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Abstract
Received wisdom in linguistic typology holds that if the structure of a language becomes more complex in
one dimension, it will simplify in another, building on the assumption that all languages are equally complex
(Joseph and Newmeyer, 2012). We study this claim on a micro-level, using a tightly-controlled sample of Dutch
dialects (across 366 collection sites) and Min dialects (across 60 sites), which enables a more fair comparison
across varieties. Even at the dialect level, we find empirical evidence for a tradeoff between word length and a
computational measure of phonotactic complexity from a LSTM-based phone-level language model—a result
previously documented only at the language level. A generalized additive model (GAM) shows that dialects with
low phonotactic complexity concentrate around the capital regions, which we hypothesize to correspond to prior
hypotheses that language varieties of greater or more diverse populations show reduced phonotactic complexity.
We also experiment with incorporating the auxiliary task of predicting syllable constituency, but do not find an
increase in the strength of the negative correlation observed.

Keywords:phonotactic complexity, linguistic niche hypothesis, compensation hypothesis

Code: https://github.com/cmu-llab/
phonotactic-complexity-across-dialects

1. Introduction

Phonotactics refers to a set of language- or
dialect-specific constraints on what constitutes
a licit or illicit sound sequence. Phonotactic
complexity refers to the variety of structures al-
lowed at different positions within a syllable or
word—essentially how unpredictably a language
variety’s phonemes behave at different positions.
If we view the possible upcoming phonemes as
branches of a tree structure, where the root de-
notes the start of the word, the phonotactic com-
plexity is the size of the tree. For instance, a lan-
guage that requires VCV sequences to obey vowel
harmony has lower phonotactic complexity than
another VCV-language without this phonotactic
constraint, since the rule reduces the number of
possible vowels in each position (Pimentel et al.,
2020).
Recent results have shown a moderate nega-

tive correlation between phonotactic complexity
and average word length in a dataset of 1,016
basic concept words across 106 languages (Pi-
mentel et al., 2020). A decrease in word length
accompanies an increase in phonotactic complex-
ity, which the compensation hypothesis (Hockett,
1958; Moran and Blasi, 2014) would argue oc-
curs as a compensatory mechanism. However,
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there has been comparably little work that exam-
ines this hypothesis in the context of dialects of
the same language. Such research would pro-
vide a microcosmic view of complexity where
most variables (e.g., areal influences, phyloge-
netic biases, variation in descriptive conventions)
are held relatively constant. This addresses the
problem of typological imbalance in Pimentel et al.
(2020)’s study, where the NorthEuraLex dataset
used (Dellert et al., 2020) favors Uralic and Indo-
European languages. Examining dialects addi-
tionally holds much interest for dialectology, since
geographical effects such as spatial autocorrela-
tion can be observed, and areas of low or high
linguistic complexity (in some dimension) can be
explained. For example, geographic and demo-
graphic factors such as population size may (in-
versely) correlate with complexity (Lupyan and
Dale, 2010; Dale and Lupyan, 2012). Indeed, our
results provide empirical support for such a hy-
pothesis.1
Wemeasure the phonotactic complexity of a di-

alect with Shannon entropy (bits per phoneme),
estimated with Pimentel et al. (2020)’s LSTM-
based phonotactic language model (Equation 1).
While predicting the next phoneme accounts for
the number of options at some position, their
model only considers the order of segments in
a word and fails to account for the interaction

1Recently, Shcherbakova et al. (2023) do not find
such an inverse correlation in a dataset of 1,314 lan-
guages (Skirgård et al., 2023), but their study examines
different dimensions of linguistic complexity.

https://github.com/cmu-llab/phonotactic-complexity-across-dialects
https://github.com/cmu-llab/phonotactic-complexity-across-dialects
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Figure 1: Contour plot of GAM results using a thin plate regression spline, where the response variable
is phonotactic complexity (left) and average word length (right) of Dutch dialects, and the predictors,
their latitude and longitude. Colder colors (blue) indicate low complexity, while warmer colors (yellow)
indicate higher values. The larger blue region on the phonotactic complexity plot is the region of Holland,
which is correspondingly yellow in the word length plot.

between syllable structure and phonotactic con-
straints (subsection 4.2). Our contributions are as
follows:
1. Phonotactic tradeoffs across dialect con-

tinua: We corroborate the negative corre-
lation between word length and phonotac-
tic complexity found in Pimentel et al. (2020)
even when examined in our controlled setting
of a large number of very similar language va-
rieties. The correlation also holds across two
typologically diverse languages.

2. Social explanation of complexity distribu-
tions: Areas of low phonotactic complex-
ity concentrate around the capital regions,
which supports the hypothesis that varieties
with more diverse populations tend to have
simpler phonology and morphology, poten-
tially due to learnability constraints (Lupyan
and Dale, 2010; Dale and Lupyan, 2012;
Bentz and Winter, 2014).

3. Supervised syllable constituency predic-
tion: We incorporate syllabification into
a phonotactic language model by virtue
of multi-task learning, and observe that
knowledge of syllable constituency does not
strengthen the negative correlation in our
data.

2. Related Work

Pimentel et al. (2020) are not the first to model

phonotactics computationally. Hayes and Wilson
(2008) use a maximum entropy grammar to as-
sign scores of well-formedness to sequences of
phonemes based on how many phonotactic con-
straints are violated. The model learns SPE-style
(Chomsky and Halle, 1968) constraints from pri-
mary data.
Mayer and Nelson (2020) find that RNN-based

phoneme-level language models can learn chal-
lenging phonotactic patterns, such as Finnish
vowel harmony (a long-distance pattern). While
they train on articulatory feature vectors, they do
not incorporate syllable structure into their model.
They hypothesize that an Elman RNN may suffice
for the task of phonotactic modeling (though we
use an LSTM).
Using Mayer and Nelson (2020)’s model, Kirby

(2021a) finds that the phonotactic probability of a
syllable is not affected by the placement of tone
in the phonetic transcription. He does not train
on transcriptions of words and instead trains on
all possible syllables for 4 languages with sylla-
bles as tone-bearing units (Mandarin, Thai, Viet-
namese, Cantonese) to maximize the probability
of the syllable lexicon.
Steuer et al. (2023) find that LSTM-based

phoneme-level language models can capture
vowel harmony, a phonotactic constraint, in differ-
ent languages. They quantify the degree of vowel
harmony with an entropy-based measure derived
from the likelihood but revise the language model
objective to only predict the next vowel. In con-
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Figure 2: Contour plot of GAM results using a thin plate regression spline, where the response variable
is phonotactic complexity (left) and average word length (right) of Min dialects, and the predictors, their
latitude and longitude. Colder colors (blue) indicate low complexity, while warmer colors (yellow) indicate
higher values. The city of Fuzhou is marked out in text in both figures.

trast, the language model we use is not restricted
to a single phonotactic constraint.
Daland et al. (2011a) use a version of Hayes

and Wilson (2008)’s phonotactic model super-
vised with syllable structure and find that mod-
els need to incorporate both sonority and syllab-
ification to capture the phonotactic phenomenon
of sonority projection. We implicitly incorporate
sonority by incorporating syllable constituency
obtained via sonority-based syllabification ( sub-
section 4.3).
Regarding studies on geographical distribu-

tions of linguistic complexity, Wichmann and Hol-
man (2023) find that across 1,267 languages, aver-
age word length exhibits the behavior typical of ty-
pological linguistic features, showing sensitivity to
areal influence detectable over a 5000 km range.
Average word length is also significantly inversely
correlated with (log) population size when com-
pared across six macroareas, but inconsequential
when measured within each macroarea.
Our study extends this line of typological re-

search in linguistic complexity by focusing instead
on a large number of closely-related language va-
rieties, which has the benefit of holding many vari-
ables relatively constant in examining how word
length interacts with other social or linguistic vari-
ables.

3. Dataset

Refer to Table 1 for a summary of the datasets we
use in our work. Below, we briefly profile phono-

tactic constraints within Dutch and Min dialects
and dialectal variation of such constraints–which
affects phonotactic complexity. We also describe
the corresponding datasets we examine in this
work.

3.1. Dutch

3.1.1. Phonotactic Properties of Dutch
Dialects

The Dutch dialect landscape in the Nether-
lands is typically considered to be a continuum,
where abrupt breaks rarely occur (Taeldeman and
Hinskens, 2014; Heeringa and Nerbonne, 2001).
Such a continuum yields a particularly interesting
situation for the study of phonotactic complexity,
where a given pair of sites may share nearly iden-
tical phoneme inventories but display significant
differences in phonological phenomena (Taelde-
man and Hinskens, 2014). For instance, /V/ varies
across Dutch dialects in the onset and in the coda
(Van der Torre, 2003). In particular, in the onset,
the /V/ in /Vr-/ sometimes becomes a fricative —
[vr-] or [fr-] — due to a constraint that onsets with
two sonorants are illicit. /V/ is sometimes replaced
with [m] and [b] due to constraints on place of ar-
ticulation. Such phonological differences form the
basis for differences in phonotactic complexity be-
tween Dutch dialects.
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3.1.2. Dutch Dialect Data

Our data comes from the Goeman-Taeldeman-
Van Reenen-Project (Taeldeman, Johan and Goe-
man, A, 1996), which is a Dutch dialect dataset
collected between 1980 and 1995 in the Nether-
lands and Belgium. It contains phonetic tran-
scriptions of 1,876 lexical items across 613 di-
alect sites elicited in a concept-aligned manner
that enables fair comparison between sites.2 This
dataset has enjoyed widespread usage in dialec-
tometry (Wieling et al., 2007), and the version we
utilize in this study comes in a preprocessed form
that is typical for dialectometric usage, where the
diacritics are removed to reduce sparsity. Further-
more, a subset of 562 lexical items are selected
to exclude morphological inflections of the same
item, along with multiword expressions. Due to
differences in transcription between the data in
Belgium and in the Netherlands, we base our anal-
ysis on data from the latter country, which con-
tains 424 sites (Wieling et al., 2007). After remov-
ing Frisian, a separate language that belongs to a
different branch of West Germanic, we have 366
Dutch sites.

3.2. Min

3.2.1. Phonotactic Properties of Min Dialects

Min is a subgroup of internally divergent Sinitic
languages spoken primarily in the region of Fu-
jian, China, along with several migration-induced
speech communities in Taiwan and Southeast
Asia. As Sinitic languages, Min languages have
tone superimposed upon syllables, where the syl-
lable structure in Min is C1V(C2) (Lien, 2015), but
variation exists across dialects as to as to what
is allowed in each position. A notable example
is the phenomenon of denasalization in South-
ern Min, where for certain dialects (e.g. Xia-
men, Zhangzhou and Quanzhou), if the coda of
a closed syllable is a nasal, the initial must not
be nasal (Lien, 2000). However, the exact rule
does not equally apply to all dialect sites, where
denasalization may occur in different forms. Com-
pounded with the differences between dialects
in licit phonemes for each position in the sylla-
ble and differences in tonal systems, considerable
variation in phonotactic complexity occur even be-
tween closely-related varieties of Min.

3.2.2. Min Dialect Data

Our Min data comes from Centre for the Pro-
tection of Language Resources of China (2023),
which contains phonetic transcriptions for 1,000

2The original dataset contains 1876 items, but we
use Wieling et al. (2007)’s 562-item subset.

characters and 1,200 concepts across 1,289 Sino-
Tibetan varieties in mainland China and Taiwan.3
We only include the Min dialects spoken in Fu-
jian Province (where most Min dialects are con-
centrated).
We choose concept-aligned over character-

aligned data for Min since the number of phones
per character does not vary much due to the rela-
tively constant syllable structure across Sinitic lan-
guages4, and character-aligned data would artifi-
cially restrict the word length since concepts are
not always expressed as single characters in Chi-
nese. As with any concept-aligned data, this may
mean that different Min dialect entries may not be
cognate with each other due to lexical innovation
or borrowing. Furthermore, for concept-aligned
data, the elicitation process often yields pronunci-
ation variants that may or may not be related to
one another within a site. For the purposes of this
study, we pick the first variant, as our goal is to
model the phonotactic sequence, and would ar-
guably not lose essential information in keeping
only one variant.

4. Methods

4.1. Phonotactic Language Modeling
We use Pimentel et al. (2020)’s unidirectional
LSTM-based (Hochreiter and Schmidhuber, 1997)
phoneme-level language model, which assigns
probabilities to the phonetic transcriptions of
words and learns phonotactically valid sequences
of phones. A separate language model is learned
for each dialect in our dataset. When the corre-
lation between phonotactic complexity and word
length is calculated, word length is measured in
phonemes. To measure the phonotactic complex-
ity of a language (or dialect in our case), Pimentel
et al. (2020) estimate the Shannon entropy of the
variety, which quantifies the average information
encoded in each phoneme of a word (bits per
phoneme). Entropy is an appropriate measure of
phonotactic complexity, given the branching in-
terpretation we provide in section 1. Because it
is intractable to iterate over all possible strings
to calculate the exact Shannon entropy, the au-
thors use the average negative log-probability of
a word to approximate the cross-entropy between
the true, unknown phonotactic probability distri-
bution of the language plex and the one learned
by the model qlex. Cross-entropy in turn provides
an upper bound on the true entropy:

3Unfortunately, they do not allow the data to be pub-
licly released. We obtained our version on June 12,
2023. The script we used to obtain the data is in the
code.

4Each character is one syllable.
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Language Source # dialects (we use) # words
Dutch Taeldeman, Johan and Goeman, A (1996) 366 562
Min Centre for the Protection of Language Resources of

China (2023)
60 1200

Table 1: Statistics on the datasets in our experiments

H(plex) ≤ H(plex,qlex) ≈ −
1

N

N∑
i=1

logqlex(x̃(i)) (1)

We refer the reader to their work for the full deriva-
tion.

4.2. Phonotactics and Syllable Structure
Pimentel et al. (2020)’s phonotactic language
model does not explicitly consider how the lo-
cation of a phoneme or set of phonemes within
a syllable can determine the behavior of the
phoneme. Onsets, for example, are often the lo-
cus of phonemic contrast, while codas are often
absent or are the location of positional neutraliza-
tion (Hayes, 2008). Phonological rules often ap-
ply at such syllable edges (Blevins, 1995). Sylla-
ble constituents—the onset, nucleus, and coda—
also differ in the types of complex (multi-segment)
sequences allowed (Blevins, 1995). Thus an accu-
rate account of phonotactic constraints and thus
phonotactic complexity must account for syllable
structure. If we measure phonotactic complexity
by the number of options at some position in a
phonethen how many options are next depends
on what syllable constituent the next phone occu-
pies.

4.3. Syllabification
To obtain syllable constituents for Dutch, we use
syllabiphon5. This Python package syllabifies
phoneme sequences according to the Sonority
Sequencing Principle (Selkirk, 1984), which states
that—across different languages—syllables rise in
sonority until a peak, after which the sonority falls.
We first identify syllable boundaries and then split
each syllable into onset (which is level or rising in
sonority), nucleus (the sonority peak), and coda
(the remainder of the syllable, which remains level
or falls in sonority). For example, [ʔɒrde] (aarde in
the Aalsmeer NH dialect) is syllabified as:

[Syl(ons=’ʔ’, nuc=’ɒ’, cod=’r’),
Syl(ons=’d’, nuc=’e’, cod=”)]

Sonority scores for each phone are obtained from
PanPhon and are on a scale from 1–9 (9 being the

5https://github.com/dmort27/
syllabiphon

most sonorous) (Mortensen et al., 2016). Vowels
have minimum sonority 8.
We postprocess the result of syllabiphon to

merge diphthongs and triphthongs into the nu-
clei of their syllables. On a set of one ran-
domly chosen word from 100 random Dutch di-
alects, syllabiphon, with the aforementioned diph-
thong/triphthong postprocessing, correctly syllab-
ified 85% of the items upon manual inspection.
Almost all of the errors concern consonant clus-
ters involving [s] (e.g. [sp], [st], [sx]) being split
into different constituents.6 ML-based syllabifica-
tion models achieve higher performance on indi-
vidual languages. Syllabiphon has the advantage,
though, of performing reasonably well on IPA tran-
scriptions of any language without supervision.
As for Min, the data is already implicitly seg-

mented by syllable since each Han character
(which comes with its own tone) is monosyllabic
in Sinitic, so we use the tone numbers as syllable
boundaries. To identify syllable constituents, we
assign all phones with a [-cons] feature from Pan-
Phon (Mortensen et al., 2016) (except for P) to the
nucleus. Phoneswith [+cons] (and ʔ) are assigned
to the onset when no nucleus has been identified
for the syllable yet. Additionally, contour tones are
treated as one token. To summarize, ’ŋi31tʰœ51’
is syllabified as [Syl(’ŋ’, ’i’, ”, ’31’), Syl(’tʰ’, ’œ’, ”,
’51’)].

4.4. The Syllable Constituency
Prediction Task

To incorporate syllable constituency into our
model, we add the objective of predicting the syl-
lable constituents c of a word given its phonetic
transcription x:

p(c|x) =
|x|∏
i=1

p(ci|x≤i) (2)

In doing so, the model learns about the dis-
tribution of phonemes in different syllable
constituents—a key aspect of phonotactics as
described earlier (subsection 4.2). We first feed

6Since [s] has a lower sonority when it is in a word-
initial or word-final cluster with a stop (e.g. [sp], [ps]),
we manually set the sonority of [s] in these positions to
be 0 for Dutch to ensure the cluster is placed into the
same constituent. This changed the accuracy to 93%.

https://github.com/dmort27/syllabiphon
https://github.com/dmort27/syllabiphon
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the phoneme sequence in, apply an embedding
layer to each phone, and feed the embedding
sequence into the LSTM. The output of the LSTM
is used for both the language modeling task
and the auxiliary task of syllable constituency
prediction. Specifically, at each step, we predict
both the next phone and the next phone’s syllable
constituent (Figure 3).
Note that we only include the phone-level lan-

guage modeling loss in the calculation of the cor-
relation, so we model the same distribution as Pi-
mentel et al. (2020), which is the classic language
modeling objective (reproduced from their paper):

p(x) =
|x|∏
i=1

p(xi|x<i) (3)

We cannot feed the syllable constituent as in-
put to the language modeling prediction task be-
cause the syllable constituent is determined us-
ing global information, which autoregressive lan-
guage modeling should not have access to. Do-
ing so would artificially increase the predictability
of the phoneme (and thus deflate the phonotac-
tic complexity). A longer sequence may be more
predictable (and thus have lower complexity) be-
cause it may have more syllables and thus more
global information.

4.5. Multi-task Loss
To jointly optimize for both phone and con-
stituency prediction, a simple strategy would be
to simply sum up the losses, which are each
weighted by hyperparameters λa,b:

L(x,c) = λaLphon(x) + λbLsyl(x,c) (4)

where Lphon(x) is the cross entropy version of the
likelihood p(x), where Lsyl(x,c) is the cross en-
tropy version of the likelihood p(c|x), and where,
again, only Lphon(x) is used for the correlation.
However, Kendall et al. (2018) show that the per-

formance of multi-task models is highly depen-
dent on an appropriate choice of weighting be-
tween each task’s loss, which may be difficult to
decide on with manual selection. We therefore fol-
low Kendall et al. (2018) in opting for dynamically
weighing the losses by assigning less weight to
more uncertain tasks, where uncertainty is com-
puted here with the variance of the task-specific
losses, σ2

t :

L̃t =
1

2σ2
t
Lt + log σt (5)

where log σt here serves to avoid division by zero.
Such adjustments have improved multitask learn-
ing in various NLP tasks (Hofmann et al., 2023;
Hung et al., 2023). In practice, given the instability

in regressing the variance σ2
t , we train the network

to predict the log variance ηt := log σ2
t :

L̃t =
1

2
(e−ηtLt + ηt) (6)

The final loss is then the sum of the uncertainty-
adjusted losses over all tasks.

4.6. Generalized Additive Models
Having obtained approximations of phonotactic
complexity, we use generalized additive models
(GAM) (Wood, 2011, 2017) to model the scores
as a function of their geographical coordinates.
GAMs can be considered as an extension of
generalized linear models (GLM) (McCullagh and
Nelder, 1989). In a GLM, the mean μ of a random
variable Y is related to a weighted sum of linear
predictors X with coefficients β (where Xβ is de-
noted η) through a link function g:

g (μ (Y)) = η = Xβ (7)

In contrast to linear regression, the link function in
the GLMprovides the possibility of relating a linear
model to an η of a distribution in the exponential
family. GAMs extend this by fitting functions on
the predictors:

η = b0 + f (x1) + f (x2) . . .+ f (xp) (8)

The functions are smoothing splines that are
learned to fit to the predictors, and can take any
number of arguments. The smoothing splines are
themselves linear combinations of basis functions,
which are geometrically simpler functions that
combine by way of a weighted sum to model the
data. The non-parametric nature of the smooth-
ing splines allows for much greater flexibility in fit-
ting the distribution of the variable, while the ad-
ditivity of the model allows for understanding the
contribution of each predictor, as the fitted vari-
ables do not depend on one another. In this pa-
per, we use the implementation of GAMs offered
in the mgcv package,7 with thin plate regression
splines as smooths (Wood, 2003). Our statistical
results are shown in Table 6 and Table 7.

5. Results and Discussion

5.1. Phonotactic Complexity and Word
Length

As shown in Table 2, we observe a moderate
negative correlation across both Dutch and Min
dialects. For the Dutch dataset, we observe a

7https://cran.r-project.org/web/
packages/mgcv/index.html

https://cran.r-project.org/web/packages/mgcv/index.html
https://cran.r-project.org/web/packages/mgcv/index.html
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Figure 3: Diagram of our phonotactic language model with syllable constituency prediction as an
auxiliary task, whereOmeans onset; N, nucleus; C, coda; CE, cross-entropy loss. The example shown is
the pronunciation of “klaver” in the Deurne NB dialect. The triphthong [Ei@] was merged into the nucleus
during postprocessing, but we treat diphthongs and triphthongs as sequences of multiple phonemes
when calculating word length. The same LSTM is used for both language modeling and for syllable
constituency prediction.

Pearson correlation of −0.68 both with and with-
out syllabification, whereas for Min we observe a
decrease from −0.72 to −0.7 after syllabification.
The results show that incorporating the auxiliary
task of syllable constituency does not strengthen
the negative correlation for our datasets. This sug-
gests that the LSTM-based phonotactic language
model already implicitly learns syllable structure
based on a phoneme’s context and position within
a word. Despite modifying the setup with a sylla-
ble structure-based approach, we still reach a sim-
ilar negative correlation, attesting to the robust-
ness of the correlation. Furthermore, we also note
that the tradeoff between linguistic complexities
may in fact extend beyond such a binary model,
where multiple factors may be at play in addition
to phonotactic complexity and word length (Lev-
shina, 2022). As such, the correlation should not
be seen as an evaluation metric, since it is not
known whether there is indeed a complete trade-
off between just the two dimensions.

5.2. GAMs
Table 3 and 4 summarize the statistical results of
our GAMs on the Dutch dialect dataset, where for
both phonotactic complexity and average word
length, the coordinates as predictors are found
to be statistically significant 8. The regression
surfaces are visualized in Figure 1 as contour
plots mapped upon the coordinates of the Nether-
lands, where the color blue indicate that the val-
ues are low, yellow indicating that they are high,
and green being a transitional value between the
two. We also include statistics of the raw val-
ues for the Dutch dataset in Figure 4 for compari-

8All GAM results including the plots are for non-
syllabified runs.

Figure 4: Box plot of averageword length (left) and
phonotactic complexity (right) in Dutch dialects.

son. Values in both GAMs can be seen to show a
high degree of similarity with nearby points, which
corresponds with the fact that dialects which are
spoken near one another tend to be more simi-
lar to one another than those that are spoken far
away (Nerbonne, 2010). The larger blue region
in the phonotactic complexity plot of Figure 1 is
the region of Holland. For Min, high average word
length and low phonotactic complexity is similarly
concentrated around the capital of Fuzhou (Fig-
ure 2).
In the remaining sections, we focus our discus-

sion on the Dutch dialect dataset due to a larger
quantity of Dutch dialectology studies that exam-
ine this topic, although similar trends are observed
also in the Min dataset.

5.3. The Compensation Hypothesis
Our results in Table 2 affirm that the compen-
sationary relationship between phonotactic com-
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Language Syllable structure Pearson r Spearman ρ
Dutch No -0.678897 -0.63107
Dutch Yes -0.684041 -0.627137
Min No -0.720228 -0.692592
Min Yes -0.698437 -0.665027

Table 2: Correlation between phonotactic complexity and word length with and without syllable con-
stituency prediction. The largest two-sided p-value among the Pearson correlations was 4.16e-10.

Component Term Estimate Std Error t-value p-value

parametric coefficients Intercept 3.299 0.007 498.1 <0.001
Component Term edf Ref. df F-value p-value
smooth terms s(longitude, latitude) 25.4 28.22 18.12 <0.001
Adjusted R-squared
0.581

Table 3: Statistical results of GAMs on phonotactic complexity in Dutch dialects.

Component Term Estimate Std Error t-value p-value

parametric coefficients Intercept 4.805 0.009 524.4 <0.001
Component Term edf Ref. df F-value p-value
smooth terms s(longitude, latitude) 24.85 27.98 15.57 <0.001
Adjusted R-squared
0.543

Table 4: Statistical results of GAMs on average word length in Dutch dialects.

plexity and average word length observed in Pi-
mentel et al. (2020) applies to the level of dialects
as well. Dialects, however, provide us with a spa-
tial dimension with social and historical correlates
against which we can compare linguistic variables.
We make use of this fact by modelling the phono-
tactic complexity and average word length of di-
alects as functions of their coordinates. In ob-
serving the inverse relationship between the dis-
tribution of high and low values of Figure 1, we
show how the negative correlation appears on a
geographical level.

5.4. Koineization and the Linguistic
Niche Hypothesis

In observing the center of low phonotactic com-
plexity and high average word length to con-
centrate in the region of Holland, we inter-
pret this as potential evidence of the linguistic
niche hypothesis (Lupyan and Dale, 2010; Dale
and Lupyan, 2012), which states that linguistic
complexity adapts to social constraints (Trudgill,
2001; McWhorter, 2007; Bentz and Winter, 2014).
Lupyan and Dale (2010) conduct a study of over
2000 languages, and found morphological com-
plexity to be negatively correlated with popula-

tion size, the degree of language contact, and
the size of the region—the three of which are
correlated—as languages spoken throughout re-
gions with larger populations and broader geo-
graphical extents would also have a higher likeli-
hood of having many non-native speakers. Exten-
sive contact of this kind has been suggested to
induce grammatical simplification, as non-native
adult learners of the language would have diffi-
culty in acquiring morphologically complex lan-
guages compared to a child.

As for dialects, Dutch dialectology has long uti-
lized similar arguments, where the large influx of
immigrants to early modern Holland is claimed
to be the central cause of significant grammati-
cal simplification in the urban vernacular of Hol-
land (Hendriks et al., 2018; Howell, 2006), the ef-
fect of which remains observable in its modern
form (Kloeke, 1927; Hamans, 2011). Holland in
the 16th to 18th century saw a massive number
of immigrants. Of 1.2 million immigrants, only
over 200,000 were from within the province of Hol-
land. The remainder came mostly from southern
Netherlands and Germany (Lucassen, 2002; Hen-
driks et al., 2018). This created a situation in which
speakers of many different Dutch varieties inter-
mixed (since natives of the province had become
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a minority). Moreover, in an effort to integrate
and achieve better socioeconomic outcomes, lin-
guistic forms which carry strong regional charac-
teristics were avoided; there was a bias towards
phonologically and lexically simple forms due to
the learning constraints of adult speakers. This
led all parties to converge on simplified linguistic
compromise. Children in such multi-dialectal con-
texts also have to make sense of the language
used around them and, in the process, simplify
the wide range of dialectal input in their environ-
ment. The combination of the aforementioned fac-
tors is claimed to have established a simpler vari-
ety, which became the native language of further
generations (Howell, 2006; Kerswill and Williams,
2000).
In our results, Figure 1 is compatible with both

the Linguistic Niche hypothesis and the Compen-
sation Hypothesis—phonotactics was simplified
through koineization, and word length increased
concomitantly. As for Min, despite a relative
lack of literature on linguistic complexity, the con-
centration of high average word length and low
phonotactic complexity near the capital of Fuzhou
may arguably also be due to similar processes
(Figure 2), given the greater amount of socioeco-
nomic opportunities offered.
Although Shcherbakova et al. (2023) find no in-

verse correlation between morphosyntactic com-
plexity and sociodemographic factors such as the
proportion of L2 speakers when examined against
a database of 1314 languages (Skirgård et al.,
2023), our study differs from theirs both in the di-
mensions of linguistic complexity measured, and
also in the scale of linguistic variation, where our
emphasis is placed on microvariation over geo-
graphically proximate dialects. As such, our re-
sults do not necessarily stand in conflict with
theirs given the differences in measurement, and
may point to the need of a sharper formulation of
the Linguistic Niche hypothesis for more precise
predictions of how linguistic complexity and so-
ciodemographic factors affect one another.

6. Future Work

Although we have based this study on two lan-
guages of different language families to ensure
the robustness of the results across typologically
different languages, we seek to validate our re-
sults on additional dialect datasets, for which an
interesting candidate would be the Phonetischer
Atlas von Deutschland (Göschel, 2000),9 a Ger-
man dataset containing 29,530 words transcribed
in IPA across 183 cities in Germany.
We also seek to explore different methods of in-

corporating syllable structure beyond learning syl-

9https://github.com/cysouw/PAD

lable constituency as an auxiliary task. As Daland
et al. (2011a) suggest, we can also explicitly su-
pervise the model with sonority. Furthermore, de-
spite Pimentel et al. (2020)’s finding that phono-
logical features do not improve performance, we
can explore more sophisticated methods of incor-
porating such features, as Torre (2003) finds that
place of articulation is important in Dutch phono-
tactics. Finally, despite the lack of increase in neg-
ative correlation, we seek to perform a more thor-
ough evaluation of our model enriched with sylla-
ble constituency knowledge on other downstream
tasks.

Limitations

Our study is limited by the fact that the dataset
we use comes in a form where diacritics are re-
moved, which could potentially encode phonemic
distinctions, thereby decreasing entropy. Addi-
tionally, our unidirectional LSTM limits our capa-
bility to capture regressive assimilation, which we
hope to improve upon with more expressive ar-
chitectures such as Transformers (Vaswani et al.,
2017) in future work, though we acknowledge
Mayer and Nelson (2020)’s suggestion that Elman
RNNs may suffice to model most phonotactics.
We also acknowledge that some phones may be
inherently more complex than others due to differ-
ences in articulatory difficulty (Maddieson, 2009),
which our model does not capture. Finally, we re-
duce the factors behind linguistic complexity to a
binary tradeoff between two dimensions, but Lev-
shina (2022) suggest the situation is actually multi-
variate. Even with a simplified model as ours,
though, a moderate correlation of around 0.7 can
be attained, lending credibility to the compensa-
tion hypothesis. Future work may examine other
factors that play a role in the trade-off.
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A. Syllabification

Algorithm 1 Algorithm for finding syllable bound-
aries given a list of sonority scores
1: function FindBound(s: list of sonority scores)
2: P← [ ]
3: for each i ∈ 0...|s| − 1 do
4: if s[i] >= α then
5: push(P, i)
6: b← [True | x ∈ s]
7: push(b,True)
8: for each i ∈ 0...length(b[i : −1]) do
9: if i < P[0] or i > P[−1] then
10: b[i]← False
11: if s[i− 1] < s[i] then
12: b[i]← False
13: else if i = length(s)− 1 then
14: b[i]← False
15: if i > 2 and s[i− 2] = s[i− 1] = s[i] then
16: b[i]← False
17: return b

Algorithm 2 Algorithm for parsing syllables into
onset, nucleus, and coda
1: function ParseSyl(s: list of sonority scores, p :

list of phonemes)
2: m← max(s)
3: i← 0
4: o← ε
5: while s < m do
6: o← o ⌢ p[i]
7: i← i+ 1

8: n← p[i]
9: i← i+ 1
10: c← join([x | x ∈ p...p[i : −1])
11: return ⟨o, n, c⟩

B. Reproducibility

B.1. Hyperparameters
We use the same hyperparameters for each lan-
guage and for the models with and without syl-
lable structure. The hyperparameter values are

Hyperparameter Value
Learning rate 1e-3
Adam betas (0.9, 0.999)
Adam eps 1e-8
Dropout 0.2
Phoneme embedding size 256
Syllable constituent embedding size 256
Number of LSTM layers 1
Hidden size 256
Batch size 64

Table 5: Hyperparameter values for all languages
and all models

the default ones provided by Pimentel et al. (2020).
Refer to Table 5 for the values. Note that we use
the Adam optimizer (Kingma and Ba, 2015). Fol-
lowing Pimentel et al. (2020), we use a 80-10-10
train-dev-test split.

B.2. Compute resources
Our model has 578,147 parameters and was
trained on one GPU on a Ubuntu server. On GPU,
it takes less than half an hour to train models for
all 366 dialects.

B.3. GAM results for Min

https://doi.org/10.1126/sciadv.adg6175
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Component Term Estimate Std Error t-value p-value

parametric coefficients Intercept 2.653 0.011 237.6 <0.001
Component Term edf Ref. df F-value p-value
smooth terms s(longitude, latitude) 12.34 16.75 6.123 <0.001
Adjusted R-squared
0.638

Table 6: Statistical results of GAMs on phonotactic complexity in Min dialects.

Component Term Estimate Std Error t-value p-value

parametric coefficients Intercept 6.888 0.026 261 <0.001
Component Term edf Ref. df F-value p-value
smooth terms s(longitude, latitude) 19.34 24.21 4.749 <0.001
Adjusted R-squared
0.658

Table 7: Statistical results of GAMs on average word length in Min dialects.

Figure 5: Contour plot of GAM results using a
thin plate regression spline, where the response
variable is non-syllabified phonotactic complexity
of Min dialects, and the predictors, their latitude
and longitude. Colder colors (blue) indicate low
complexity, while warmer colors (yellow) indicate
higher values.

Figure 6: Contour plot of GAM results using a thin
plate regression spline, where the response vari-
able is average word length of Min dialects, and
the predictors, their latitude and longitude. Colder
colors (blue) indicate shorter length, while warmer
colors (yellow) indicate longer.
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Figure 7: Contour plot of GAM results using a thin
plate regression spline, where the response vari-
able is syllabified phonotactic complexity of Min
dialects, and the predictors, their latitude and lon-
gitude. Colder colors (blue) indicate low complex-
ity, while warmer colors (yellow) indicate higher
values.
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