
LREC-COLING 2024, pages 12775–12786
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

12775

PLAES: Prompt-generalized and Level-aware Learning Framework
for Cross-prompt Automated Essay Scoring

Xia Li and Yuan Chen∗

School of Information Science and Technology,
Guangdong University of Foreign Studies, Guangzhou, China

{xiali, yuanchen}@gdufs.edu.cn
Abstract

Current cross-prompt automatic essay scoring (AES) systems are primarily concerned with obtaining shared
knowledge specific to the target prompt by using the source and target prompt essays. However, it may not be
feasible in practical situations because the target prompt essays may not be available as training data. When
constructing a model solely from source prompt essays, its capacity to generalize to the target prompt may be
hindered by significant discrepancies among different prompt essays. In this study, a novel learning framework for
cross-prompt AES is proposed in order to capture more general knowledge across prompts and improve the model’s
capacity to distinguish between writing levels. To acquire generic knowledge across different prompts, a primary
model is trained via meta learning with all source prompt essays. To improve the model’s ability to differentiate writing
levels, we present a level-aware learning strategy consisting of a general scorer and three level scorers for low-,
middle-, and high-level essays. Then, we introduce a contrastive learning strategy to bring the essay representation
of the general scorer closer to its corresponding level representation and far away from the other two levels, thereby
improving the system’s ability to differentiate writing levels as well as boosting scoring performance. Experimental
results on public datasets illustrate the efficacy of our method.
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1. Introduction

Writing skills is important for students and language
learners. Automated Essay Scoring (AES) aims to
judge the quality of a student’s writing automatically.
In comparison to the human grading process, a
comprehensive AES system can not only reduce
the workload of human raters, but also improve
grading consistency and scoring fairness (Hearst,
2000; Weigle, 2002; Uto et al., 2020).

Previous AES research focused primarily on de-
veloping a model for assessing the quality of essays
written in response to a specific prompt1 (Prompt-
specific AES). Earlier works employed rich elabo-
rate hand-crafted features to create efficient scoring
models (Weigle, 2002; Attali and Burstein, 2006;
Persing and Ng, 2013; Sultan et al., 2016). With
the rise of deep learning, more studies (Taghipour
and Ng, 2016; Dong et al., 2017; Tay et al., 2018;
Hussein et al., 2020; Uto et al., 2020; Liao et al.,
2021; Wang et al., 2022; Xie et al., 2022; He et al.,
2022) have investigated the application of neural
networks for prompt-specific AES with promising
results.

In real-world application situations, we may only
receive labeled essays from source prompts but
are unable to obtain them from target prompts or
can only obtain a small part of them. In response
to this circumstance, cross-prompt AES systems
have been proposed in recent years. These meth-

∗ Corresponding author.
1The prompt refers to the writing theme of essays.

Figure 1: A summary of our motivations. In (a),
circles with different colors denote different source
prompts, and the yellow area denotes the general
knowledge across these prompts. In (b), red, green
and blue points represent essays of low-, middle-
and high-levels in target prompt.

ods can be broadly classified into three categories.
The first class of approaches uses source prompt
essays and a small sample of labeled target prompt
essays to train the model and learn about the knowl-
edge specific to the target prompt (Phandi et al.,
2015; Cummins et al., 2016; Song et al., 2020). In
contrast, the second class of methods does not
include any labeled target prompt essays. In these
studies, such as the work of Jin et al. (2018); Li
et al. (2020); Cao et al. (2020) and Chen and Li
(2023), unlabeled target prompt essays are em-
ployed to obtain transferable knowledge. The core
idea behind these methods is to use both labeled
source prompt essays and unlabeled target prompt
essays to build the model and capture more shared
knowledge across the source and target prompt
essays.

Although the two types of approaches described
above are effective, they still need to see the tar-
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get prompt essays, which may not be feasible in
practice. To this end, the third type of work uses
essays only from source prompts to train the model
without seeing any target prompt essays. This kind
of method has the benefit of being able to grade es-
says on different new prompts with only one training
session. Only a limited number of studies (Ridley
et al., 2020, 2021; Jiang et al., 2023) have been
carried out based on this type of setting. Among
the existing work, Ridley et al. (2020, 2021) pro-
pose to utilize the non prompt-specific handcrafted
features (e.g., sentence length and part-of-speech
tag counts) to capture the essay quality from dif-
ferent aspects to improve generalization to new
prompts. However, we believe that the huge dis-
crepancies between different source prompts may
result in low generalization to new prompts, which
may not be fully captured by the handcrafted linguis-
tic features. Jiang et al. (2023) propose a prompt-
aware neural AES model to extract prompt-invariant
and prompt-specific features. We believe that ex-
tracting prompt-aware information is not enough,
and other information related to the scoring task,
such as writing levels, should be considered.

The majority of previous cross-prompt AES sys-
tems have so far been concerned with grading es-
says according to their scores using regression-
based constraint loss. As stated in previous
work (Jin et al., 2018), intuitively, essays with good
quality tend to have a higher score range, while
those with poor quality tend to fall into the lower
score range. Therefore, we believe that the writing
levels (e.g., low, middle, and high) can be consid-
ered as a general and consistent evaluation of the
quality of essays on different prompts, which can
be a complement to the quality evaluation of the
essays and further improve the model’s generaliza-
tion to new prompts.

Our task of cross-prompt AES using essays only
from source prompts as training data exhibits two
challenges. First, how to obtain more common and
general neural features across all prompts to better
express the quality of essays for new prompts due
to the huge difference between different source
prompts. Second, how to employ the writing level
as a complement constraint to learn more features
to differentiate the essay’s quality and improve the
model’s generalization to new prompts.

In this paper, we design a Prompt-generalized
and Level-aware learning framework for cross-
prompt Automated Essay Scoring (PLAES). For the
first challenge, as Figure 1 (a), we design a prompt-
generalized learning strategy based on meta learn-
ing to capture more general knowledge across dif-
ferent source prompts. In this way, we are able to
obtain a primary representation for all essays from
all source prompts. To cope with the second chal-
lenge, as Figure 1 (b), we propose a level-aware

learning strategy to improve the model’s capacity
to differentiate essay quality under the constraints
of writing levels. Specifically, we design a gen-
eral scoring model and three level scoring mod-
els for low-, middle-, and high-level essays, where
the level scoring models are used to learn level-
specific scoring knowledge. Then, we construct
a contrastive learning strategy to bring the essay
representation of the general scoring model closer
to its corresponding level representation and fur-
ther away from the representations of the other
two levels, thereby enhancing the model’s ability to
distinguish writing levels and boosting the scoring
performance.

The summarization of our contributions is as fol-
lows:

(1) To the best of our knowledge, this is the first
attempt to explore the use of writing level as a sup-
plement constraint for regression-based constraints
for cross-prompt AES in order to better differentiate
essay quality and improve the model’s generaliza-
tion to new prompts.

(2) We present a prompt-generalized scoring
model for cross-prompt AES that uses only source
prompt essays as training data and ensures essay
quality with more general neural features.

(3) Experimental results on the public datasets
show that our proposed method outperforms all
baseline models.

2. Related Work

2.1. Automated Essay Scoring
Most of the AES studies focus on prompt-specific
settings, which train and test models on the same
prompt. Some researchers (Rudner and Liang,
2002; Attali and Burstein, 2006; Mohler and Mi-
halcea, 2009; Persing and Ng, 2013; Sultan et al.,
2016; Salim et al., 2019) score essays by extract-
ing relevant features and analyzing the quality of
the essays contained in the features with machine
learning algorithms. Most recent work (Dong and
Zhang, 2016; Taghipour and Ng, 2016; Dong et al.,
2017; Tay et al., 2018; Hussein et al., 2020; Uto
et al., 2020; Liao et al., 2021; He et al., 2022; Shi-
bata and Uto, 2022; Wang et al., 2022; Xie et al.,
2022; Wang et al., 2023; Ding et al., 2023) use
deep learning models to extract richer semantic
features from essays and achieve better results.

Another setting is cross-prompt AES, in which a
model is trained on a labeled source prompt and
tested on an unlabeled target prompt. The first
class of approaches (Phandi et al., 2015; Cum-
mins et al., 2016; Song et al., 2020) uses source
prompt essays and a small sample of labeled target
prompt essays to train the model and learn about
the knowledge specific to the target prompt. The
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second class of methods (Jin et al., 2018; Li et al.,
2020; Cao et al., 2020; Chen and Li, 2023) does
not include any labeled target prompt essays but
uses labeled source prompt essays and unlabeled
target prompt essays as training data. Different
from the above two types of methods, the third
type of work (Ridley et al., 2020, 2021; Do et al.,
2023; Jiang et al., 2023) uses essays only from
source prompts to train the model without any tar-
get prompt essays.

2.2. Meta Learning

Meta learning is a training strategy that enables
the acquisition of generic knowledge from diverse
sources and adaptation to novel domains. Exist-
ing meta learning methods can be broadly clas-
sified into two categories: gradient-based ap-
proaches (Finn et al., 2017; Mi et al., 2019; Yan
et al., 2020; Yao et al., 2021; Nan et al., 2022;
Li et al., 2023) and metric-based methods (Yao
et al., 2021). The former aim to transfer knowl-
edge across tasks during meta training, while the
latter concentrate on developing a distance metric
to assess the similarity between data pairs. In this
paper, we follow the MAML (Finn et al., 2017) to
train prompt-generalized learning in Step I.

2.3. Contrastive Learning

Due to the ability to learn effective representations,
contrastive learning has gained enormous popular-
ity recently, such as SimCLR (Chen et al., 2020).
The fundamental step in contrastive learning lies
in constructing positive samples. Data augmenta-
tion is a widely used positive example construction
method in Natural Language Processing. Some
work obtains the positive examples by partial modi-
fication of the original text (Wang et al., 2021; Han
et al., 2022; Liang et al., 2022; Wu et al., 2022),
while other researchers obtain the desired positive
examples by perturbation of the representation of
the text (Gao et al., 2021; Jiang et al., 2022; Zhang
et al., 2022; Chen and Li, 2023).

3. Our Approach

Our approach consists of three key components: 1)
Scoring model is used to obtain the encoding rep-
resentation of essays and predict a set of attribute
scores. 2) Prompt-generalized learning module at-
tempts to obtain more general representations for
the general scoring model and three level scoring
models. 3) Level-aware learning module aims to
improve the model’s capacity to differentiate es-
say quality based on writing level constraints. The
overview of our approach is shown in Figure 2.

3.1. Task Definition
Given source prompt data P = {Pi}Ni=1, where N
is the number of source prompts. Each prompt
consists of a number of essays, each with an essay
text x and a set of attribute scores Y = {ya}Aa=1,
where A is the number of attributes and y0 repre-
sents the total score. The model accepts x as input
and uses Y as the optimization label for the scoring
task. The task of our approach is to train a model
with P and evaluate it on an unseen target prompt.
The complete procedure is shown in Algorithm 1.

3.2. Scoring Model
The scoring model consists of essay encoder and
essay scorer. The encoder is used to obtain the
essay representations, while the scorer is used to
predict the scores of the essay’s multiple attributes.

Essay Encoder In this paper, we employ a hier-
archical structure (Dong et al., 2017) as encoder.
The encoder captures the sentence representation
of all words in each sentence, as well as the es-
say representation of all sentences. Assuming that
each sentence consists of n words, the sentence
representation s can be extracted by CNN (Kim,
2014) and attention pooling (Sutskever et al., 2014)
from a sequence of words {w1, w2, ..., wm}. Fol-
lowing previous work, we use the embeddings of
Part-of-Speech (POS)2 to represent the essay text.
For convenience, we use wi to denote POS em-
beddings. The sentence representation s can be
obtained as follows:

ci = CNN([wi : wi+k−1]), i = 1, 2, ...,m, (1)

s = pooling([c1 : cm]), (2)
where k is the kernel size of CNN.

Then, the essay representation h can be ex-
tracted by the LSTM (Hochreiter and Schmidhuber,
1997) and another attention pooling from all sen-
tence representations {s1, s2, ..., sn}. The equa-
tions are as follows:

ri = LSTM(si−1, si), i = 1, .., n, (3)

h = pooling([r1 : rn]), (4)
where rt represents the output of LSTM at the t-th
time step, and h is the final essay representation.

Essay Scorer As we need to predict a set of at-
tribute scores for an essay, we first setup a specific
relu-dense layer for each attribute and take h as
input to obtain multiple attribute representations
ha ∈ {h1, h2, ..., hA}, where A is the number of at-
tributes. The final representation is obtained by

2We use NLTK (http://www.nltk.org) toolkit.

http://www.nltk.org
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Figure 2: Overview of our approach. The Step I is to train prompt-generalized learning via meta learning,
and the Step II is to train level-aware learning via contrastive learning and fine-tune the scoring task
simultaneously. x in Step II is assumed to be a low-level essay.

concatenating the handcrafted features f proposed
by Ridley et al. (2021) with the attribute represen-
tation ha. Then, another specific sigmoid-dense
layer is utilized to predict an attribute-specific score
ŷa. Finally, we can get all predicted scores for all
attributes Ŷ = {ŷa}Aa=1. The corresponding equa-
tions are as follows:

ha = relu(Wh · h+ bh), (5)

ŷa = sigmoid(Wy · [ha; f ] + by), (6)

where Wh and Wy are the trainable weight matrices,
bh and by are the bias vectors, and [; ] denotes
concatenate operation.

Finally, we use mean squared error as scoring
loss function.

Laes =
1

A

A∑
a=1

(ŷa − ya)
2. (7)

It is important to note that not every essay has
the same set of attributes. In order to train the
model on essays with different attributes, we use a
mask mechanism proposed by Ridley et al. (2021)
to mask the missing attributes in the essay.

maska =

{
1, if ya ∈ Y

0, otherwise
. (8)

3.3. Prompt-generalized Learning
To obtain more general knowledge across source
prompts, we apply meta learning to train the general
scoring model. Specifically, we take each prompt
Pi in N source prompts P = {Pi}Ni=1 as a separate
task for meta learning, and then we update the gen-
eral scoring model by incorporating prompt-specific
scoring knowledge from all prompts.

Algorithm 1: Procedure of PLAES
Input: source prompts P = {Pi}Ni=1

Output: general scoring model ϕ(θ)
1 Randomly initialize θ;
2 for prompt-generalized iteration do
3 Sample a batch of training tasks

T = {Ti}Ni=1;
4 for Ti ∈ {T1, T2, ..., TN} do
5 Sample P s

i , P
q
i from Pi;

6 Calculate Laes(θ;P
s
i );

7 Update ϕ(θi) by Eq. (9);
8 Calculate Laes(θi;P

q
i );

9 Update θ by Eq. (10);
10 Initialize level scoring models:
11 θL, θM , θH = θ;
12 for level-aware iteration do
13 Train level scoring models by Eq. (11);
14 Sample a batch of data x;
15 for x ∈ P do
16 h = ϕ(θ;x);
17 ho = ϕ(θo;x), o ∈ L,M,H;
18 Calculate Laes by Eq. (7);
19 Calculate LLA by Eq. (12);
20 Update θ by optimizing Laes and LLA;

For each iteration of meta learning, a batch
of training tasks T = {Ti}Ni=1 are sampled from
source prompts. In each task Ti, we sample a
support set P s

i and a query set P q
i from Pi ∈ P .

Assuming that the general scoring model param-
eters are denoted as θ and the task-specific pa-
rameters of the inner scoring model are denoted
as θi ∈ {θ1, θ2, ..., θN}. For each task Ti, θi can
be updated by training models with support set P s

i ,
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Prompt ID No. of Essays Avg. Length Essay Type Grade Level Attributes Score Range
Overall Attribute

P1 1,783 350 Argumentative 8 Cont, Org, WC, SF, Conv 2 - 12 1 - 6
P2 1,800 350 Argumentative 10 Cont, Org, WC, SF, Conv 0 - 6 1 - 6
P3 1,726 150 Source-Dependent 10 Cont, PA, Lan, Nar 0 - 3 0 - 3
P4 1,772 150 Source-Dependent 10 Cont, PA, Lan, Nar 0 - 3 0 - 3
P5 1,805 150 Source-Dependent 8 Cont, PA, Lan, Nar 0 - 4 0 - 4
P6 1,800 150 Source-Dependent 10 Cont, PA, Lan, Nar 0 - 4 0 - 4
P7 1,569 300 Narrative 7 Cont, Org, Conv 0 - 30 0 - 6
P8 723 650 Narrative 10 Cont, Org, WC, SF, Conv 0 - 60 2 - 12

Table 1: Statistics of ASAP++ Dataset. Cont denotes Content, Org is Organization, WC is Word Choice, SF
is Sentence Fluency, Conv is Conventions, PA is Prompt Adherence, Lan is Language, Nar is Narrativity.

which can be called meta-train process.

θi = θ − α▽θ Laes(θ;P
s
i ), (9)

where α is the learning rate of meta-train process,
and Laes(θ;P

s
i ) is the scoring loss calculated by

using scoring model with parameters θ and P s
i .

Then, we calculate meta-test loss Laes(θi;P
q
i )

with θi and query set P q
i , which is used as training

loss of meta learning on the current task.
After loop all tasks, the parameters θ of the gen-

eral scoring model can be updated as follows:

θ = θ − β ▽θ

N∑
i

Laes(θi;P
q
i ), (10)

where β is the learning rate of meta-test process
and N is the number of source prompts.

3.4. Level-aware Learning
To improve model’s capacity to differentiate essays
quality within the constraints of writing level, we
design a level-aware contrastive learning strategy
to bring the essay representation of general scoring
model closer to the representation of its correspond-
ing level and further away from the representations
of the other two levels. The details are as follows.

Firstly, inspired by Jin et al. (2018), we normal-
ize essay’s overall scores on [0, 1] scale. Essays
with [0, 0.4] represent low-level essays, (0.4, 0.8)
represent middle-level essays, and [0.8, 1] repre-
sent high-level essays. These level subsets can
be denoted as PL, PM , PH . Then, for each level,
we initialize a level scoring model with the same
parameters as the general scoring model, denoted
as θo = θ, o ∈ {L,M,H}. At the beginning of each
iteration, the level scoring models are updated via
training scoring tasks with level subsets in order to
acquire the scoring knowledge from each level.

θo = θo − γ ▽θo Laes(θo;Po), (11)

where γ is the learning rate of training level models.
After that, we sample a batch of essays from all

source prompts P to train the level-aware learn-
ing and fine-tune scoring tasks. For convenience

(as shown in Figure 2), we introduce the training
process with an essay x ∈ {xL, xM , xH}. We
input x into three level scoring models and the
general scoring model to get level representations
hL, hM , hH and general representation h, denoted
as ho = ϕ(θo;x), o ∈ {L,M,H} and h = ϕ(θ;x).
For low-level essay xL, its corresponding positive
example is hL, while the negative examples are
hM and hH . The level-aware contrastive learning
loss for xL is constructed as:

LL
LA = −log

f(h, hL)∑
o∈{L,M,H}f(h, ho)

, (12)

where f(a, b) = exp(cos(a, b)/τ), cos(·) is the co-
sine similarity function and τ is the temperature.
Finally, the total loss function of xL in Step II is:

LL = Laes(θ;xL) + λLL
LA, (13)

where λ is the weighted hyper-parameter. Similarly,
the losses for middle-level essay xM and high-level
essay xH can be calculated in the same way:

LM = Laes(θ;xM ) + λLM
LA, (14)

LH = Laes(θ;xH) + λLH
LA. (15)

The final batch loss is the mean of all essay
losses in the batch.

4. Experiments

4.1. Dataset and Evaluation Metric
We conduct experiments on the ASAP++ (Math-
ias and Bhattacharyya, 2018) dataset, which is an
eight-prompt, multi-attribute essay scoring dataset
derived from the ASAP3 dataset. Each essay re-
ceives an overall score as well as multiple attribute
scores, and the statistics of dataset are provided
in Table 1. It should be noted that there are unique
attributes Style in P7 and Voice in P8. Following
Ridley et al. (2021), we removed them in this paper.

For each target prompt, the remaining seven
prompts serve as source prompts. For example, if

3https://www.kaggle.com/c/asap-aes
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Model P1 P2 P3 P4 P5 P6 P7 P8 Avg
Hi att 0.315 0.478 0.317 0.478 0.375 0.357 0.205 0.265 0.349
AES aug 0.330 0.518 0.299 0.477 0.341 0.399 0.162 0.200 0.341
PAES 0.605 0.522 0.575 0.606 0.634 0.545 0.356 0.447 0.536
CTS no att 0.619 0.539 0.585 0.616 0.616 0.544 0.363 0.461 0.543
CTS 0.623 0.540 0.592 0.623 0.613 0.548 0.384 0.504 0.553
PMAES 0.656 0.553 0.598 0.606 0.626 0.572 0.386 0.530 0.566
PLAES (ours) 0.648 0.563 0.604 0.623 0.634 0.593 0.403 0.533 0.575

Table 2: Average QWK of all attributes on each prompt.

Model Overall Cont Org WC SF Conv PA Lan Nar Avg
Hi att 0.453 0.348 0.243 0.416 0.428 0.244 0.309 0.293 0.379 0.346
AES aug 0.402 0.342 0.256 0.402 0.432 0.239 0.331 0.313 0.377 0.344
PAES 0.657 0.539 0.414 0.531 0.536 0.357 0.570 0.531 0.605 0.527
CTS no att 0.659 0.541 0.424 0.558 0.544 0.387 0.561 0.539 0.605 0.535
CTS 0.670 0.555 0.458 0.557 0.545 0.412 0.565 0.536 0.608 0.545
PMAES 0.671 0.567 0.481 0.584 0.582 0.421 0.584 0.545 0.614 0.561
PLAES (ours) 0.673 0.574 0.491 0.579 0.580 0.447 0.601 0.554 0.631 0.570

Table 3: Average QWK for each attribute over all prompts.

target prompt is P1 and source prompts are P2 to
P8, then the training and validation sets are from
P2 to P8, and the test set is P1.

The evaluation metric is Quadratic Weighted
Kappa (QWK). It is a commonly used evaluation
metric in AES and use to assess the consistency
between actual and predicted scores.

4.2. Experiment Setting

Our training data are only from source prompt. In
Step I of the training procedure, we sample the
meta learning tasks from source prompt for prompt-
generalized learning. In Step II, we use a batch of
samples from source prompt to train level-aware
learning and fine-tune the scoring task.

All scoring models use 50-dim POS embeddings
as input. The kernel size is 5, the number of filters is
100 in CNN, and the number of units is 100 in LSTM.
In all steps, the optimizers are RMSprop (Dauphin
et al., 2015). The handcrafted features are 86-
dimensional features from Ridley et al. (2020), in-
cluding features of Length-based, Readability, Text
Complexity, Text Variation and Sentiment.

For prompt-generalized learning, the number of
meta learning iterations is 1000, and the batch size
of each task is 64. The learning rates of meta-
train and meta-test are α = 0.001 and β = 0.01.
For level-aware learning, the number of iterations,
learning rate and batch size in Step II are 30, 0.001
and 32. The temperature and weighted hyper-
parameter of contrastive learning loss are τ = 0.07
and λ = 0.5.

We use the model with the highest average QWK
on all attributes in validation set for test set and
report the average result across five random seeds.
All experimental results in this paper are obtained
from a Nvidia4 GeForce RTX 3080 graphics card.

4.3. Baseline Models
The details of baseline models are as follows:

(1) Hi att (Dong et al., 2017) is a hierarchical
structure with an attention-based model. We use
the same structure in the encoder in this paper.

(2) AES aug (Hussein et al., 2020) is a multi-
attribute scoring model based on the structure pro-
posed by Taghipour and Ng (2016).

(3) PAES (Ridley et al., 2020) employs hand-
crafted features to facilitate the acquisition of
prompt-agnostic information within a hierarchical
structure.

(4) CTS (Ridley et al., 2021) marks the inception
of cross-prompt multi-attribute scoring, featuring
both shared and private layers. This model lever-
ages trait(attribute)-attention mechanism to effec-
tively integrate information from all attributes.

(5) CTS no att (Ridley et al., 2021) has the same
structure as CTS, with both public and private lay-
ers, but excludes trait attention.

(6) PMAES (Chen and Li, 2023) proposes a
prompt-mapping contrastive learning to learn about
more consistent representations from source and
target prompts.

4https://www.nvidia.com/
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Model P1 P2 P3 P4 P5 P6 P7 P8 Avg
PLAES 0.648 0.563 0.604 0.623 0.634 0.593 0.403 0.533 0.575
w/o PG 0.632 0.519 0.602 0.611 0.627 0.577 0.382 0.451 0.550
w/o LA 0.604 0.535 0.542 0.604 0.621 0.512 0.395 0.494 0.538
w/o PG+LA 0.598 0.533 0.564 0.620 0.635 0.576 0.388 0.372 0.536

Table 4: Ablation results in average QWK of all attributes on each prompt. PG is prompt-generalized
learning and LA is level-aware learning. w/o PG is only trained with LA and scoring task, w/o LA is model
trained with PG in Step I and scoring task in Step II. w/o PG+LA is model only trained with scoring task.

Model Overall Cont Org WC SF Conv PA Lan Nar Avg
PLAES 0.673 0.574 0.491 0.579 0.580 0.447 0.601 0.554 0.631 0.570
w/o PG 0.646 0.551 0.434 0.555 0.552 0.383 0.594 0.551 0.620 0.543
w/o LA 0.643 0.534 0.464 0.540 0.556 0.402 0.554 0.522 0.573 0.532
w/o PG+LA 0.634 0.541 0.416 0.506 0.526 0.349 0.583 0.547 0.617 0.524

Table 5: Ablation results in average QWK for each attribute over all prompts.

5. Results and Analysis

5.1. Main Results

Following Ridley et al. (2021), we report the result
from two dimensions. For the first dimension, we
show the scoring performance of the models on
each prompt in Table 2. We can see that PLAES
achieves the best results on all but P1 and gets
the average QWK of 0.575. For each attribute di-
mension over all prompts, we show the scoring
performance of the models on each attribute on
Table 3. In this dimension, the results demonstrate
that our approach PLAES not only achieves the
best average QWK (0.570). We also perform a
statistical experiment using the pairwise t-test. The
results show that PLAES is statistically significant in
comparing with PMAES for both the average QWK
of all attributes on each prompt (with p = 0.0177)
and the average QWK for each attribute over all
prompts (with p = 0.0172).

Among these models, Hi att and AES aug only
use neural features based on scoring model. PAES,
CTS no att and CTS use additional handcrafted
features on the basis of neural networks. The
above methods do not consider using other con-
straints to enhance the generalization ability of the
model. PMAES uses contrastive learning to make
the model learn more shared features from con-
sistent representations. This strategy is similar to
our proposed prompt-generalized learning, which
also aims to obtain more general knowledge across
source prompts, but we do not need to use any
target prompt essay. Meanwhile, our method fur-
ther utilizes level-aware learning to improve model’s
capacity to differentiate essays quality within the
constraints of writing level. This also enables our
method to achieve better performance.

5.2. Ablation Studies
In order to investigate the effectiveness of our pro-
posed prompt-generalized learning (PG) and level-
aware learning (LA) strategies, we conduct ablation
studies in this section. We also present the ablation
results from two dimensions.

As shown in Table 4, we can see that removing
PG or LA results in a performance decrease on
each prompt. The average QWK drops by 2.5%
after removing PG, by 3.7% after removing LA, and
by 3.9% after removing both PG and LA. From Ta-
ble 5, we also can seen that either removing PG
or LA results in a decrease in the model’s scor-
ing performance on all attributes. The above re-
sults demonstrate the good effectiveness of our
proposed two learning strategies. In conclusion, it
can be observed that both PG and LA contribute
to the improvement of scoring performance, and
LA plays a greater role in improving scoring perfor-
mance. The performance of our model (full PLAES)
is further enhanced by combining PG and LA.

5.3. Visualization Analysis
In this section, we use the t-SNE toolkit (Van der
Maaten and Hinton, 2008) to visualize essay rep-
resentations to demonstrate the effects of prompt-
generalized learning (PG) and level-aware learning
(LA) strategies, respectively.

5.3.1. Effect of Prompt-generalized Learning

As shown in Figure 3, the essay representations en-
coded by randomly initialized (RI) are significantly
inconsistent. After training with PG (RI-PG), the
overlap between the source prompts substantially
increased, indicating an improvement in prompt rep-
resentation consistency. The findings indicate that
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Figure 3: Visualization of source prompt essay representations encoded by randomly initialized models
(called RI, top row) and the models after training PG (called RI-PG, bottom row).

Figure 4: Visualization of target prompt essay representations encoded by RI-PG, PLAES w/o LA and
PLAES. Essays in low, middle, and high levels are represented by the red, green, and blue points.

the representations acquired by the RI-PG exhibit
greater consistency compared to those obtained
by RI alone. Additionally, PG demonstrates the
ability to effectively capture more generalized fea-
tures across different source prompts, which can
be used for level-aware learning.

5.3.2. Effect of Level-aware Learning

As shown in Figure 4 (a), when the P1 as the target
prompt, if the model only trained the scoring task in
Step II by PLAES w/o LA, the model cannot distin-
guish the three writing levels in the target prompt.
This can be reflected that these three level essay
representations obtained by PLAES w/o LA is still
chaotic. Conversely, after training with LA, the es-
say representations of three levels became visually
distinguishable, indicating that the model has better
ability to distinguish between different writing levels
of target prompt. The same observation can also
be seen in Figure 4 (b). The above results show
that LA can effectively improve model’s ability to
distinguish between different writing levels.

L-M / M-H P1 P3 P5 P6 Avg
0.4 / 0.8 0.648 0.604 0.634 0.593 0.620
0.2 / 0.8 0.635 0.595 0.617 0.580 0.607
0.4 / 0.6 0.619 0.593 0.610 0.584 0.602

Table 6: Experiment results of different bound-
aries for essay levels. L-M denotes the boundary
between low and middle levels, while M-H is the
boundary between middle and high levels.

5.4. Analysis of Essay Level Boundaries

We conduct experiments on two different bound-
aries to explore the impact of essay level bound-
aries on level-aware learning. As shown in Table 6,
reducing the low to middle level boundary from 0.4
to 0.2 or the middle to high level boundary from 0.8
to 0.6 will result in a decline in the model’s scor-
ing performance. This suggests that in level-aware
learning, the score range of low-level may need to
be expanded to encompass more essays with lower
scores as low-level essays, while the score range
of high-level needs to be narrowed to maintain the
quality of high-level essays.
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Model P1 P2 P3 P4 P5 P6 P7 P8 Avg
PLAES (32) 0.648 0.563 0.604 0.623 0.634 0.593 0.403 0.533 0.575
PG-SupCL (32) 0.573 0.497 0.549 0.583 0.594 0.551 0.389 0.463 0.525
PG-SupCL (64) 0.550 0.514 0.551 0.618 0.593 0.549 0.403 0.461 0.530
PG-SupCL (128) 0.577 0.505 0.549 0.624 0.607 0.560 0.386 0.467 0.534
PG-SupCL (256) 0.582 0.488 0.551 0.619 0.594 0.530 0.367 0.458 0.524
PLAES w/o PG (32) 0.632 0.519 0.602 0.611 0.627 0.577 0.382 0.451 0.550
SupCL (32) 0.570 0.492 0.585 0.620 0.631 0.564 0.385 0.426 0.534
SupCL (64) 0.564 0.489 0.588 0.624 0.622 0.562 0.371 0.459 0.535
SupCL (128) 0.583 0.501 0.596 0.603 0.630 0.568 0.374 0.468 0.540
SupCL (256) 0.573 0.481 0.577 0.606 0.636 0.567 0.352 0.448 0.530

Table 7: Comparative experiment of LA and SupCL in average QWK of all attributes on each prompt. (·)
presents the batch size when training LA or SupCL.

Model Overall Cont Org WC SF Conv PA Lan Nar Avg
PLAES (32) 0.673 0.574 0.491 0.579 0.580 0.447 0.601 0.554 0.631 0.570
PG-SupCL (32) 0.601 0.527 0.452 0.531 0.532 0.390 0.557 0.501 0.578 0.519
PG-SupCL (64) 0.601 0.534 0.450 0.532 0.529 0.389 0.572 0.510 0.590 0.523
PG-SupCL (128) 0.616 0.535 0.444 0.542 0.534 0.380 0.578 0.525 0.599 0.528
PG-SupCL (256) 0.610 0.520 0.433 0.538 0.527 0.369 0.571 0.505 0.589 0.518
PLAES w/o PG (32) 0.646 0.551 0.434 0.555 0.552 0.383 0.594 0.551 0.620 0.543
SupCL (32) 0.593 0.538 0.441 0.533 0.522 0.365 0.592 0.544 0.621 0.528
SupCL (64) 0.598 0.538 0.438 0.536 0.518 0.372 0.591 0.546 0.626 0.529
SupCL (128) 0.623 0.540 0.435 0.540 0.535 0.379 0.585 0.540 0.625 0.534
SupCL (256) 0.614 0.525 0.409 0.531 0.531 0.350 0.586 0.549 0.618 0.524

Table 8: Comparative experiment of LA and SupCL in average QWK for each attribute over all prompts.

5.5. Level-aware Learning vs SupCL

Level-aware learning is to improve the model’s abil-
ity to distinguish writing levels. There are many
ways to achieve this, such as supervised con-
trastive learning (Khosla et al., 2020) (SupCL),
which pull closer the samples from same category
in the same batch and keep away from the samples
with different categories. We argue that SupCL may
be suboptimal for distinguishing different levels in
cross-prompt AES. To verify this, we conduct ex-
periments to replace the LA with SupCL, where the
model with PG in Step I is called PG-SupCL, and
the model without PG is called SupCL. We keep
other settings the same as PLAES.

As shown in Table 7 and Table 8, when LA is
replaced by SupCL with the batch size 32, the aver-
age QWK of these two dimensions are significantly
dropping. The results show that the LA is more
effective than SupCL in cross-prompt AES. Further-
more, we found that the number of middle-level
essays is significantly larger than that of low-level
and high-level essays. When a batch contains al-
most all middle-level essays, it may lead to unstable
model training. Therefore, we also conduct experi-
ments with different batch sizes. We can see that
the average QWK of PG-SupCL improves with in-

crease of batch size and get the best QWK when
batch size is 128. But this is still far from the re-
sult of PLAES. Similar results can be found for
PLAES w/o PG and SupCL.

To sum up, we can obtain the following findings:
1) SupCL is affected by the batch size. Too large
or too small batches can affect the model’s scor-
ing performance. 2) PG and LA can promote each
other, but PG and SupCL are incompatible. 3) Com-
pared to SupCL, LA can improve the scoring per-
formance more effectively for cross-prompt AES.

6. Conclusion

In order to capture more general knowledge across
prompts and improve the model’s capacity to differ-
entiate essay quality under the constraint of writing
levels, we propose a prompt-generalized and level-
aware learning framework for cross-prompt AES.
Experiments on the ASAP++ dataset illustrate that
our approach outperforms all baseline models. Ab-
lation results show that both prompt-generalized
and level-aware learning strategies are effective im-
proving model’s scoring performance. In the future,
more good strategies can be used for learning gen-
eral knowledge and more constraints are needed to
help the model learn consistent scoring knowledge.



12784

7. Acknowledgements

This work is supported by the National Natu-
ral Science Foundation of China [grant number:
61976062].

8. Bibliographical References

Yigal Attali and Jill Burstein. 2006. Automated es-
say scoring with e-rater® v. 2. The Journal of
Technology, Learning and Assessment, 4(3).

Yue Cao, Hanqi Jin, Xiaojun Wan, and Zhiwei Yu.
2020. Domain-adaptive neural automated es-
say scoring. In Proceedings of the 43rd Inter-
national ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
1011–1020.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. 2020. A simple framework
for contrastive learning of visual representations.
In International conference on machine learning,
pages 1597–1607. PMLR.

Yuan Chen and Xia Li. 2023. PMAES: Prompt-
mapping contrastive learning for cross-prompt
automated essay scoring. In Proceedings of the
61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1489–1503.

Ronan Cummins, Meng Zhang, and Ted Briscoe.
2016. Constrained multi-task learning for au-
tomated essay scoring. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 789–799.

Yann Dauphin, Harm De Vries, and Yoshua Bengio.
2015. Equilibrated adaptive learning rates for
non-convex optimization. Advances in neural
information processing systems, 28.

Yuning Ding, Marie Bexte, and Andrea Horbach.
2023. Score it all together: A multi-task learn-
ing study on automatic scoring of argumentative
essays. In Findings of the Association for Com-
putational Linguistics: ACL 2023, pages 13052–
13063.

Heejin Do, Yunsu Kim, and Gary Geunbae Lee.
2023. Prompt- and trait relation-aware cross-
prompt essay trait scoring. In Findings of the
Association for Computational Linguistics: ACL
2023, pages 1538–1551.

Fei Dong and Yue Zhang. 2016. Automatic fea-
tures for essay scoring - an empirical study. In

Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing,
EMNLP 2016, Austin, Texas, USA, November
1-4, 2016, pages 1072–1077. The Association
for Computational Linguistics.

Fei Dong, Yue Zhang, and Jie Yang. 2017.
Attention-based recurrent convolutional neural
network for automatic essay scoring. In Proceed-
ings of the 21st Conference on Computational
Natural Language Learning (CoNLL 2017), Van-
couver, Canada, August 3-4, 2017, pages 153–
162. Association for Computational Linguistics.

Chelsea Finn, Pieter Abbeel, and Sergey Levine.
2017. Model-agnostic meta-learning for fast
adaptation of deep networks. In International
conference on machine learning, pages 1126–
1135. PMLR.

Tianyu Gao, Xingcheng Yao, and Danqi Chen.
2021. Simcse: Simple contrastive learning of
sentence embeddings. In Proceedings of the
2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6894–6910.

Xu Han, Yuqi Luo, Weize Chen, Zhiyuan Liu,
Maosong Sun, Zhou Botong, Hao Fei, and Sun-
cong Zheng. 2022. Cross-lingual contrastive
learning for fine-grained entity typing for low-
resource languages. In Proceedings of the 60th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 2241–2250.

Yaqiong He, Feng Jiang, Xiaomin Chu, and Peifeng
Li. 2022. Automated chinese essay scoring from
multiple traits. In Proceedings of the 29th Interna-
tional Conference on Computational Linguistics,
COLING 2022, Gyeongju, Republic of Korea, Oc-
tober 12-17, 2022, pages 3007–3016.

Marti A Hearst. 2000. The debate on automated
essay grading. IEEE Intelligent Systems and
their Applications, 15(5):22–37.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Mohamed A Hussein, Hesham A Hassan, and Mo-
hammad Nassef. 2020. A trait-based deep learn-
ing automated essay scoring system with adap-
tive feedback. International Journal of Advanced
Computer Science and Applications, 11(5).

Ting Jiang, Jian Jiao, Shaohan Huang, Zihan
Zhang, Deqing Wang, Fuzhen Zhuang, Furu Wei,
Haizhen Huang, Denvy Deng, and Qi Zhang.
2022. PromptBERT: Improving BERT sentence
embeddings with prompts. In Proceedings of the



12785

2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 8826–8837.

Zhiwei Jiang, Tianyi Gao, Yafeng Yin, Meng Liu,
Hua Yu, Zifeng Cheng, and Qing Gu. 2023. Im-
proving domain generalization for prompt-aware
essay scoring via disentangled representation
learning. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 12456–
12470.

Cancan Jin, Ben He, Kai Hui, and Le Sun. 2018.
Tdnn: a two-stage deep neural network for
prompt-independent automated essay scoring.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1088–1097.

Prannay Khosla, Piotr Teterwak, Chen Wang,
Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. Advances in Neu-
ral Information Processing Systems, 33:18661–
18673.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages
1746–1751.

Linjun Li, Tao Jin, Xize Cheng, Ye Wang, Wang
Lin, Rongjie Huang, and Zhou Zhao. 2023. Con-
trastive token-wise meta-learning for unseen per-
former visual temporal-aligned translation. In
Findings of the Association for Computational
Linguistics: ACL 2023, pages 10993–11007.

Xia Li, Minping Chen, and Jian-Yun Nie. 2020.
SEDNN: shared and enhanced deep neural
network model for cross-prompt automated
essay scoring. Knowledge-Based Systems,
210:106491.

Shining Liang, Linjun Shou, Jian Pei, Ming Gong,
Wanli Zuo, Xianglin Zuo, and Daxin Jiang. 2022.
Label-aware multi-level contrastive learning for
cross-lingual spoken language understanding. In
Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing,
pages 9903–9918.

Dongliang Liao, Jin Xu, Gongfu Li, and Yiru Wang.
2021. Hierarchical coherence modeling for doc-
ument quality assessment. In Proceedings of
the AAAI Conference on Artificial Intelligence,
volume 35, pages 13353–13361.

Fei Mi, Minlie Huang, Jiyong Zhang, and Boi Falt-
ings. 2019. Meta-learning for low-resource natu-
ral language generation in task-oriented dialogue

systems. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence, pages
3151–3157.

Michael Mohler and Rada Mihalcea. 2009. Text-
to-text semantic similarity for automatic short an-
swer grading. In Proceedings of the 12th Confer-
ence of the European Chapter of the ACL (EACL
2009), pages 567–575.

Qiong Nan, Danding Wang, Yongchun Zhu, Qiang
Sheng, Yuhui Shi, Juan Cao, and Jintao Li. 2022.
Improving fake news detection of influential do-
main via domain-and instance-level transfer. In
Proceedings of the 29th International Conference
on Computational Linguistics, pages 2834–2848.

Isaac Persing and Vincent Ng. 2013. Modeling
thesis clarity in student essays. In Proceedings
of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 260–269.

Peter Phandi, Kian Ming A Chai, and Hwee Tou Ng.
2015. Flexible domain adaptation for automated
essay scoring using correlated linear regression.
In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing,
pages 431–439.

Robert Ridley, Liang He, Xin-yu Dai, Shujian
Huang, and Jiajun Chen. 2021. Automated cross-
prompt scoring of essay traits. In Proceedings
of the AAAI conference on artificial intelligence,
volume 35, pages 13745–13753.

Robert Ridley, Liang He, Xinyu Dai, Shujian Huang,
and Jiajun Chen. 2020. Prompt agnostic es-
say scorer: A domain generalization approach
to cross-prompt automated essay scoring. arXiv
preprint arXiv:2008.01441.

Lawrence M Rudner and Tahung Liang. 2002. Auto-
mated essay scoring using bayes’ theorem. The
Journal of Technology, Learning and Assess-
ment, 1(2).

Yafet Salim, Valdi Stevanus, Edwardo Barlian,
Azani Cempaka Sari, and Derwin Suhartono.
2019. Automated english digital essay grader
using machine learning. In 2019 IEEE Interna-
tional Conference on Engineering, Technology
and Education (TALE), pages 1–6. IEEE.

Takumi Shibata and Masaki Uto. 2022. Analytic
automated essay scoring based on deep neu-
ral networks integrating multidimensional item
response theory. In Proceedings of the 29th
International Conference on Computational Lin-
guistics, pages 2917–2926.



12786

Wei Song, Kai Zhang, Ruiji Fu, Lizhen Liu, Ting
Liu, and Miaomiao Cheng. 2020. Multi-stage pre-
training for automated chinese essay scoring. In
Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing
(EMNLP), pages 6723–6733.

Md Arafat Sultan, Cristobal Salazar, and Tamara
Sumner. 2016. Fast and easy short answer grad-
ing with high accuracy. In Proceedings of the
2016 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pages 1070–
1075.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Pro-
cessing Systems 27: Annual Conference on Neu-
ral Information Processing Systems 2014, De-
cember 8-13 2014, Montreal, Quebec, Canada,
pages 3104–3112.

Kaveh Taghipour and Hwee Tou Ng. 2016. A neural
approach to automated essay scoring. In Pro-
ceedings of the 2016 conference on empirical
methods in natural language processing, pages
1882–1891.

Yi Tay, Minh Phan, Luu Anh Tuan, and Siu Che-
ung Hui. 2018. Skipflow: Incorporating neural
coherence features for end-to-end automatic text
scoring. In Proceedings of the AAAI conference
on artificial intelligence, volume 32.

Masaki Uto, Yikuan Xie, and Maomi Ueno. 2020.
Neural automated essay scoring incorporating
handcrafted features. In Proceedings of the 28th
International Conference on Computational Lin-
guistics, pages 6077–6088.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Cong Wang, Zhiwei Jiang, Yafeng Yin, Zifeng
Cheng, Shiping Ge, and Qing Gu. 2023. Aggre-
gating multiple heuristic signals as supervision
for unsupervised automated essay scoring. In
Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 13999–14013.

Dong Wang, Ning Ding, Piji Li, and Haitao Zheng.
2021. Cline: Contrastive learning with seman-
tic negative examples for natural language un-
derstanding. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume
1: Long Papers), pages 2332–2342.

Yongjie Wang, Chuang Wang, Ruobing Li, and Hui
Lin. 2022. On the use of bert for automated es-
say scoring: Joint learning of multi-scale essay
representation. In Proceedings of the 2022 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 3416–3425.

Sara Cushing Weigle. 2002. Assessing writing.
Cambridge University Press.

Xing Wu, Chaochen Gao, Liangjun Zang, Jizhong
Han, Zhongyuan Wang, and Songlin Hu. 2022.
Esimcse: Enhanced sample building method for
contrastive learning of unsupervised sentence
embedding. In Proceedings of the 29th Interna-
tional Conference on Computational Linguistics,
pages 3898–3907.

Jiayi Xie, Kaiwei Cai, Li Kong, Junsheng Zhou,
and Weiguang Qu. 2022. Automated essay scor-
ing via pairwise contrastive regression. In Pro-
ceedings of the 29th International Conference on
Computational Linguistics, pages 2724–2733.

Ming Yan, Hao Zhang, Di Jin, and Joey Tianyi Zhou.
2020. Multi-source meta transfer for low resource
multiple-choice question answering. In Proceed-
ings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 7331–
7341.

Huaxiu Yao, Ying-xin Wu, Maruan Al-Shedivat,
and Eric Xing. 2021. Knowledge-aware meta-
learning for low-resource text classification. In
Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing,
pages 1814–1821.

Yuhao Zhang, Hongji Zhu, Yongliang Wang, Nan
Xu, Xiaobo Li, and Binqiang Zhao. 2022. A con-
trastive framework for learning sentence repre-
sentations from pairwise and triple-wise perspec-
tive in angular space. In Proceedings of the
60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 4892–4903.

9. Language Resource References

Sandeep Mathias and Pushpak Bhattacharyya.
2018. Asap++: Enriching the asap automated es-
say grading dataset with essay attribute scores.
In Proceedings of the eleventh international con-
ference on language resources and evaluation
(LREC 2018).


	Introduction
	Related Work
	Automated Essay Scoring
	Meta Learning
	Contrastive Learning

	Our Approach
	Task Definition
	Scoring Model
	Prompt-generalized Learning
	Level-aware Learning

	Experiments
	Dataset and Evaluation Metric
	Experiment Setting
	Baseline Models

	Results and Analysis
	Main Results
	Ablation Studies
	Visualization Analysis
	Effect of Prompt-generalized Learning
	Effect of Level-aware Learning

	Analysis of Essay Level Boundaries
	Level-aware Learning vs SupCL

	Conclusion
	Acknowledgements
	Bibliographical References
	Language Resource References

