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Abstract
Generating visualizations from natural language queries is a useful extension to visualization libraries such as
Vega-Lite. The goal of the NL2VIS task is to generate a valid Vega-Lite specification from a data frame and a natural
language query as input, which can then be rendered as a visualization. To enable real-time interaction with the
data, small model sizes and fast inferences are required. Previous work has introduced custom neural network
solutions with custom visualization specifications and has not systematically tested pre-trained LMs to solve this
problem. In this work, we opt for a more generic approach that (i) evaluates pre-trained LMs of different sizes and
(ii) uses string encodings of data frames and visualization specifications instead of custom specifications. In our
experiments, we show that these representations, in combination with pre-trained LMs, scale better than current
state-of-the-art models. In addition, the small and base versions of the T5 architecture achieve real-time interaction,
while LLMs far exceed latency thresholds suitable for visual exploration tasks. In summary, our models generate vi-
sualization specifications in real-time on a CPU and establish a new state of the art on the NL2VIS benchmark nvBench.

Keywords: NL2VIS, visualization generation, visualization-oriented dialog

1. Introduction

Generating plots from natural language queries
(NL2VIS) allows users to create visualizations with-
out knowing the syntax of the visualization library
(e.g. matplotlib or Vega-Lite) (Hunter, 2007; Satya-
narayan et al., 2016). This functionality is useful,
for example, when a user is working on a Pandas
data frame and wants to create a visualization for
it in a Jupyter Notebook, as shown in Figure 1. To
date, the NL2VIS task has received relatively little
attention in NLP compared to closely related se-
mantic parsing tasks. Previous work on NL2VIS
has come mainly from the visualization community
and has not fully incorporated state-of-the-art tech-
niques such as pre-trained LMs. One goal of this
work is to draw the attention of the NLP community
to the NL2VIS task and to explore the potential of
state-of-the-art NLP technology for NL2VIS.

Current methods for this task have introduced
custom architectures that use specific encodings
for the visualization specification to be generated.
The problem with custom visualization representa-
tions, such as Vega-Zero (Luo et al., 2021b), is that
they represent only a limited subset of the attributes
of a visualization. This raises the barrier to entry
for widespread use of NL2VIS models, since only a
small subset of the possible options offered by the
underlying visualization library can be queried by
users. In addition to high accuracy in the mapping
between queries and visualizations, the models’
capabilities in terms of fast inference and smooth
interaction are a key aspect of the NL2VIS task.

Figure 1: An application of a model trained on the
nvBench dataset in a Jupyter notebook to translate
natural language queries into visualization specifi-
cations.

The study by Liu and Heer (2014) shows that a la-
tency of more than 500ms to the expected latency
of an interaction significantly reduces user activity
in visualization exploration tasks. However, interac-
tive latencies are not systematically considered in
existing LM-based methods for semantic parsing
and could be a major limiting factor of LLMs in this
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domain. Therefore, our goal in this work is to inves-
tigate not only the accuracy of a model, but also
the relationship between the size of the LM and the
inference time required, i.e., its usability in a visual
exploration scenario.

Our contributions can be summarized as follows:
• We show that pre-trained T5 LMs using a string

encoding of the visualization specification and
data frame outperform custom state-of-the-
art models on the nvBench benchmark.

• We analyze error cases and find that pre-
trained T5 models achieve a lower word error
rate than custom models, even though the lat-
ter use guided decoding strategies.

• We benchmark the performance of all models
against the perception threshold of Liu and
Heer (2014) and show that our models can be
used in a real-time data exploration scenario
on a CPU.

2. Related Work

Research on Natural language Interfaces (NLIs) en-
joys increasing popularity in Visualization and NLP
(Voigt et al., 2022). One line of work on NLIs has
focused on usability, e.g., Srinivasan et al. (2019,
2021) found that user queries in natural language
often focus on attributes, diagram type, aggrega-
tion method and visual features of the visualization.
A second line of work addresses the mapping be-
tween natural language queries and visualization
code, i.e. the NL2VIS task. Here, a number of rule-
based parsers have been developed, e.g. Articu-
late (Sun et al., 2014), NL4DV (Narechania et al.,
2020), or FlowSense (Yu and Silva, 2019). The
shortcomings of these methods, especially their
inflexibility with expressions unknown to the parser,
have been addressed by recent neural architec-
tures based on RNNs (Dibia and Demiralp, 2019),
BERT (Liu et al., 2021), or sequence-to-sequence
transformers (Tang et al., 2022). Yet, these ap-
proaches have not been compared on a standard
NL2VIS benchmark. A third line of work imple-
ments NL2VIS as a component within dialog sys-
tems (Aurisano et al., 2016; Bacci et al., 2020), as in
Eviza (Setlur et al., 2016) or Chat2VIS (Maddigan
and Susnjak, 2023) where prompting methods for
large language models such as ChatGPT (Ouyang
et al., 2022) have been explored. The ChartDi-
alogs (Shao and Nakashole, 2020) dataset pro-
vides dialogues where visualization specifications
are incrementally modified by natural language
commands. Our work addresses the second type
of approach and focuses on benchmarking models
for the NL2VIS task.

Recently, Luo et al. (2021a) introduced the
first large-scale benchmark for NL2VIS, i.e. the

nvBench corpus containing 25k query-visualization
pairs. The state-of-the-art system on nvBench, nc-
net (Luo et al., 2021b), uses a special encoding of
the visualization called Vega-Zero, which maps a
set of given attributes of a Vega-Lite specification
into a string representation and uses a template-
guided mechanism for decoding the visualization
code. This ensures that the generated specifica-
tion can also be rendered as a visualization. Other
work uses generation approaches that condition on
previously retrieved similar visualization specifica-
tions given a user query (Song et al., 2022; Bavishi
et al., 2021) or generate proposals for visualizations
from pure data frame representations (Dibia and
Demiralp, 2019). Our work focuses on overcoming
specialized coding for data frames and visualization
specifications as well as template-based decoding
or retrieval toward more generic and transferrable
models.

3. Model and Training

Model. We experiment with three variants of the T5
architecture (Raffel et al., 2020) in sizes small, base,
and large. We compare these to the instruction
fine-tuned version called FLAN-T5 (Longpre et al.,
2023), also in sizes small, base, and large, to see
if instruction fine-tuning has an effect on the ability
to map intentions from user queries. All model
weights are taken from the huggingface hub (Wolf
et al., 2020).
Dataset. The path from a user query to a finished
visualization in the NL2VIS task is as follows: first,
the user query in natural language is encoded and
translated by the model into a visualization speci-
fication in JSON format. This specification is then
passed to a visualization library such as Vega-Lite.
This library has access to an underlying database
and retrieves the relevant data defined in the speci-
fication. It then maps it to a visualization format also
defined in the specification, such as a bar graph.
Finally, it renders an image of the desired visual-
ization and returns it to the user. In this pipeline,
the NL2VIS models evaluated in this paper take
over the first step: the mapping between query and
specification.

To train and evaluate the models, we use the
nvBench (Luo et al., 2021a) dataset. It contains
7,274 visualizations representing seven different
types of graphs. Each of these visualizations is
associated with one or more NL queries. All NL
queries are provided in English. In total, the dataset
consists of 25,750 (NL, VIS) pairs. The training
set consists of 20,598 pairs, the validation set
of 1,162 pairs, and the test set of 3,990 NL-VIS
pairs. Furthermore, the data is categorized into
four complexity levels, easy, medium, hard and
extra hard, based on the difficulty of the natural
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language query.
Input Encoding. The input to our model consists
of the user request and a Pandas data frame. We
encode both as strings using the SentencePiece to-
kenizer (Kudo and Richardson, 2018). The Pandas
data frame is represented as the header, followed
by the first three rows. An example of the encoding
of a data frame looks like this: table_name :
products col : product_id (int64)
| product_type_code (object) | ...
row_0 : 1 | Hardware | ... . The user
query is appended to the encoded data frame,
separated by double line breaks.
Output Encoding. Previous work by Luo et al.
(2021b) has introduced a specific encoding for
Vega-Lite specifications called Vega-Zero. The
idea behind this encoding was to simplify the
creation of visualization specifications, which
are typically represented as large, nested JSON
objects, by converting them to a simple sequential
representation that captures the key attributes
of the specification. A sample description of
a visualization in Vega-Zero looks like this:
mark bar data products encoding x
product_name y aggregate count prod-
uct_name transform group x sort y
desc. To keep the performance of our approach
comparable to the state-of-the-art architecture
ncnet (Luo et al., 2021b), we train all model
ablations using this Vega-Zero encoding as target
output in the first experiment. In the second
experiment, we train the same architectures
to generate Vega-Lite specifications in JSON
instead. The SentencePiece tokenizer that T5 was
pre-trained with does not allow parentheses when
encoding strings. Therefore, the Vega-Lite JSON
object is flattened and converted to normalized
JSON (Wes McKinney, 2010). An example of a
normalized Vega-Lite JSON object looks like this:
"mark": "bar", "encoding_x_field":
"product_name", "encoding_x_type":
"nominal", "encoding_x_sort": "-y",
"encoding_y_field": "product_name",
....
Training. All models are trained for 10 epochs
on an NVIDIA RTX A6000 GPU at a learning rate
of 1e-4. We save the checkpoint with the best
performance relative to the validation dataset and
use it for evaluation.

4. Experiments and Results

The goal of our experiments is to investigate
whether a string encoding of data frames and vi-
sualization specifications can be used to gener-
ate visualizations from natural language queries,
and how the performance compares to customized
state-of-the-art models (Section 4.1, 4.2). We also

Model Easy Medium Hard EHard Total
NN* 0.70 0.66 0.69 0.53 0.65
ncnet-3 0.76 0.74 0.77 0.59 0.72
ncnet-6 0.68 0.61 0.67 0.53 0.62
ncnet-12 0.63 0.55 0.62 0.49 0.57
t5-small 0.85 0.71 0.77 0.67 0.75
ft5-small 0.86 0.74 0.78 0.66 0.76
t5-base 0.90 0.74 0.87 0.68 0.80
ft5-base 0.86 0.75 0.86 0.69 0.79
t5-large 0.82 0.67 0.81 0.69 0.75
ft5-large 0.88 0.78 0.85 0.65 0.79

Table 1: Vega-Zero Experiment. Exact match ac-
curacies on the nvBench dataset using Vega-Zero
encoding. Starred (*) results are taken from Luo
et al. (2021b). The numbers 3, 6, 12 represent
the number of encoder/decoder layers of the ncnet
model.

investigate whether these approaches allow real-
time inference on CPUs (section 4.3) and analyze
error cases (Section 4.4).

4.1. Scaling Experiments

In Table 1 we compare the results of different model
variations. All accuracies are calculated as exact
match accuracies to the gold standard outputs
in the test set, to be comparable to previous work
by Luo et al. (2021b). The results in Table 1 show
that when the ncnet architecture is scaled to larger
parameter sizes, its performance decreases as the
model starts to overfit the training data. Without pre-
training, the model reaches its performance limit
already at 3 encoder/decoder layers, and further
scaling of the parameters does not lead to a higher
score. The pre-trained T5-small architecture, with
a size of 6 encoder/decoder layers, performs signif-
icantly better than ncnet on the easy and extra hard
splits, and equally well on the hard test split. The
scores of the base model, increase significantly on
the easy, medium, and hard splits in comparison to
the small models, by an average of 0.04 for all splits.
Interestingly, when the model size is further scaled
to large, the performance decreases again in com-
parison to smaller T5 models, while still outper-
forming ncnet. This shows that even a pre-trained
architecture tends to overfit the NL2VIS dataset if it
has too many parameters. Comparing T5 with the
FLAN models, we find that the small FLAN models
perform slightly better, while the base models are
relatively equal (except for the easy split), only the
large model seems to overfit significantly less than
the pure T5 version.1

1We also experimented with similarly sized GPT-2
architectures, but did not observe significant differences.
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Model Easy Medium Hard EHard Total
t5-small 0.85 0.72 0.80 0.68 0.76
ft5-small 0.84 0.74 0.79 0.65 0.75
t5-base 0.86 0.73 0.86 0.68 0.78
ft5-base 0.89 0.78 0.81 0.68 0.79
t5-large 0.81 0.65 0.76 0.63 0.71
ft5-large 0.88 0.74 0.79 0.65 0.77

Table 2: Vega-Lite Experiment. Exact match ac-
curacies on the nvBench dataset using Vega-Lite
encoding.

4.2. Encoding Experiments
To see if Vega-Zero encoding is really necessary for
reliable visualization specification generation, we
train all T5 model ablations using the normalized
JSON representation as the target output. The
results in Table 2 show that the overall performance
of the small, medium, and large model ablations is
comparable to that of the Vega-Zero encoding. For
the T5-large model, the same drop in performance
is observed as for the Vega-Zero experiments. We
see slightly higher values for the T5-base models
trained with Vega-Zero, but only for the easy and
medium splits. The averages across all splits are
almost identical. Overall, these results show that
both template-guided generation and Vega-Zero
encoding, as used in the ncnet architecture, can be
outperformed by string encoding of data frames and
visualization combined with pre-trained T5-small
or base language models.

4.3. Latency Experiments
Liu and Heer (2014) studied the effects of latency
on user behavior in visual exploration tasks. Ac-
cording to Liu and Heer (2014), an interaction in
this scenario is considered real-time if the system
responds within 500ms of the user’s known delay
of an interaction. This means that if a mouse click
with a known physical delay of 20ms occurs within
a window of 520ms, it will still be perceived by the
user as real-time. Liu and Heer (2014)’s Real-Time
Factor (RTF) refers to the delay with which a pro-
cess runs in real-time. An RTF of 1 means no delay,
a factor greater than 1 means slower than real-time,
and a factor less than 1 means faster than real-time.

We benchmark the latency of all model architec-
tures on an Intel(R) Xeon(R) Gold 6226R 2.90GHz
CPU. Since NL2VIS models are used offline and
within the visualization library, CPU benchmarking
allows for a realistic assessment. We measure the
average time it takes a model to generate a Vega-
Zero visualization specification across 100 random
queries in the test set. The results are shown in
Table 3. Note that ncnet-3 is three times faster than
the small T5 model. However, due to the generic
architecture of the T5 model, it can be very eas-

Model Time in s RTF
ncnet-3 0.09± 0.10 0.18
t5-small 0.31± 0.13 0.62
t5-base 0.46± 0.23 0.92
t5-large 1.63± 0.72 3.26
t5-small-onnx 0.12± 0.06 0.24
t5-base-onnx 0.27± 0.14 0.54
t5-large-onnx 0.77± 0.30 1.54
mistral-7B-2bit 90.40± 19.45 180.80

Table 3: Latency Benchmark. Average generation
times per model on the nvBench test set.

Model Easy Medium Hard EHard Total
ncnet-3 0.132 0.131 0.217 0.241 0.180
t5-small 0.133 0.152 0.182 0.198 0.166
ft5-small 0.137 0.167 0.169 0.227 0.175
t5-base 0.135 0.177 0.185 0.216 0.178
ft5-base 0.166 0.178 0.176 0.100 0.155
t5-large 0.124 0.189 0.247 0.098 0.165
ft5-large 0.143 0.178 0.241 0.131 0.173

Table 4: WER Evaluation. Average WER on the
error cases per split for the different models.

ily converted to an ONNX format and executed in
ONNXRuntime (Developers, 2023). This allows
the T5 model small to achieve almost the same
performance as ncnet-3, with significantly higher
accuracy in the outputs. With a generation time
of 0.27 seconds, the base model also offers real-
time capabilities. To compare generation times
with current SOTA-LLM architectures, we prompt
the CPU-capable 2-bit quantized version of the
Mistral-7B-Instruct model (Jiang et al., 2023) to re-
peat given Vega-Zero strings from the test set. This
simulates the model generating specifications. The
results show that the generation takes about 750
times longer than for the t5-small-onnx model and
with an RTF of 180.8 does not allow real-time data
exploration on a CPU for our use case. This shows
that without hardware acceleration, the real-time re-
quirements of the NL2VIS task are a limiting factor
for LLMs in this domain.

4.4. Error Analysis

For both the earlier state-of-the-art ncnet model
and our T5 ablations, we compute the word er-
ror rate (WER) (Wang et al., 2003) on all failure
cases per split, as an indication of how close the
model was to the correct output. Table 4 shows that
T5-small and base have a slightly lower WER on
average than ncnet. In particular, in the hard and
extra-hard divisions of the benchmark, the small
and base approaches show lower WER. This is
notable because ncnet uses a template-driven de-
coding mechanism, where it only needs to fill in
blanks in a Vega-Zero template, rather than gener-
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ating from scratch as T5 does. This suggests that
template-guided decoding is helpful for controlling
ncnet’s output in the easy and medium cases. How-
ever, with more difficult examples, it becomes more
difficult for the model to understand the user’s intent
based on the query correctly. This is where pre-
trained models have an advantage, as they have
gained more knowledge through pre-training that
could help them infer these intentions better.

5. Conclusion

In this work, we investigated the use of string encod-
ings for data frames and visualization specifications
with small, pre-trained LMs such as T5 to generate
visualizations in real-time. Our experiments have
shown that their application outperforms custom
neural network solutions on the NL2VIS bench-
mark. This eliminates the need for custom encod-
ings such as Vega-Zero. Moreover, by analyzing
error cases, we found that pre-trained T5 ablations
achieve lower word error rates than custom mod-
els, especially on difficult splits. This indicates that
knowledge acquired through pre-training is impor-
tant for understanding user queries, which custom
models have to a lesser extent. Finally, we show
that small- and medium-sized LMs meet the require-
ments of real-time interaction on a CPU whereas
LLMs exceed the expected thresholds dramatically.
We hope that our results, showing that custom LMs
are not necessary for high performance, will inspire
people in the future to extend the NL2VIS task to
interactive, visualization-oriented dialogs by lever-
aging existing visualization datasets.

6. Limitations

We deliberately chose very simple representations
of data frames and Vega-Lite visualization specifi-
cations to explore the impact of pre-training when in-
terpreting user queries through models. This does
not mean that there are not other efficient and simi-
lar or even more powerful representation methods
for data frames and Vega-Lite visualizations. We
chose the T5 model and its variants because it
is easy to train, tune, and deploy, which is impor-
tant for our application scenario. However, the T5
architecture has weaknesses in terms of limited
tokenization capabilities of arbitrary strings, as cer-
tain characters simply cannot be represented. It
also has limitations due to its pre-training dataset
and procedure. We experimented with comparable
architectures in this model size category, such as
GPT-2 or LaMini, but could not find any significant
changes in the results. Therefore, we decided to
stay with the T5 models and use them for the ex-
periments. In order to compare our work with the
state-of-the-art work of Luo et al. (2021b), we de-

cided to use exact match accuracy to measure the
performance of our models. In our experiments,
we found that this measure has clear limitations
when it comes to measuring how well a model re-
ally understands the user query. This makes it
necessary to look at error cases in more detail. For
the future, we also consider human evaluation as
a valid form of estimating the quality of a model
in this domain. Users sometimes have specific
plots in mind, and the plot generated by the system
differs greatly in notation from the gold standard,
but the user may still visually perceive the plot as
satisfactory. This could be an interesting direction
for evaluating models for generating visualizations
from natural language queries in the future. In con-
clusion, we believe that our approach has shown
that the combination of pre-trained LMs and the use
of straightforward encodings is promising for gen-
erating visualizations based on natural language
queries. We hope that these results will motivate
the community to collect more datasets and extend
the idea of NL2VIS to interactive plot manipulation
for different plotting languages.

7. Ethics Statement

The nvbench dataset and the T5 and FLAN-T5
models are publicly available for research and non-
commercial use. The ncnet model is also publicly
available on github. We clearly state the intended
use of our models, which is to facilitate data ex-
ploration by generating visualizations using natural
language. The factual correctness of generating
visualizations based on natural language queries
must always be taken with a grain of salt. The
model generates a visualization based on a given
dataset and the query based on its current level
of performance. Sometimes this can lead to incor-
rect results that can be misinterpreted if not cor-
rected. Therefore, it is strongly discouraged to use
the results of the model per se and to take them
as given or to draw unwarranted conclusions from
them. Rather, the generation process should be
reviewed by looking at the generated visualization
specifications and verifying that they make sense
and are correct in the context of the given dataset
and query.
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