Then, for each compound, we
randomly sample a number nelements from 1 to 4 to
determine the number of chemical elements in said
compound. As elements are randomly sampled to
construct the compound, a value nquantity ranging
from 1 to 500 is randomly sampled as that elements
quantity in the compound. Finally, conjoiners “+”,
“with”, “and”, and “plus” were randomly sampled to
join the constructed compounds. Again, we ran-
domly sample one of eight fonts and one of six font
sizes to render the image to increase the variety
of characters the model sees during training. An
example of the resulting chemical equation record
is presented in Figure 3. Similar to printed English
records, the key parameters (ncompund, nelements,
and nquantity) are exposed to the programmer.

3.3. Numeric Records
Numeric records are constructed following a simi-
lar process. First, we randomly sample a number
nnumerals from 1 to 4 to determine the number of
numerals that will be created. For each numeral
being created, decimal in the range of 0 to 100, 000
is sampled with probability p1 = 0.5. Otherwise, a
LATEX math symbol (“λ”, “β”, “Ψ”, etc.) is randomly
chosen. Each numeral is then joined using charac-
ters such as “+”, “±”, and “̸=”. These records may
not abide by all mathematical laws and properties,
but they serve to expose the model to this type of
notation. This process is performed 100k times,
and records are rendered using one of eight fonts
in one of six font sizes. Again, nnumerals and p1
are exposed to the user as parameters, while the
conjoining symbols and set of sampled LATEX math

https://arxiv.org/
https://chemrxiv.org
https://github.com/PhosphorylatedRabbits/paperscraper
https://github.com/PhosphorylatedRabbits/paperscraper
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symbols can be easily modified within the code. An
example record is presented in Figure 4.

Figure 4: Example numerical record.

3.4. Real-World Test Set
To obtain records for our real-world test set, we first
collect published scholarly papers relating to poly-
mer pyrolysis and identify 21 tables therein. Then,
we transform the PDF pages that contain these 21
tables to images using python library pdf2image.
Finally, we pass the images through the Multi-Type-
TD-TSR model (Fischer et al., 2021) which will sec-
tion the original image by table cell. That is, the
model will emit images containing the content of
each cell in the table.

Once we have images describing single cells, we
identify a group of 319 cell images that are repre-
sentative of the overall set. This group contains two
subgroups: normal cells and special cells. Normal
cells contain text that is written using only alphanu-
meric characters while special cells contain text that
cannot be written in only alphanumeric characters
and require special LATEX symbols to be rendered.

Note that this real-world test set contains nu-
ances in the data not found in the other synthetic
parts of the dataset. To start, some of the original
polymer pyrolysis papers appear to be scanned
and are not true PDF documents. Thus, some cells
may have artifacts such as pixelation or smearing.
Furthermore, our synthetic records crop the images
such that the text always appears in the top-left por-
tion of the image. The same cannot be said for
images processed and cropped by Multi-Type-TD-
TSR, however. We find that in many cases, the text
begins in the middle of the image, not the top-left. In
addition, the Multi-Type-TD-TSR model sometimes
crops incorrectly, resulting in a significant amount
of white space between text. These nuances make
it a valuable representation of real-world data, be-
cause the tools that crops images are not expected
to be error-free.

Finally, we note that 33 images in the real-world
test set are over 700 pixels wide and are too big to
be processed by the models trained in this study.
We include these images in the released version
of PEaCE so they would be available to other re-
searchers if desired, but they are not reflected in
the performance metrics on the real-world test set
presented below.

4. Experiments

In this section we describe the experiments that we
perform in this study. We first describe our experi-

ments on patch size, identifying nuances of this ap-
plication perhaps not found in other applications of
the ViT, and then our experiments related to multi-
domain training for domain-specific applications.
We also experiment with different record transfor-
mation techniques. We explore the performance of
a vision transformer for OCR, dubbed OCR-ViT, as
well as Pix2Tex, an OCR-ViT model with a ResNet
encoder in place of patch-projection (Section 2.3).
Specifically, the OCR-ViT model consists of a bidi-
rectional encoder to process the source image and
an autoregressive decoder to synthesize the text.

4.1. Effect of Patch Size
As mentioned above, we are interested in exploring
the impact of the patch size parameter on the re-
sulting performance of a transformer-based OCR
model. To this end, we explore OCR-ViT models
trained with different patch sizes: 10∗10 and 16∗16.
Given images of dimensions 160 ∗ 600, this trans-
lates to an effective sequence length of 900 and
375, respectively. To visualize the impact of the
patch size in our application, consider Figure 5,
where we compare how different patch sizes mani-
fest on the same source image.

Figure 5: a) Example of how a patch size of 8
manifests on an example image. b) Example of
patch size 20 on the same image.

In Figure 5, we see that there is not only a tradeoff
between patch size and effective sequence length,
but also between the patch size and the amount
of text contained in each patch. For example, con-
sider the patches highlighted in pink, which are the
ones required to (mostly) describe the portion of
the image containing the text “aij”. When a patch
size of 20 is used, all three characters must be
described using a single patch embedding. With a
patch size of 8, however, six different patches are
used to convey the same information.

Recall from section 2.2 that each patch is pre-
sented to the model as a DM -dimensional embed-
ding, where DM is the internal dimension of the
model. In other words, the content of each patch
must be described using DM numbers. When us-
ing a 20 ∗ 20 patch, then, the text aij must be de-
scribed using DM numbers. For a 8 ∗ 8 patch, how-
ever, 6×DM numbers can be used to describe the
same text - in some sense, lowering the burden
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placed on the model. Of course, this comes with a
tradeoff of higher computational overhead.

We hypothesize that the impact of patch size is
more pronounced in OCR applications than other
applications of the ViT. In our application, the pre-
cise content of each patch is of utmost importance
- the model must be able to differentiate between
an “e” and “c” or “i” and “j” for example. In other ViT
applications, however, the precise contents of each
patch may not be as important - describing the pre-
dominant shape and/or color of the content therein,
for example. For this reason, we believe exploring
the efficacy of a smaller patch size is important.

4.2. Multi-Domain Training
In addition to exploring patch size, we also ex-
plore the impact of adding multi-domain training
data for domain-specific inference when sufficient
domain-specific training data is available. That is,
we explore whether training our models on the joint
of im2latex-100k and PEaCE yields better perfor-
mance on the test set of im2latex-100k (or PEaCE)
than training on im2latex-100k alone. This kind of
experiment can reveal the utility of PEaCE.

4.3. Record Transformations
The synthetic portion of PEaCE contains only high-
resolution records, while the real-world test set
contains records with various artifacts - pixelation,
smudging, etc. We also observe that some records
taken from particularly old papers tend to have a
very dark, thick font which models in some of our
preliminary experiments had difficulty processing.
Furthermore, we notice that while the Multi-Type-
TD-TSR model does a good job of extracting table
cells, it often leaves a non-negligible amount of
white space around the textual content of each cell.

Figure 6: Example transformations.

To address this, we propose three transforma-
tions for application on training records: 1) pix-
elation, 2) bolding, and 3) random white-space
padding. An example of these transforms are pre-
sented in Figure 6. The pixelation filter first com-
presses the model to a smaller dimension before
expanding it back to the original dimension, inter-
polation missing pixels which introduces a small
amount of noise. At a high level, the bolding filter

operates on a pixel-wise basis on a binary, black
and white image. If a white pixel has ≥ n “hot”
pixels in a n-pixel radius (horizontally, vertically, di-
agonally), the white pixel is converted to a black
pixel. The random white-space padding is very
straightforward, adding a random amount of white-
space along either side of the image.

5. Results

5.1. Metrics
The reported performance metrics are BLEU-4
score, edit distance, and exact match percentage.
BLEU score, a precision-based metric, evaluates
the similarity between two pieces of text by count-
ing the number of N-grams in a generated se-
quence that are present in the ground-truth (Pa-
pineni et al., 2002). BLEU-4 analyzes the precision
of uni-, bi-, tri-, and quad-grams in the generated
sequence with respect to the ground-truth, giving
equal weighting to each. Values range from 0 to
100 where higher is better.

Levenshtein distance is the number of single-
character edits that must be made to the strings in
order for them to match (Levenshtein et al., 1966).
Following common practice in the domain (Wang
and Liu, 2020, 2021), we present Edit Distance
(Edit) between a set of N reference strings R and
parallel set of N hypothesis strings H as described
in Equation 1. Values range from 0 to 100 with
higher values indicating a stronger model.

Edit(R,H) = 1− TotalLevenshtein(R,H)

TotalLength(R,H)
(1)

where

TotalLevenshtein(R,H) =

N∑
i=1

LevenshteinDistance(ri, hi)

TotalLength(R,H) =

N∑
i=1

max(len(ri), len(hi))

The exact match (EM) describes the percent of
generated hypotheses that match their correspond-
ing ground-truth string exactly. EM essentially de-
scribes the record-level accuracy. As with the other
metrics, values range from 0 to 100 with higher
values indicating a stronger model.

5.2. Effect of Patch Size
The performance of training our OCR-ViT model
with two different patch sizes, 10 and 16 are in-
cluded in Table 2. We see that a lower patch
size yields stronger performance in all cases, but
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Model Patch im2latex PEaCE
(Synthetic)

PEaCE
(Real-World)

Size BLEU Edit EM BLEU Edit EM BLEU Edit EM
MI2LS-MLE - 89.08 91.09 79.39 - - - - - -
MI2LS-RL - 90.28 92.28 82.33 - - - - - -
OCR-ViT 10 84.53 87.45 36.92 99.53 99.64 98.31 81.24 86.09 51.05
OCR-ViT 16 72.11 77.11 19.48 98.76 99.20 94.85 72.52 77.96 41.96
OCR-ViT

(w/o bolding,
pixelation, padding)

16 65.59 71.57 20.91 98.85 99.25 99.13 55.27 58.73 12.24

OCR-ViT (im2latex only) 16 31.11 39.06 0.83 0.42 2.45 0.01 0.68 3.38 0.00
OCR-ViT (PEaCE only) 16 1.60 13.42 0.00 98.89 99.28 95.09 67.79 74.60 37.06
Pix2Tex (im2latex only) 8 90.24 91.78 39.24 0.97 4.03 0.03 2.90 8.84 0.35

Pix2Tex
(im2latex + 10% PEaCE,

w/o bolding, pixelation,
padding)

8 87.95 89.44 33.24 99.19 99.38 94.93 68.85 74.74 31.82

Table 2: Performance of various model architectures trained using different patch sizes on im2latex,
PEaCE, and PEaCE Real-World test sets. For all three of our performance metrics, a higher value
indicates a better model. Unless stated otherwise, models were trained on both im2latex and PEaCE.

these performance improvements are most pro-
nounced on im2latex and the PEaCE real-world
test set. Considering the discussion in Section 4.1,
this makes sense. The records in im2latex and
PEaCE real-world are more complex than vanilla
printed English, which comprises the majority of
the synthetic PEaCE test set. As a consequence,
each patch is burdened with expressing relatively
more information in these settings, and lowering
the patch size lowers thus burden. This advantage
of lower patch size we find on OCR-ViT facilitates
us to pursue a patch size of 8 on Pix2Tex.

5.3. Multi-Domain Training

In this section, we present results from our experi-
ments exploring the impact of multi-domain training
for domain-specific inference. That is, we explore
the effect of training on the union of im2latex-100k
and PEaCE versus only on im2latex-100k. Perfor-
mance is evaluated on three test sets: im2latex-
100k, PEaCE synthetic test set, and PEaCE real-
world test set.

For the OCR-ViT models, performance on
PEaCE synthetic test set is relatively unchanged
as long as PEaCE is included in the training corpus
- in isolation or with im2latex-100k. Performance
on im2latex-100k and PEaCE real-world test set is
greatly improved when a model is trained on both
corpora than either one in isolation. We see that
multi-domain training yields an average improve-
ment of 825.39% on im2latex (primarily in EM) and
8.23% on PEaCE real-world.

For Pix2Tex, comparing the last two rows of Ta-
ble 2, we see that adding PEaCE into training yields

substantial performance boost on PEaCE synthetic
and real-world test set. Scores on im2latex-100k
are slightly lower than training on im2latex-100k
alone, but it is clear that multi-domain training yields
the best overall performance on Pix2Tex model.
This intuitively makes sense, as our target domain
is a hybrid of printed English and scientific text. The
advantage of multi-domain training reconfirms the
value of proposing PEaCE, since constructing a hy-
brid dataset like PEaCE is not straightforward using
existing resources due to reasons such as incon-
sistency of datasets across various domains. Note
that we use 10% of PEaCE without bolding, pixela-
tion, and padding to reduce training cost, as it would
take roughly three months to train on the entirety
of PEaCE using the script provided by Pix2Tex.

5.4. Significance of Real-World Test Set
In Table 2, it is clear to see that all the models
yield significantly worse performance when they
are tested on PEaCE real-world test set compared
to when they are tested on other data. Since this
real-world test set is comprised of artifacts from real
scientific documents, we conclude that it helps to
show the actual capability of each OCR model on
real-world chemistry scholarly papers. This novel
test set clearly reveals the weakness of each se-
lected model, so its value is demonstrated.

5.5. Impact of Record Transformations
In comparing rows 4 and 5 of Table 2, we see
that our proposed bolding, pixelation, and padding
transformations yield performance improvements
on the im2latex and PEaCE real-world test sets,
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with most pronounced improvements on the PEaCE
real-world test set. The transformations yield an
average improvement of 3.61% and 102.25% on
im2latex test set and PEaCE real-world test set, re-
spectively, in BLEU, edit distance, and exact match.
Performance on PEaCE synthetic test set is largely
unchanged with and without the transformations.

Intuitively, these results make sense. The impact
of the transformations is most pronounced on the
type of records they were designed to mimic, but
they increase the model’s performance in other ap-
plications also. These transformations lead to a
slight performance decrease on the PEaCE syn-
thetic test set, but an overall stronger model.

6. Conclusion

In this paper we introduce the PEaCE dataset for
OCR, containing more than 1M (rendered text, LATEX
ground-truth) pairs of printed English and chemical
equation text. The dataset contains three subsec-
tions: printed English, pseudo chemical equations,
and images of text extracted from real-world scien-
tific documents. This dataset helps bridge the gap
between OCR models and datasets designed for
either vanilla printed English or scientific text (e.g.,
math and physics formulae), but not both.

Additionally, we survey a variety of architectures
when applied to the PEaCE dataset. We find that a
traditional ViT with small patch size (10∗10), trained
in a multi-domain setting using our proposed pixe-
lation, bolding, and padding transformations yields
the best overall performance. However, a Pix2Tex
model (i.e. ViT + CNN encoder) yields competitive
performance when trained on only 10% of PEaCE
without our proposed transformations suggesting
a promising path forward for future OCR models.

7. Acknowledgements

This material is based upon work supported by
the U.S. Department of Energy’s Office of Energy
Efficiency and Renewable Energy (EERE) under
the Advanced Manufacturing Office Award Number
DE-EE0007897 awarded to the REMADE Institute,
a division of Sustainable Manufacturing Innovation
Alliance Corp.

This report was prepared as an account of work
sponsored by an agency of the United States Gov-
ernment. Neither the United States Government
nor any agency thereof, nor any of their employ-
ees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed,
or represents that its use would not infringe pri-
vately owned rights. Reference herein to any spe-
cific commercial product, process, or service by

trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the United
States Government or any agency thereof. The
views and opinions of authors expressed herein do
not necessarily state or reflect those of the United
States Government or any agency thereof.

8. Bibliographical References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Lukas Blecher. 2020. GitHub - lukas-
blecher/LaTeX-OCR: pix2tex: Using a ViT
to convert images of equations into LaTeX
code. — github.com. https://github.com/
lukas-blecher/LaTeX-OCR. [Accessed
06-Oct-2022].

Lukas Blecher, Guillem Cucurull, Thomas Scialom,
and Robert Stojnic. 2023. Nougat: Neural optical
understanding for academic documents. arXiv
preprint arXiv:2308.13418.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu,
Heewoo Jun, David Luan, and Ilya Sutskever.
2020. Generative pretraining from pixels. In
International conference on machine learning,
pages 1691–1703. PMLR.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and
Nazli Goharian. 2018. A discourse-aware atten-
tion model for abstractive summarization of long
documents. arXiv preprint arXiv:1804.05685.

Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and
Alexander M Rush. 2017. Image-to-markup gen-
eration with coarse-to-fine attention. In Interna-
tional Conference on Machine Learning, pages
980–989. PMLR.

Yuntian Deng, David Rosenberg, and Gideon Mann.
2019. Challenges in end-to-end neural scientific
table recognition. In 2019 International Confer-
ence on Document Analysis and Recognition (IC-
DAR), pages 894–901.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. 2020. An image is worth 16x16 words:

https://github.com/lukas-blecher/LaTeX-OCR
https://github.com/lukas-blecher/LaTeX-OCR
https://doi.org/10.1109/ICDAR.2019.00148
https://doi.org/10.1109/ICDAR.2019.00148


12688

Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929.

Pascal Fischer, Alen Smajic, Alexander Mehler, and
Giuseppe Abrami. 2021. Multi-type-td-tsr – ex-
tracting tables from document images using a
multi-stage pipeline for table detection and table
structure recognition: from ocr to structured table
representations.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. 2015. Deep residual learning for image
recognition.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

J. D. Hunter. 2007. Matplotlib: A 2d graphics envi-
ronment. Computing in Science & Engineering,
9(3):90–95.

Martin Kišš, Michal Hradiš, and Oldřich Kodym.
2019. Brno mobile ocr dataset. In 2019 Inter-
national Conference on Document Analysis and
Recognition (ICDAR), pages 1352–1357. IEEE.

Martin Kišš, Michal Hradiš, and Oldřich Kodym.
2019. Brno mobile ocr dataset. In 2019 Inter-
national Conference on Document Analysis and
Recognition (ICDAR), pages 1352–1357.

Vladimir I Levenshtein et al. 1966. Binary codes
capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10,
pages 707–710. Soviet Union.

Mathpix. Mathpix OCR — mathpix.com. https://
mathpix.com/ocr. [Accessed 06-Oct-2022].

Jamshed Memon, Maira Sami, Rizwan Ahmed
Khan, and Mueen Uddin. 2020. Handwritten opti-
cal character recognition (ocr): A comprehensive
systematic literature review (slr). IEEE Access,
8:142642–142668.

Abolfazl Mirkazemy, Peyman Adibi, Seyed Mo-
hhamad Saied Ehsani, Alireza Darvishy, and
Hans-Peter Hutter. 2022. Mathematical expres-
sion recognition using a new deep neural model.
Available at SSRN 4245142.

Wataru Ohyama, Masakazu Suzuki, and Seiichi
Uchida. 2019. Detecting mathematical expres-
sions in scientific document images using a u-
net trained on a diverse dataset. IEEE Access,
7:144030–144042.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for auto-
matic evaluation of machine translation. In Pro-
ceedings of the 40th annual meeting of the As-
sociation for Computational Linguistics, pages
311–318.

Shruti Patil, Vijayakumar Varadarajan, Supriya Ma-
hadevkar, Rohan Athawade, Lakhan Mahesh-
wari, Shrushti Kumbhare, Yash Garg, Deepak
Dharrao, Pooja Kamat, and Ketan Kotecha. 2022.
Enhancing optical character recognition on im-
ages with mixed text using semantic segmenta-
tion. Journal of Sensor and Actuator Networks,
11(4).

Alec Radford, Karthik Narasimhan, Tim Salimans,
Ilya Sutskever, et al. 2018. Improving language
understanding by generative pre-training.

R. Smith. 2007. An overview of the tesseract ocr
engine. In Ninth International Conference on Doc-
ument Analysis and Recognition (ICDAR 2007),
volume 2, pages 629–633.

Robin Strudel, Ricardo Garcia, Ivan Laptev, and
Cordelia Schmid. 2021. Segmenter: Transformer
for semantic segmentation. In Proceedings of
the IEEE/CVF International Conference on Com-
puter Vision, pages 7262–7272.

Joel CM Than, Pun Liang Thon, Omar Mohd Ri-
jal, Rosminah M Kassim, Ashari Yunus, Norl-
iza M Noor, and Patrick Then. 2021. Preliminary
study on patch sizes in vision transformers (vit)
for covid-19 and diseased lungs classification.
In 2021 IEEE National Biomedical Engineering
Conference (NBEC), pages 146–150. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. Advances in neural informa-
tion processing systems, 30.

Shirly Wang, Matthew BA McDermott, Geet-
icka Chauhan, Marzyeh Ghassemi, Michael C
Hughes, and Tristan Naumann. 2020. Mimic-
extract: A data extraction, preprocessing, and
representation pipeline for mimic-iii. In Proceed-
ings of the ACM conference on health, inference,
and learning, pages 222–235.

Zelun Wang and Jyh-Charn Liu. 2020. Pdf2latex:
A deep learning system to convert mathematical
documents from pdf to latex. In Proceedings of
the ACM Symposium on Document Engineering
2020, pages 1–10.

Zelun Wang and Jyh-Charn Liu. 2021. Translating
math formula images to latex sequences using
deep neural networks with sequence-level train-
ing. International Journal on Document Analysis
and Recognition (IJDAR), 24(1):63–75.

Yibin Ye, Shenggao Zhu, Jing Wang, Qi Du,
Yezhang Yang, Dandan Tu, Lanjun Wang, and
Jiebo Luo. 2018. A unified scheme of text lo-
calization and structured data extraction for joint

https://doi.org/10.48550/ARXIV.2105.11021
https://doi.org/10.48550/ARXIV.2105.11021
https://doi.org/10.48550/ARXIV.2105.11021
https://doi.org/10.48550/ARXIV.2105.11021
https://doi.org/10.48550/ARXIV.2105.11021
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/ICDAR.2019.00218
https://mathpix.com/ocr
https://mathpix.com/ocr
https://doi.org/10.3390/jsan11040063
https://doi.org/10.3390/jsan11040063
https://doi.org/10.3390/jsan11040063
https://doi.org/10.1109/ICDAR.2007.4376991
https://doi.org/10.1109/ICDAR.2007.4376991


12689

ocr and data mining. In 2018 IEEE International
Conference on Big Data (Big Data), pages 2373–
2382. IEEE.

Nan Zhang, Shomir Wilson, and Prasenjit Mitra.
2022. STAPI: An automatic scraper for extract-
ing iterative title-text structure from web docu-
ments. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference,
pages 3461–3470, Marseille, France. European
Language Resources Association.

Wenqi Zhao, Liangcai Gao, Zuoyu Yan, Shuai Peng,
Lin Du, and Ziyin Zhang. 2021. Handwritten
mathematical expression recognition with bidi-
rectionally trained transformer. In Document
Analysis and Recognition–ICDAR 2021: 16th In-
ternational Conference, Lausanne, Switzerland,
September 5–10, 2021, Proceedings, Part II 16,
pages 570–584. Springer.

Ilia Zharikov, Philipp Nikitin, Ilia Vasiliev, and
Vladimir Dokholyan. 2020. Ddi-100: dataset for
text detection and recognition. In Proceedings of
the 2020 4th International Symposium on Com-
puter Science and Intelligent Control, pages 1–5.

https://aclanthology.org/2022.lrec-1.371
https://aclanthology.org/2022.lrec-1.371
https://aclanthology.org/2022.lrec-1.371

	Introduction
	Related Work
	``Hybrid'' Dataset for OCR
	Vision Transformer
	Pix2Tex
	Tesseract
	Math OCR
	Nougat

	PEaCE Dataset
	Printed English Records
	(Pseudo-) Chemical Equation Records
	Numeric Records
	Real-World Test Set

	Experiments
	Effect of Patch Size
	Multi-Domain Training
	Record Transformations

	Results
	Metrics
	Effect of Patch Size
	Multi-Domain Training
	Significance of Real-World Test Set
	Impact of Record Transformations

	Conclusion
	Acknowledgements
	Bibliographical References

