
LREC-COLING 2024, pages 12794–12808
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

12794

Pluggable Neural Machine Translation Models
via Memory-augmented Adapters

Yuzhuang Xu1,†, Shuo Wang1,†, Peng Li2,∗, Xuebo Liu3

Xiaolong Wang1, Weidong Liu1,4, Yang Liu1,2,∗
1Department of Computer Science & Technology, Tsinghua University, Beijing, China

2Institute for AI Industry Research (AIR), Tsinghua University, Beijing, China
3Harbin Institute of Technology, Shenzhen, China

4Zhongguancun Laboratory, Beijing, China
{xyz21thu,wangshuo.thu}@gmail.com, lipeng@air.tsinghua.edu.cn

liuyang2011@tsinghua.edu.cn

Abstract
Although neural machine translation (NMT) models perform well in the general domain, it remains rather challenging
to control their generation behavior to satisfy the requirement of different users. Given the expensive training cost
and the data scarcity challenge of learning a new model from scratch for each user requirement, we propose a
memory-augmented adapter to steer pretrained NMT models in a pluggable manner. Specifically, we construct a
multi-granular memory based on the user-provided text samples and propose a new adapter architecture to combine
the model representations and the retrieved results. We also propose a training strategy using memory dropout to
reduce spurious dependencies between the NMT model and the memory. We validate our approach on both style-
and domain-specific experiments and the results indicate that our method can outperform several representative
pluggable baselines. Code and data are available at https://github.com/xuyuzhuang11/StyleMT

Keywords: Neural machine translation, style / domain customization, pluggable, memory, adapter.

1. Introduction

In recent years, modern neural machine transla-
tion (NMT; Vaswani et al., 2017) systems are often
developed with large-scale parallel data extracted
from the Web (Liu et al., 2020; Fan et al., 2021),
whose style and content are driven by the average
distribution of data from many domains (Vu and
Moschitti, 2021). Therefore, the performance of
strong NMT models is close to or even better than
human translators in the general domain (Hassan
et al., 2018; Kocmi et al., 2022).

However, MT customers may have some special
requirements, including both style- and domain-
specific individual demands (Michel and Neubig,
2018; Zhang et al., 2022). For instance, some
users may want translations in a special style, while
some others may need to translate medical texts.
These requirements can be quite diverse among
different customers and retraining or fine-tuning the
model for each user entails significant development
costs, especially with limited data from users.

Fortunately, pluggable methods (Keskar et al.,
2019; Dathathri et al., 2020; He et al., 2021a) bring
hope to handle the aforementioned user require-
ments, which employ additional modules to steer
pretrained models. As shown in Figure 1, the users
can provide some text samples for the NMT model
to imitate. We will then learn a plugin to control the

†Equal contribution
∗Corresponding authors

Providing Data

Training Adapter

Customized Translation Service

Frozen NMT Model

Medical
Domain Text

Mem.-Aug. Adapter

!

Figure 1: A frozen and pluggable NMT model using
memory-augmented plugins. For each user group
with special requirements, we can develop a plugin
for them without affecting other users.

NMT model to satisfy the user demands without
optimizing the parameters in the original model, by
which we can maintain the performance of the pre-
trained model, alleviating the risk of catastrophic
forgetting (Kirkpatrick et al., 2017).

Some researchers suggest lightweight para-
metric plugins for controlling pretrained mod-
els (Houlsby et al., 2019; Bapna and Firat, 2019;
Pfeiffer et al., 2021; Rücklé et al., 2021; Li and
Liang, 2021; Mao et al., 2022). For machine trans-
lation, such plugins can also tailor model behavior
for diverse user demands. However, recent stud-
ies find that there exists a performance bottleneck

https://github.com/xuyuzhuang11/StyleMT

12795

of fully-parametric pluggable methods (Bapna and
Firat, 2019; Li and Liang, 2021; Ding et al., 2022):
increasing the number of trainable parameters can
not always lead to better performance. Inspired by
the recent progress of retrieval-augmented mod-
els (Lewis et al., 2020; Khandelwal et al., 2020,
2021; He et al., 2021a,b), we propose to increase
the expressive power (Li and Liang, 2021) of para-
metric plugins through external memories, which
we term it memory-augmented adapter.

The main challenges of the memory-augmented
adapter are two-fold: (1) constructing memories
that can provide useful customization informa-
tion; and (2) integrating the memories into existing
NMT models without quality loss. Although long
phrases can provide more contextualized informa-
tion, matching long sequences between queries
and memory items is more difficult than matching
shorter ones. We propose to build multi-granular
memories to balance the amount of contextualized
information and the retrieval difficulty. Unlike many
previous works (Khandelwal et al., 2020, 2021; He
et al., 2021a) that encode the source sentence and
the target prefix as the key and the next token as the
value, our memory can provide multi-scale trans-
lation knowledge (Li et al., 2022) that is suitable
for queries coming from different layers of the NMT
model (Hewitt and Liang, 2019). For memory inte-
gration, we propose a new adapter architecture to
better interpolate the original model representation
and the retrieved vectors. Moreover, we propose
a new training strategy with memory dropout to
reduce spurious dependencies between the NMT
model and the provided memory. We conduct ex-
periments for both style- and domain-related cus-
tomizations and the results show the superiority of
our method over many representative baselines.

2. Related Work

2.1. Style / Domain Adaptation for NMT

Adapting NMT models to specific style or domain
texts has been investigated in several previous
works (Luong and Manning, 2015; Niu et al., 2017;
Chu and Wang, 2018). For stylized NMT, many
previous works focus on the formality control of
translations (Niu et al., 2018; Wu et al., 2021b), of
which the style has a clear definition. Most exist-
ing works need to train a specific model for each
style. For instance, Niu and Carpuat (2020) mix
the training data of both style transfer and machine
translation to learn a formality-sensitive NMT model.
Given that the user-provided styles can be of great
diversity, we aim to satisfy different style demands
in a pluggable manner.

For domain adaptation, Luong and Manning
(2015) propose an effective method that fine-tunes

an out-of-domain model with small-sized in-domain
supervised corpora. Hu et al. (2019) further de-
sign an unsupervised method, since parallel data
is hardly available in many domains. Zheng et al.
(2021) extend kNN-MT (Khandelwal et al., 2021)
to perform unsupervised domain adaptation. Our
work is different from Zheng et al. (2021) in both
memory design and usage and the experiments
show that our proposed framework performs better
than their approach.

2.2. Machine Translation Customization
Machine translation customization aims to satisfy
the special requirements of different users. Vu and
Moschitti (2021) propose to select data that is simi-
lar to the user-provided text samples and then train
or fine-tune an NMT model for the corresponding
user. Following Michel and Neubig (2018), we be-
lieve that MT customization has some specific traits
that distinguish it from common style and domain
adaptation settings: (1) The number of customiza-
tion requirements is very large due to the personal
variation among different MT system users; (2) The
available data is often very limited (even mono-
lingual, let alone parallel) for each customization
requirement. Thus, we propose to leverage plug-
gable methods to customize existing NMT models.

2.3. Pluggable Pretrained Models
Pluggable methods aim to control the generation
behavior of pretrained models without optimizing
model parameters (Dathathri et al., 2020; Yang and
Klein, 2021; Liu et al., 2021). Some works propose
to use parametric plugins, with Bapna and Firat
(2019) and Houlsby et al. (2019) inserting some
adapters, Li and Liang (2021) prepending some
trainable vectors, and Hu et al. (2022a) leverag-
ing low-rank decomposition of matrices. Retrieval-
augmented models, also treated as pluggable meth-
ods, augment the model with non-parametric mem-
ory. kNN-MT (Khandelwal et al., 2021) combines
the model prediction and retrieval distribution at
the output layer. Borgeaud et al. (2022) build a
chunk-level memory for language modeling. Chen
et al. (2022) encode questions and answers into
key-value pairs for question answering. In this work,
we aim to combine the merits of both parametric
and non-parametric plugins and propose a new
type of memory for NMT, which explicitly considers
the phrases of different granularities.

3. Background

3.1. Transformer Model
We first give a description of some components
in the Transformer (Vaswani et al., 2017) model.

12796

Given the input sentence x, Transformer maps it
into vectors via an encoder:

E = encoder(x) (1)

where E ∈ R|x|×d and d is the hidden size of the
model. The encoder output is then utilized by the
decoder, which is a stack of several independent
layers. We use D(i) to denote the output of the
i-th decoder layer. Specifically, each decoder layer
firstly employs a self-attention module to model the
dependency between the target-side words:

S(i) = attn(D(i−1),D(i−1),D(i−1))

L
(i)
1 = layernorm(D(i−1) + S(i))

(2)

where attn(Q,K,V) is the multi-head attention and
layernorm is the layer normalization.

After that, a cross-attention module is adopted
to integrate the source-side information:

C(i) = attn(L
(i)
1 ,E,E)

L
(i)
2 = layernorm(L

(i)
1 +C(i))

(3)

The output of the cross-attention module is then
projected with a feed-forward layer. The decoder
output is finally used to estimate the probability
P (y|x;θ), where y is the target sentence and θ
denotes the set of model parameters.

3.2. Style Customization in NMT
Similar to generating images with specific styles
(Jing et al., 2022; Ruiz et al., 2023), style customiza-
tion in NMT means outputting translations with user-
specified styles (Michel and Neubig, 2018; Syed
et al., 2020). For example, we want to generate
translations in Shakespeare style in a Zh-En trans-
lation task. A simple example is as follows.

Zh: 哦上帝啊，请赐予我力量吧！
En (G): Oh God, please grant me strength!
En (S): Oh Lord, do thou endow me with

thy might!

“En (G)” denotes the output of vanilla translation
model, and “En (S)” denotes the output of style-
customized translation model using Shakespeare
corpus. The underlined expressions are typical
representations of Shakespeare style.

The task most closely related to style customiza-
tion in NMT is author-stylized rewriting (Syed et al.,
2020; Singh et al., 2021), which aims to rewrite a
given text in the style of a specific author. Syed
et al. (2020) sum up the user or author style into
three levels, namely surface level, lexical level, and
syntactic level styles (Syed et al., 2020). These lev-
els capture subtle differences in punctuation, word

usage, and even sentence construction unique to
individual authors, thereby making author-stylized
rewriting a challenging task. Style customization
in NMT not only shares the same challenges as
author-stylized rewriting, but it must also simulta-
neously translate the provided text into the target
language, presenting its own unique challenges.

4. Approach

4.1. Overview
In this work, we aim to enable NMT users to control
existing NMT models by simply providing some
examples. To this end, we propose a memory-
augmented adapter to help NMT models imitate
the user-provided text samples. Specifically, we
propose the multi-granular memory that can better
leverage multi-scale patterns, which have proven
to be important for NMT (Li et al., 2022). We also
propose a new adapter (i.e., memory-augmented
adapter) to integrate external memory into NMT
models. We will explain how to construct and utilize
the memory in the following two subsections.

4.2. Multi-granular Continuous Memory
Our memory needs not only to extract essential
information from user-provided text but also to be
easy to retrieve for models. For the first objective,
we propose to build the memory with parallel phrase
pairs, which reflect the translation pattern required
by the customer. However, it is non-trivial to deter-
mine the granularity of the used phrases. Storing
only short ones may waste a lot of contextualized
information while storing too many long phrases
would make it rocky to match the query and the
memory items. To address this issue, we propose
to construct a multi-granular memory to balance
the amount of contextualized information and the
retrieval difficulty. As shown in Figure 2a, we use
parse trees to extract multi-granular phrases, which
can identify more meaningful boundaries than ran-
dom splitting. The extracted phrases are then trans-
lated by NMT models to form parallel phrase pairs.

For the second objective, we propose to use the
same model to build and utilize the memory. For
each phrase pair, we perform forward computation
to get the continuous representation at each layer
of the involved NMT model. We store the encoder
output E as the source-side memory and the self-
attention output S(i) at every decoder layer as the
target-side memory. See Eq. (1) and (2) for more
details of the stored representations. Each memory
item is averaged among the representations of all
tokens in a phrase, whose size is d. Figure 2b
shows an example. The reason we extract E and
S(i) as our memory is that these representations
are at the same layer where we perform memory

12797

Tgt Phrase Src Phrase

IP0 我 喜欢 吃 苹果 。 I like eat apple .

VP1 喜欢 吃 苹果 like eat apple

VP3 吃 苹果 eat apple

VV7 喜欢 like

VV8 吃 eat

NN9 苹果 apple我 喜欢 吃 苹果 。

PN6 VV7 VV8 NN9 PU10

NP5

VP3

IP2

VP1

NP4

ROOT/IP0

(a) Parallel text segments at different levels of granularities.

FFN

Self-Attention Self-Attention

Cross-Attention

FFN

N× N×

Tgt MemorySrc Memory

(b) Construction of multi-granular continuous memory.

Self-Attention

Cross-Attention

FFN

Tgt Memory

Memory-Augmented Adapter
A K VQ

Src Memory

Memory-Augmented Adapter
A K VQ

!

!

❄

❄

❄ !

❄ Frozen

Trainable

(c) Adapter integration.

Figure 2: Construct and integrate memories. (a) We leverage parse trees to obtain multi-granular phrases.
Each monolingual phrase is then translated by NMT models. (b) For each phrase pair, we perform a
forward computation in the teacher-forcing manner and record some intermediate representations into the
memory. (c) Illustration of adapter integration. The adapter retrieve and leverage the memories.

A K VQ

Linear Linear Linear

Attention w/ Temperature

Gated Fusion

Figure 3: Memory-augmented adapter architecture.

retrieval. Our motivation is to narrow down the
gap between the memory items and the queries,
making it easier for the model to read the memory.

We focus on using monolingual user-provided
data in this work since parallel data is often un-
available for most requirements. However, our
method can be easily extended for bilingual data,
from which we can automatically extract phrase
pairs based on unsupervised word alignment algo-
rithms (Dyer et al., 2013; Chen et al., 2021).

4.3. Memory-augmented Adapter

Adapter Architecture We propose a new type of
adapter to read memory. The memory-augmented
adapter has 4 inputs: anchor, query, key, and value,
which can be represented as A, Q, K, and V. An-
chors and queries are derived from the frozen NMT
model while keys and values come from the mem-
ory. As depicted in Figure 3, we use an attention

module to generate the retrieved result:

R = softmax(QWqW
⊤
k K

⊤/ T)VWv (4)

where Wq,Wk,Wv ∈ Rd×d and the retrieved re-
sult R has the same shape with Q. T is a hyper-
parameter to control the sharpness of the retrieval
distribution. To avoid the model being completely
dependent on the retrieved result R that can be er-
roneous in some cases, we also take in an anchor
from the original model, which is combined with R
via a gated fusion module:

λ = sigmoid(relu([A;R]W1)W2)

O = λA+ (1− λ)R
(5)

where O is the adapter output, which has the same
shape as the anchor A. W1 ∈ R2d×d and W2 ∈
Rd×1. λ is the learned interpolation ratio.

Adapter Integration We apply the memory-
augmented adapter to the self- and cross-attention
modules in the decoder, since these two compo-
nents are important for target-side language mod-
eling and source-side information utilization. At the
i-th decoder layer, we use the self-attention output
S(i) as queries to read the target-side memory:

O
(i)
1 = memadapt(S(i),S(i),M

(i)
t ,M

(i)
t) (6)

where memadapt(A,Q,K,V) denotes the
memory-augmented adapter. M

(i)
t ∈ RN

(i)
t ×d

represents the target-side memory, where N
(i)
t

12798

denotes the number of items in M
(i)
t . The

adapter output O1 is then provided to the layer
normalization module:

L
(i)
1 = layernorm(D(i−1) +O

(i)
1) (7)

Similarly, we read the source-side memory in the
cross-attention module:

O
(i)
2 = memadapt(C(i),L

(i)
1 ,M(i)

s ,M(i)
s)

L
(i)
2 = layernorm(L

(i)
1 +O

(i)
2)

(8)

Figure 2c shows an example. To reduce the
redundancy that a phrase pair would repeatedly
appear in memories at every decoder layer, we
split all the phrase pairs into L parts, where L is the
number of decoder layers. Each layer only stores
one part of phrase pairs.

Training Strategy Inspired by dropout (Srivas-
tava et al., 2014) that can effectively reduce spuri-
ous co-adaptation between model parameters, we
propose a memory dropout approach to prevent
NMT models from being too dependent on some
specific memory items. When training the memory-
augmented adapter, we randomly drop part of the
memory items. Let M be the full memory and M̂
be the remained memory after memory dropout,
the overall loss can be given by

L = LNLL(P (y|x,θ,M))︸ ︷︷ ︸
loss using full memory

+ αLNLL(P (y|x,θ, M̂))︸ ︷︷ ︸
loss using dropped memory

+ β Ldist(P (y|x,θ,M), P (y|x,θ, M̂))︸ ︷︷ ︸
loss modeling the agreement

(9)

where α and β are hyperparameters. LNLL is the
conventional negative log-likelihood. The agree-
ment loss (i.e., Ldist) (Kambhatla et al., 2022) mea-
sures the distance between two distributions:

Ldist(p, q) =
1

2
(DKL(p||q) +DKL(q||p)) (10)

Extension Since our method does not change
the model decoding, it can also be combined with
the retrieval-based decoding algorithm as shown in
kNN-MT (Khandelwal et al., 2021), which interpo-
lates the model probability with a retrieved distribu-
tion. We call this decoding method kNN decoding.

5. Style Customization

5.1. Setup
NMT Model Training In the pluggable scenario,
we should first have an existing NMT model, which

can serve as the foundation for further customiza-
tion. We use the training corpus of the WMT20
En↔Zh translation task1 to train NMT models,
which contains 23.9M sentence pairs. We use
SentencePiece2 to preprocess the data and the
sentence-piece model we used is released by
mBART (Liu et al., 2020). The architecture of our
NMT models is Transformer (Vaswani et al., 2017),
whose hidden size is 512 and depth is 6. Please
refer to Section 10.1 in appendix for more details.

Customization Data We evaluate the customiza-
tion effect of our method in two translation direc-
tions: En→Zh and Zh→En. We use the works of
two world-renowned writers as stylized text sam-
ples, including Shakespeare and Lu Xun. Their
works created representative styles for English
and Chinese, respectively. We extract their texts
from the web and then split the data into train-
ing, validation, and test sets. For Shakespeare’s
style, the training set contains 20K English sen-
tences while the validation and test sets contain
500 sentences, respectively. The target-language
(i.e., English) training and validation sentences are
then translated by the NMT model, while the test
set is translated by human translators. For Lu
Xun’s style, the training set consists of 37K sen-
tences while the validation and test sets contain
500 sentences. Similarly, the test set is also trans-
lated by humans while the training and validation
sets are translated by NMT models. The result-
ing corpus is called Machine Translation with Style
Customization (MTSC). We will add more styles in
different languages for MT research in the future.

Memory Construction We first build parse
trees for target-side sentences using Stanford
Parser3 and then extract multi-granular phrases.
As mentioned in Section 4.3, we evenly divide the
extracted phrases according to their lengths into L
parts to avoid information redundancy between dif-
ferent layers. We did not store the representations
of phrases longer than a pre-specified threshold
lmax, since the occurrence of long phrases is very
low. lmax is set to 10 for Zh and 8 for En.

Adapter Training The general NMT model is
frozen when training the memory-augmented
adapter. We determine the value of the hyper-
parameters based on the validation performance.
Specifically, the temperature in Eq. (4) is set to 0.5.
Both the α and β in Eq. (9) are set to 5. The memory
dropout rate is set to 0.1. We provide more details
of adapter training in Section 10.1 in appendix.

1https://www.statmt.org/wmt20/translation-task.html
2https://github.com/google/sentencepiece
3https://nlp.stanford.edu/software/lex-parser.html

12799

Table 1: Automatic evaluation for style customization. We highlight the best and second best scores.

Method BLEU(↑) Perplexity(↓) Classifier Score(↑)
En-Zh Zh-En Avg. En-Zh Zh-En Avg. En-Zh Zh-En Avg.

Vanilla (Vaswani et al., 2017) 13.7 15.7 14.7 459.6 127.4 293.5 18.0 28.4 23.2
Extreme (Michel and Neubig, 2018) 16.0 17.7 16.9 315.2 113.7 214.5 37.4 43.4 40.4
Adapter (Houlsby et al., 2019) 16.8 19.4 18.1 351.1 121.0 236.1 33.8 58.2 46.0
MT+Rewrite (Syed et al., 2020) 16.3 15.7 16.0 222.4 127.5 349.8 47.0 28.4 37.7
kNN-MT (Khandelwal et al., 2021) 18.9 20.0 19.5 230.7 98.5 164.6 42.2 70.4 56.3
DExperts (Liu et al., 2021) 13.8 15.9 14.9 467.0 127.3 297.2 18.4 31.4 24.9
ChatGPT (OpenAI, 2022) 20.0 13.6 16.8 620.0 131.8 375.9 41.4 24.6 33.0
Memory-augmented Adapter 20.8 21.1 21.0 257.8 110.9 184.3 47.0 69.4 58.2

+ kNN decoding 21.3 21.8 21.6 199.6 95.1 147.4 53.2 85.2 69.2

Table 2: Human evaluation for style customization in En→Zh. The comparison is performed between
kNN-MT and our method. “Win" means our method performs better. κ denotes Fleiss’ kappa.

Human Content Preservation Sentence Fluency Style Similarity
Win Tie Lose Win Tie Lose Win Tie Lose

Rator 1 64.0% 12.0% 24.0% 61.0% 9.0% 30.0% 69.0% 5.0% 26.0%
Rator 2 64.0% 13.0% 23.0% 57.0% 13.0% 30.0% 63.0% 11.0% 26.0%
Rator 3 67.0% 9.0% 24.0% 62.0% 5.0% 33.0% 71.0% 6.0% 23.0%

Avg. 65.0% 11.3% 23.7% 60.0% 9.0% 31.0% 67.7% 7.3% 25.0%
κ 0.476 0.446 0.656

Baselines We compare our method with the fol-
lowing representative baselines: Extreme (Michel
and Neubig, 2018), Adapter (Houlsby et al., 2019),
MT+Rewrite (Syed et al., 2020), kNN-MT (Khan-
delwal et al., 2021), DExperts (Liu et al., 2021),
ChatGPT (GPT3.5-turbo-0301; OpenAI, 2022).

Evaluation Metrics We use both automatic and
human evaluation to thoroughly compare them.
The automatic evaluation metrics are as follows:

• BLEU: measuring the translation quality of
model outputs. We use sacreBLEU4 (Post,
2018) to estimate the BLEU score.

• Perplexity: measuring the fluency of model out-
puts. We fine-tune a pretrained Transformer
LM (Dai et al., 2019) with stylized text to cal-
culate perplexity.

• Classifier Score: measuring the similarity be-
tween model outputs and the stylized text sam-
ples. We follow Li et al. (2018) to train style
classifiers to quantify the style similarity. The
classifier we used is TextCNN (Kim, 2014). It
can achieve an accuracy of 93.5% for Lu Xun’s
style and 94.5% for Shakespeare’s style. We
use these classifiers to estimate whether the
output is in the desired style.

4English-Chinese: nrefs:1 | case:mixed | eff:no |
tok:zh | smooth:exp | version:2.3.1. Chinese-English:
nrefs:1 | case:mixed | eff:no | tok:13a | smooth:exp |
version:2.3.1.

5.2. Main Results

Automatic Evaluation Table 1 shows the per-
formance of all the involved methods in the style
customization task. When decoding with vanilla
beam search, our method can outperform all the
baselines in terms of BLEU and classifier score
on average, indicating the effectiveness of the pro-
posed memory-augmented adapter in controlling
the output style of NMT models. The perplexity of
kNN-MT is better than ours, but its BLEU score is
much worse. Although ChatGPT customizes the
translation at a small cost, the result is not satisfac-
tory. When combined with kNN decoding, which is
illustrated in Extension in Section 4.3, our method
can be further improved, achieving the best per-
formance across all the three automatic metrics.
These results re-demonstrate that our method is
complementary to kNN-MT.

Human Evaluation We also perform a human
evaluation to assess the translation quality of dif-
ferent methods. We follow previous works (Zhang
et al., 2018; Ke et al., 2019) to ask human evalu-
ators to compare the outputs of different methods.
Since human evaluation is time-consuming and
labor-intensive, we only compare our method with
the strongest baseline (i.e., kNN-MT) in En→Zh.
Note that our outputs used for human evaluation are
generated using vanilla beam search. Following Hu
et al. (2022b), each sentence is evaluated in terms
of content preservation, sentence fluency, and style
similarity. Table 2 shows the results, from which we

12800

Table 3: BLEU scores in the domain customization task. We highlight the best and second best scores.

Method IT Medical Law Koran Avg.
valid test valid test valid test valid test valid test

Vanilla 28.1 28.4 26.4 27.6 36.2 35.9 10.9 11.5 25.4 25.9
Adapter 30.9 30.5 26.8 28.0 36.0 35.6 12.9 13.5 26.7 26.9
kNN-MT 28.8 29.2 30.0 32.3 38.3 38.4 14.6 15.1 27.9 28.8
Memory-augmented Adapter 31.2 31.1 30.0 32.0 37.5 37.3 14.7 15.3 28.4 28.9

+ kNN decoding 30.5 31.4 31.3 33.5 38.8 38.6 15.7 16.5 29.1 30.0

0.25k 0.5k 1k 2k 4k 8k 16k 32k
Data Size (#sent.)

10

12

14

16

18

20

BL
EU

Ours
kNN-MT
Extreme
MT+Rewrite

Figure 4: Performance of style customization at
different data scales. “Ours” does not use kNN
decoding.

find our approach performs better than the baseline
in all the three evaluation aspects. The agreement
of the three human evaluators is estimated through
Fleiss’ kappa (Fleiss, 1971) and the results demon-
strate moderate agreement (0.4 ≤ κ ≤ 0.6) in terms
of both content preservation and sentence fluency
and good agreement (0.6 ≤ κ ≤ 0.8) regarding
style similarity.

5.3. Performance at Different Data Scales
In some cases, the user-provided data can be of
extremely small scale (Michel and Neubig, 2018).
We thus investigate the performance of the in-
volved methods using customization data of dif-
ferent scales. Figure 4 shows the results. Our
memory-augmented adapter consistently outper-
forms the baselines at different data scales, even
with only 250 exemplary sentences. These results
show that our method can be applied to extremely
low-resource adaptation scenarios.

6. Domain Customization

6.1. Setup
NMT Model Training We train the NMT model
using the WMT14 De-En training corpus5, including
4.5M sentence pairs. The training data is prepro-
cessed in the same way as style customization.

5https://www.statmt.org/wmt14/translation-task.html

Customization Data To evaluate the perfor-
mance in the domain customization setting, we fol-
low previous works (Aharoni and Goldberg, 2020;
Zheng et al., 2021) to use a multi-domain dataset,
which includes four domains: IT, Medical, Law and
Koran. To simulate real-world user customization
where the user-provided data is often of small scale,
we randomly select 20K sentences for IT, Medical,
and Law, and use all the 18K sentences for Koran.
We also use only the target-side training data to
simulate real-world cases and use NMT models to
generate synthetic parallel data. All the validation
and test sets are authentic parallel data.

Memory Construction and Adapter Training
We filter phrases longer than 10 during memory
construction. For adapter training, T is set to 0.1
for Medical and Law, and 0.5 for the other two do-
mains. Both α and β are set to 5 on all the four
domains. The memory dropout rate is set to 0.1.

Baselines We compare our proposed method
with two representative pluggable domain adapta-
tion baselines: adapter (Houlsby et al., 2019) and
kNN-MT (Khandelwal et al., 2021).

6.2. Main Results
The adaptation performance on different domains
is shown in Table 3. On average, our method can
outperform the two baselines even without kNN
decoding, demonstrating the effectiveness of our
motivation to boost parametric plugins with external
memory. When combined with kNN decoding, our
method can achieve better results on Medical, Law,
and Koran. Using kNN decoding, our method can
improve 3.1 and 1.2 BLEU scores over Adapter and
kNN-MT on the test sets, respectively.

6.3. Inference Time
A concern for retrieval-augmented methods is that
they may significantly slow down the inference pro-
cess. As shown in Figure 5, our method is slower
than Adapter, but the difference between the two
methods becomes very slight when using big batch
sizes. For instance, our inference time is only 1.15
times that of Adapter with a batch size of 128. Our

12801

16 32 64 128
Batch Size (#sent.)

0

20

40

60

80

100

120
In

fe
re

nc
e

Ti
m

e
(s

)
Vanilla
Adapter
kNN-MT
Ours
Ours+kNN

Figure 5: Inference time reported on the IT domain.
“Ours” is not combined with kNN decoding.

method is also comparable to kNN-MT. In particu-
lar, when the batch size is set to 128, our method
is slightly faster than kNN-MT. When also using
kNN decoding, our method is slightly slower than
kNN-MT (i.e., 41.1s vs. 39.1s with batch size
= 128). We implement the kNN algorithm with
Faiss-gpu (Johnson et al., 2017) to accelerate
the retrieval process.

7. Discussion

7.1. Effect of Different Components
We conduct thorough ablation studies to better un-
derstand the effect of the proposed components.

Granularity Distribution As mentioned in Sec-
tion 4.2, we divide all the phrase pairs into several
different parts to reduce the redundancy of infor-
mation among the decoder layers. Our basic idea
is that a certain phrase pair only needs to appear
in one layer of the decoder. The phrase pairs are
divided according to their lengths. We investigate
three ways to distribute the phrase pairs to the de-
coder layers: (1) long-to-short where the phrase
length decreases from the bottom layer to the top
layer; (2) short-to-long where the phrase length
increases from the bottom layer to the top layer;
and (3) random where the memory item of a cer-
tain phrase pair is stored by a randomly selected
layer. Figure 6 shows the results of the three ways,
where we find short-to-long achieves the best per-
formance. We think the reason is that different
layers may carry various types of linguistic proper-
ties in the Transformer model (Voita et al., 2019),
which requires information of different granulari-
ties. When reading the memory, queries from lower
layers may contain less contextualized informa-
tion (Hewitt and Liang, 2019), thus short phrases
are more suitable for them. At higher layers, long
phrases that can provide more contextualized infor-

1k 4k 7k 10k 13k 16k 19k
Training Steps

5.70

5.74

5.78

5.82

5.86

5.90

Lo
ss

Long-to-Short
Random
Short-to-Long

Figure 6: Effect of granularity distribution across the
decoder layers. Each curve denotes the validation
loss in the En-Zh style customization task. We only
use the vanilla NLL loss to rule out the effect of
the training strategy. “Long-to-Short”: lower layers
store the representations of longer phrases while
higher layers store the representations of shorter
layers. “Random”: each phrase pair is stored in
a randomly selected layer. “Short-to-Long”: lower
layers store shorter phrases while higher layers
store longer phrases.

Table 4: BLEU scores when using different memory
dropout. The results are reported on the validation
set in the En-Zh style customization task.

Method BLEU
No memory dropout 18.2

+ item-level memory dropout 18.2
+ layer-level memory dropout 18.6

mation performs better. We thus use short-to-long
as the default setting.

Effect of Memory Dropout We investigate the
performance of two types of memory dropout: (1)
item-level memory dropout that drop each item with
a certain probability; and (2) layer-level memory
dropout that drop all the memories at a decoder
layer with a certain probability. Table 4 shows the
results, where all the models are trained using the
overall loss function (i.e., L in Eq. (9)). We find the
layer-level memory dropout performs better. There-
fore, we use layer-level memory dropout by default.

Effect of Memory Granularity To validate the
necessity of building memory in a multi-granular
form, we compare the performance of single- and
multi-granular memories. Figure 7 shows the re-
sults, where we find using multi-granular memory
can achieve lower validation loss, indicating the ef-
fectiveness of our method. We use multi-granular
memory in other experiments by default.

12802

1k 4k 7k 10k 13k 16k 19k
Training Steps

5.70

5.74

5.78

5.82

5.86

5.90

Lo
ss

Only-3
Only-7
Only-10
Ours

Figure 7: Comparison between single-granular and
multi-granular. Each curve is plotted on the vali-
dation set in the En→Zh style customization task.
“Only-x”: only using phrases of length x to build the
memory. “Ours”: using the multi-granular memory.

Table 5: Analysis of memory usage.

Method BLEU
Ours 18.6
− gated fusion 18.3
− source-side memory 16.5
− target-side memory 16.1

Analysis of Memory Usage Table 5 shows the
effect of different components that are related to
memory usage. Firstly, we notice that the gated
fusion mechanism has a positive effect on transla-
tion quality, indicating the necessity of learning an
input-dependent interpolation ratio between origi-
nal model representations and retrieved results. In
addition, we observe that there is a significant per-
formance drop when using only either the source-
or target-side memory. These results demonstrate
that building parallel memory using phrase pairs is
very useful.

Effect of Integration Layers We also integrate
the memory into different layers to better under-
stand our method. Table 6 shows the results, from
which we find using the memories at all layers per-
forms best and higher layers tend to be more im-
portant than lower layers. A potential reason is that
memories at higher layers contain more contextu-
alized information.

7.2. Comparison with Fine-tuning
Although our goal in this work is to better build plug-
gable NMT models, our method is not only limited
to this setting. For instance, the proposed memory-
augmented adapter can also be used when the
NMT model is not frozen (i.e., fine-tuning (Luong
and Manning, 2015)). Table 7 shows the results,
where we observe that our method can also im-

Table 6: Model performance when integrating mem-
ory into different layers. "✓": equipped with the
memory. "-": not equipped with the memory.

Selected Layers BLEU
L1 L2 L3 L4 L5 L6
✓ - - - - - 15.1
✓ ✓ - - - - 15.5
✓ ✓ ✓ - - - 15.6
✓ ✓ ✓ ✓ - - 16.2
✓ ✓ ✓ ✓ ✓ - 16.9
✓ ✓ ✓ ✓ ✓ ✓ 18.6
- ✓ ✓ ✓ ✓ ✓ 17.5
- - ✓ ✓ ✓ ✓ 17.2
- - - ✓ ✓ ✓ 17.2
- - - - ✓ ✓ 17.2
- - - - - ✓ 16.4

Table 7: Performance of fine-tuning all model pa-
rameters on the test set of En-Zh style customiza-
tion.

Method BLEU PPL Class.
Transformer 13.7 459.6 18.0
Fine-tuning 22.3 255.5 51.2
+ Mem.-Aug. Adapter 23.2 250.6 50.4

prove the performance of fine-tuning. This result
implies that the external memory may provide es-
sential information that is complementary to that
stored in model parameters.

8. Conclusion

In this work, we propose a memory-based adapter
to build pluggable NMT models, which can let the
users customize the generation behavior of NMT
models by simply providing some text samples. We
improve both the memory design and utilization
to help existing models better adapt to the user-
demanded styles or domains. Experiments demon-
strate the superiority of our proposed method over
several representative baselines. By changing the
memory format, we believe our method can be ap-
plied to some other sequence generation tasks.

Acknowledgements

This work is supported by the National Key R&D
Program of China (2022ZD0160502) and the Na-
tional Natural Science Foundation of China (No.
61925601, 62276152, 62236011). We are also
grateful to Ziang Liu and Yourun Lin for their ded-
icated efforts in the human evaluation process,
which greatly enhanced the quality this study.

12803

9. Bibliographical References

Roee Aharoni and Yoav Goldberg. 2020. Unsu-
pervised domain clusters in pretrained language
models. In Proceedings of ACL 2020, pages
7747–7763.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In Proceed-
ings of ICLR 2015.

Ankur Bapna and Orhan Firat. 2019. Simple, scal-
able adaptation for neural machine translation.
In Proceedings of EMNLP-IJCNLP 2019, pages
1538–1548.

Loïc Barrault, Magdalena Biesialska, Ondřej Bo-
jar, Marta R. Costa-jussà, Christian Federmann,
Yvette Graham, Roman Grundkiewicz, Barry
Haddow, Matthias Huck, Eric Joanis, Tom Kocmi,
Philipp Koehn, Chi-kiu Lo, Nikola Ljubešić,
Christof Monz, Makoto Morishita, Masaaki Na-
gata, Toshiaki Nakazawa, Santanu Pal, Matt
Post, and Marcos Zampieri. 2020. Findings
of the 2020 conference on machine translation
(WMT20). In Proceedings of the 5th Conference
on Machine Translation, pages 1–55.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Lev-
eling, Christof Monz, Pavel Pecina, Matt Post,
Herve Saint-Amand, Radu Soricut, Lucia Specia,
and Aleš Tamchyna. 2014. Findings of the 2014
workshop on statistical machine translation. In
Proceedings of the 9th Workshop on Statistical
Machine Translation, pages 12–58.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Mil-
lican, George Bm Van Den Driessche, Jean-
Baptiste Lespiau, Bogdan Damoc, Aidan Clark,
Diego De Las Casas, Aurelia Guy, Jacob Menick,
Roman Ring, Tom Hennigan, Saffron Huang,
Loren Maggiore, Chris Jones, Albin Cassirer,
Andy Brock, Michela Paganini, Geoffrey Irving,
Oriol Vinyals, Simon Osindero, Karen Simonyan,
Jack Rae, Erich Elsen, and Laurent Sifre. 2022.
Improving language models by retrieving from
trillions of tokens. In Proceedings of ICML 2022,
pages 2206–2240.

Chi Chen, Maosong Sun, and Yang Liu. 2021.
Mask-align: Self-supervised neural word align-
ment. In Proceedings of ACL-IJCNLP 2021,
pages 4781–4791.

Wenhu Chen, Pat Verga, Michiel de Jong, John
Wieting, and William Cohen. 2022. Augmenting
pre-trained language models with qa-memory for

open-domain question answering. arXiv preprint
arXiv:2204.04581.

Chenhui Chu and Rui Wang. 2018. A survey of
domain adaptation for neural machine translation.
In Proceedings of COLING 2018, pages 1304–
1319.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G
Carbonell, Quoc Le, and Ruslan Salakhutdinov.
2019. Transformer-XL: Attentive language mod-
els beyond a fixed-length context. In Proceedings
of ACL 2019, pages 2978–2988.

Sumanth Dathathri, Andrea Madotto, Janice Lan,
Jane Hung, Eric Frank, Piero Molino, Jason
Yosinski, and Rosanne Liu. 2020. Plug and play
language models: A simple approach to con-
trolled text generation. In Proceedings of ICLR
2020.

Michiel de Jong, Yury Zemlyanskiy, Nicholas
FitzGerald, Fei Sha, and William W. Cohen. 2022.
Mention memory: incorporating textual knowl-
edge into transformers through entity mention
attention. In Proceedings of ICLR 2022.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei,
Zonghan Yang, Yusheng Su, Shengding Hu,
Yulin Chen, Chi-Min Chan, Weize Chen, Jing Yi,
Weilin Zhao, Xiaozhi Wang, Zhiyuan Liu, Hai-Tao
Zheng, Jianfei Chen, Yang Liu, Jie Tang, Juanzi
Li, and Maosong Sun. 2022. Delta tuning: A com-
prehensive study of parameter efficient methods
for pre-trained language models. arXiv preprint
arXiv:2203.06904.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteri-
zation of IBM model 2. In Proceedings of NAACL
2013, pages 644–648.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek,
Vishrav Chaudhary, Naman Goyal, Tom Birch,
Vitaliy Liptchinsky, Sergey Edunov, Michael Auli,
and Armand Joulin. 2021. Beyond english-
centric multilingual machine translation. Journal
of Machine Learning Research, 22(107):1–48.

Joseph L Fleiss. 1971. Measuring nominal scale
agreement among many raters. Psychological
bulletin, 76(5):378.

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Fed-
ermann, Xuedong Huang, Marcin Junczys-
Dowmunt, William Lewis, Mu Li, Shujie Liu,
Tie-Yan Liu, Renqian Luo, Arul Menezes, Tao
Qin, Frank Seide, Xu Tan, Fei Tian, Lijun Wu,
Shuangzhi Wu, Yingce Xia, Dongdong Zhang,

https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2020.acl-main.692
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://aclanthology.org/2020.wmt-1.1
https://aclanthology.org/2020.wmt-1.1
https://aclanthology.org/2020.wmt-1.1
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302
https://proceedings.mlr.press/v162/borgeaud22a.html
https://proceedings.mlr.press/v162/borgeaud22a.html
https://doi.org/10.18653/v1/2021.acl-long.369
https://doi.org/10.18653/v1/2021.acl-long.369
https://www.aclweb.org/anthology/C18-1111
https://www.aclweb.org/anthology/C18-1111
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=OY1A8ejQgEX
https://openreview.net/forum?id=OY1A8ejQgEX
https://openreview.net/forum?id=OY1A8ejQgEX
https://arxiv.org/abs/2203.06904
https://arxiv.org/abs/2203.06904
https://arxiv.org/abs/2203.06904
https://aclanthology.org/N13-1073
https://aclanthology.org/N13-1073
http://jmlr.org/papers/v22/20-1307.html
http://jmlr.org/papers/v22/20-1307.html

12804

Zhirui Zhang, and Ming Zhou. 2018. Achieving
human parity on automatic chinese to english
news translation. CoRR, abs/1803.05567.

Junxian He, Graham Neubig, and Taylor Berg-
Kirkpatrick. 2021a. Efficient nearest neighbor
language models. In Proceedings of EMNLP
2021, pages 5703–5714.

Qiuxiang He, Guoping Huang, Qu Cui, Li Li, and
Lemao Liu. 2021b. Fast and accurate neural
machine translation with translation memory. In
Proceedings of ACL-IJCNLP 2021, pages 3170–
3180.

John Hewitt and Percy Liang. 2019. Designing and
interpreting probes with control tasks. In Pro-
ceedings of EMNLP-IJCNLP 2019, pages 2733–
2743.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for
NLP. In Proceedings of ICML 2019, pages 2790–
2799.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2022a. LoRA: Low-rank adap-
tation of large language models. In Proceedings
of ICLR 2022.

Junjie Hu, Mengzhou Xia, Graham Neubig, and
Jaime Carbonell. 2019. Domain adaptation of
neural machine translation by lexicon induction.
In Proceedings of ACL 2019, pages 2989–3001.

Zhiqiang Hu, Roy Ka-Wei Lee, Charu C Aggarwal,
and Aston Zhang. 2022b. Text style transfer: A re-
view and experimental evaluation. ACM SIGKDD
Explorations Newsletter, 24(1):14–45.

Yongcheng Jing, Yining Mao, Yiding Yang, Yibing
Zhan, Mingli Song, Xinchao Wang, and Dacheng
Tao. 2022. Learning graph neural networks for
image style transfer. In ECCV 2022, pages 111–
128. Springer.

Jeff Johnson, Matthijs Douze, and Hervé Jégou.
2017. Billion-scale similarity search with gpus.
IEEE Transactions on Big Data, 7:535–547.

Nishant Kambhatla, Logan Born, and Anoop Sarkar.
2022. CipherDAug: Ciphertext based data aug-
mentation for neural machine translation. In Pro-
ceedings of ACL 2022, pages 201–218.

Pei Ke, Fei Huang, Minlie Huang, and Xiaoyan
Zhu. 2019. ARAML: A stable adversarial training
framework for text generation. In Proceedings of
EMNLP-IJCNLP 2019, pages 4271–4281.

Nitish Shirish Keskar, Bryan McCann, Lav Varsh-
ney, Caiming Xiong, and Richard Socher. 2019.
CTRL - A Conditional Transformer Language
Model for Controllable Generation. arXiv preprint
arXiv:1909.05858.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky,
Luke Zettlemoyer, and Mike Lewis. 2021. Near-
est neighbor machine translation. In Proceedings
of ICLR 2021.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky,
Luke Zettlemoyer, and Mike Lewis. 2020. Gener-
alization through memorization: Nearest neigh-
bor language models. In Proceedings of ICLR
2020.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of
EMNLP 2014, pages 1746–1751.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

James Kirkpatrick, Razvan Pascanu, Neil Rabi-
nowitz, Joel Veness, Guillaume Desjardins, An-
drei A Rusu, Kieran Milan, John Quan, Tiago
Ramalho, Agnieszka Grabska-Barwinska, et al.
2017. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526.

Tom Kocmi, Rachel Bawden, Ondřej Bojar, An-
ton Dvorkovich, Christian Federmann, Mark
Fishel, Thamme Gowda, Yvette Graham, Roman
Grundkiewicz, Barry Haddow, Rebecca Knowles,
Philipp Koehn, Christof Monz, Makoto Morishita,
Masaaki Nagata, Toshiaki Nakazawa, Michal
Novák, Martin Popel, Maja Popović, and Mariya
Shmatova. 2022. Findings of the 2022 con-
ference on machine translation (WMT22). In
Proceedings of the 7th Conference on Machine
Translation, pages 1–45.

Patrick Lewis, Ethan Perez, Aleksandra Piktus,
Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. In Advances
of NeurIPS 2020, pages 9459–9474.

Bei Li, Tong Zheng, Yi Jing, Chengbo Jiao, Tong
Xiao, and Jingbo Zhu. 2022. Learning multi-
scale transformer models for sequence genera-
tion. In Proceedings of ICML 2022, pages 13225–
13241.

http://arxiv.org/abs/1803.05567
http://arxiv.org/abs/1803.05567
http://arxiv.org/abs/1803.05567
https://doi.org/10.18653/v1/2021.emnlp-main.461
https://doi.org/10.18653/v1/2021.emnlp-main.461
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/P19-1286
https://doi.org/10.18653/v1/P19-1286
https://doi.org/10.18653/v1/2022.acl-long.17
https://doi.org/10.18653/v1/2022.acl-long.17
https://doi.org/10.18653/v1/D19-1436
https://doi.org/10.18653/v1/D19-1436
https://openreview.net/forum?id=7wCBOfJ8hJM
https://openreview.net/forum?id=7wCBOfJ8hJM
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://proceedings.mlr.press/v162/li22ac.html
https://proceedings.mlr.press/v162/li22ac.html
https://proceedings.mlr.press/v162/li22ac.html

12805

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to
sentiment and style transfer. In Proceedings of
NAACL 2018, pages 1865–1874.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation.
In Proceedings of ACL 2021, pages 4582–4597.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A.
Smith, and Yejin Choi. 2021. DExperts:
Decoding-time controlled text generation with ex-
perts and anti-experts. In Proceedings of ACL-
IJCNLP 2021, pages 6691–6706.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li,
Sergey Edunov, Marjan Ghazvininejad, Mike
Lewis, and Luke Zettlemoyer. 2020. Multilingual
denoising pre-training for neural machine trans-
lation. Transactions of the ACL, 8:726–742.

Minh-Thang Luong and Christopher Manning. 2015.
Stanford neural machine translation systems for
spoken language domains. In Proceedings of the
12th IWSLT: Evaluation Campaign, pages 76–79.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad
Almahairi, Hao Ma, Jiawei Han, Scott Yih, and
Madian Khabsa. 2022. UniPELT: A unified frame-
work for parameter-efficient language model tun-
ing. In Proceedings of ACL 2022, pages 6253–
6264.

Paul Michel and Graham Neubig. 2018. Ex-
treme adaptation for personalized neural ma-
chine translation. In Proceedings of ACL 2018,
pages 312–318.

Xing Niu and Marine Carpuat. 2020. Controlling
neural machine translation formality with syn-
thetic supervision. In Proceedings of AAAI 2020,
pages 8568–8575.

Xing Niu, Marianna Martindale, and Marine
Carpuat. 2017. A study of style in machine trans-
lation: Controlling the formality of machine trans-
lation output. In Proceedings of EMNLP 2017,
pages 2814–2819.

Xing Niu, Sudha Rao, and Marine Carpuat. 2018.
Multi-task neural models for translating between
styles within and across languages. In Proceed-
ings of COLING 2018, pages 1008–1021.

NLLB Team, Marta R. Costa-jussà, James Cross,
Onur Çelebi, Maha Elbayad, Kenneth Heafield,
Kevin Heffernan, Elahe Kalbassi, Janice Lam,
Daniel Licht, Jean Maillard, Anna Sun, Skyler
Wang, Guillaume Wenzek, Al Youngblood, Bapi
Akula, Loic Barrault, Gabriel Mejia Gonza-
lez, Prangthip Hansanti, John Hoffman, Se-
marley Jarrett, Kaushik Ram Sadagopan, Dirk

Rowe, Shannon Spruit, Chau Tran, Pierre
Andrews, Necip Fazil Ayan, Shruti Bhosale,
Sergey Edunov, Angela Fan, Cynthia Gao,
Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Rop-
ers, Safiyyah Saleem, Holger Schwenk, and Jeff
Wang. 2022. No language left behind: Scal-
ing human-centered machine translation. arXiv
preprint arXiv:2207.04672.

OpenAI. 2022. Introducing ChatGPT. (Accessed
on Jun 18, 2023).

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for auto-
matic evaluation of machine translation. In Pro-
ceedings of ACL 2002, pages 311–318.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as
knowledge bases? In Proceedings of EMNLP-
IJCNLP, pages 2463–2473.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composi-
tion for transfer learning. In Proceedings of EACL
2021, pages 487–503.

Matt Post. 2018. A call for clarity in reporting bleu
scores. In Proceedings of the 3rd Conference on
Machine Translation: Research Papers, pages
186–191.

Andreas Rücklé, Gregor Geigle, Max Glockner,
Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. 2021. AdapterDrop: On the
efficiency of adapters in transformers. In Pro-
ceedings of EMNLP 2021, pages 7930–7946.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael
Pritch, Michael Rubinstein, and Kfir Aberman.
2023. Dreambooth: Fine tuning text-to-image
diffusion models for subject-driven generation.
In Proceedings of CVPR 2023, pages 22500–
22510.

Hrituraj Singh, Gaurav Verma, Aparna Garimella,
and Balaji Vasan Srinivasan. 2021. DRAG:
Director-generator language modelling frame-
work for non-parallel author stylized rewriting. In
Proceedings of EACL 2021, pages 863–873.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural net-
works from overfitting. Journal of Machine Learn-
ing Research, 15(56):1929–1958.

Bakhtiyar Syed, Gaurav Verma, Balaji Vasan Srini-
vasan, Anandhavelu Natarajan, and Vasudeva

https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://aclanthology.org/2015.iwslt-evaluation.11
https://aclanthology.org/2015.iwslt-evaluation.11
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/P18-2050
https://doi.org/10.18653/v1/P18-2050
https://doi.org/10.18653/v1/P18-2050
https://aaai.org/ojs/index.php/AAAI/article/view/6379
https://aaai.org/ojs/index.php/AAAI/article/view/6379
https://aaai.org/ojs/index.php/AAAI/article/view/6379
https://doi.org/10.18653/v1/D17-1299
https://doi.org/10.18653/v1/D17-1299
https://doi.org/10.18653/v1/D17-1299
https://aclanthology.org/C18-1086
https://aclanthology.org/C18-1086
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://openai.com/blog/chatgpt
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://doi.org/10.18653/v1/2021.emnlp-main.626
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

12806

Varma. 2020. Adapting language models for non-
parallel author-stylized rewriting. In Proceedings
of AAAI 2020, pages 9008–9015.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances of NeurIPS
2017, pages 5998–6008.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019.
The bottom-up evolution of representations in the
transformer: A study with machine translation
and language modeling objectives. In Proceed-
ings of EMNLP-IJCNLP 2019, pages 4396–4406.

Thuy Vu and Alessandro Moschitti. 2021. Ma-
chine translation customization via automatic
training data selection from the web. CoRR,
abs/2102.10243.

Shuo Wang, Zhaopeng Tu, Zhixing Tan, Shuming
Shi, Maosong Sun, and Yang Liu. 2021. On
the language coverage bias for neural machine
translation. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021,
pages 4778–4790.

Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin,
Wei Chen, Min Zhang, Tie-Yan Liu, et al. 2021a.
R-drop: Regularized dropout for neural networks.
In Advances of NeurIPS 2021, pages 10890–
10905.

Xuanxuan Wu, Jian Liu, Xinjie Li, Jinan Xu, Yufeng
Chen, Yujie Zhang, and Hui Huang. 2021b. Im-
proving stylized neural machine translation with
iterative dual knowledge transfer. In Proceedings
of IJCAI 2021, pages 3971–3977.

Yuxiang Wu, Yu Zhao, Baotian Hu, Pasquale Min-
ervini, Pontus Stenetorp, and Sebastian Riedel.
2022. An efficient memory-augmented trans-
former for knowledge-intensive nlp tasks. arXiv
preprint arXiv:2210.16773.

Kevin Yang and Dan Klein. 2021. FUDGE: Con-
trolled text generation with future discriminators.
In Proceedings of NAACL 2021, pages 3511–
3535.

Dani Yogatama, Cyprien de Masson d’Autume, and
Lingpeng Kong. 2021. Adaptive semiparametric
language models. Transactions of the Associa-
tion for Computational Linguistics, 9:362–373.

Jiacheng Zhang, Huanbo Luan, Maosong Sun,
Feifei Zhai, Jingfang Xu, Min Zhang, and Yang
Liu. 2018. Improving the transformer translation
model with document-level context. In Proceed-
ings of EMNLP 2018, pages 533–542.

Peng Zhang, Zhengqing Guan, Baoxi Liu, Xi-
anghua Ding, Tun Lu, Hansu Gu, and Ning Gu.
2022. Building user-oriented personalized ma-
chine translator based on user-generated textual
content. Proceedings of the ACM on Human-
Computer Interaction, 6(CSCW2):1–26.

Xin Zheng, Zhirui Zhang, Shujian Huang, Boxing
Chen, Jun Xie, Weihua Luo, and Jiajun Chen.
2021. Non-parametric unsupervised domain
adaptation for neural machine translation. In
Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4234–4241.

10. Appendix

10.1. Training Details

NMT Model Training We use WMT14 (Bojar
et al., 2014) De-En and WMT20 (Barrault et al.,
2020) Zh-En training data to train NMT models.
For all the involved language pairs (i.e., En-Zh, Zh-
En, and De-En), we train the Transformer model
using the following hyper-parameters. All the mod-
els are optimized by Adam (Kingma and Ba, 2014),
with β1 = 0.9, β2 = 0.98 and ϵ = 10−9. We train
each model for 200K iterations on 4 NVIDIA A100
GPUs, where the training speed is 8.5 iterations
per second. We use the learning schedule pre-
sented in Vaswani et al. (2017), with a maximum
learning rate of 7e-4 and the warm-up step is 4K.
Each mini-batch contains 32K tokens in total. Both
the dropout rate and the label smoothing penalty
are set to 0.1. During inference, the beam size is
4. For En-Zh and Zh-En, the NMT models have
253.9M parameters. For De-En, the model has
198.3M parameters.

Adapter Training We train the proposed memory-
augmented adapter for 20K iterations. The max-
imum learning rate is set to 2e-4 and we restart
the learning rate schedule when training adapters.
Each mini-batch contains 8K tokens. Each experi-
ment is conducted through a single run. We tune
the values of the hyperparameters on the validation
set through grid search.

kNN Decoding To apply kNN decoding to our
method, we should firstly build a datastore in the
same way as that illustrated in Khandelwal et al.
(2021) using our model augmented with the pro-
posed adapters. We use the open-sourced imple-
mentation of kNN decoding.6

6https://github.com/urvashik/knnmt

https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
http://arxiv.org/abs/2102.10243
http://arxiv.org/abs/2102.10243
http://arxiv.org/abs/2102.10243
https://doi.org/10.18653/v1/2021.findings-acl.422
https://doi.org/10.18653/v1/2021.findings-acl.422
https://doi.org/10.18653/v1/2021.findings-acl.422
https://www.ijcai.org/proceedings/2021/0547.pdf
https://www.ijcai.org/proceedings/2021/0547.pdf
https://www.ijcai.org/proceedings/2021/0547.pdf
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.1162/tacl_a_00371
https://doi.org/10.1162/tacl_a_00371
https://doi.org/10.18653/v1/D18-1049
https://doi.org/10.18653/v1/D18-1049
https://doi.org/10.18653/v1/2021.findings-emnlp.358
https://doi.org/10.18653/v1/2021.findings-emnlp.358

12807

10.2. Details on Baselines
In this subsection, we provide the essential details
of the baselines in this work:

• Adapter (Houlsby et al., 2019): we use the
same adapter architecture as presented in
Houlsby et al. (2019). The training hyperpa-
rameters are the same as our method, exclud-
ing some newly introduced hyperparameters
(e.g, α and β). The default dimension of the
hidden layer is set to 64, following Houlsby
et al. (2019). Since our method use more pa-
rameters than Adapter, we also train a larger
adapter to assimilate the parameter count,
whose hidden dimension is set to 512. The
bigger adapter still performs worse than our
method (16.9 vs. 20.8 in terms of BLEU), in-
dicating that our performance improvement is
not totally caused by the larger adapter size.

• MT+Rewrite (Syed et al., 2020): we train a
rewriting model to refine the output of the NMT
model. Specifically, we fine-tune a pretrained
encoder-decoder model to transfer the model
outputs into stylized texts.

• kNN-MT (Khandelwal et al., 2021): there are
mainly three hyperparameters that have a sig-
nificant impact on performance: k, T , and λ.
We tune the hyperparameters on the validation
set. For style customization, k = 128, T = 30
and λ = 0.7 in En-Zh. In Zh-En, k = 16, T =
40 and λ = 0.6. For domain customization, k
= 16 across all the four domains. T = 4 in IT,
Medical, and Law. T = 40 in Koran. λ is tuned
to be 0.2, 0.3, 0.3, 0.6 in IT, Medical, Law, and
Koran, respectively.

• DExperts (Liu et al., 2021): we should learn
two independent language models, of which
one language model serves as an expert and
another one is an anti-expert. The expert
model is fine-tuned on the user-provided data
while the anti-expert is trained on the general
domain data. α is tuned on the validation set
and the final value is 0.2.

10.3. Case study
We place some translation examples in Table 8 to
provide a better understanding of the difference
between the involved methods. There are 6 sen-
tences from short to long. We can find that our
method always outputs better translations. Also,
kNN-MT is not always better than Adapter, see the
3-rd and 4-th cases.

Syed et al. (2020) believe that the author-style
can be understood at three levels, from punctua-
tion, word usage to syntax (Syed et al., 2020). In
our cases, we can find that our method can learn

to generate author-style better in different granular-
ities. From case 2, our method correctly translates
the phrase “build the tower” to “造塔” while the other
methods translate it to “修建塔” or “建造雷峰塔”. Al-
though the meaning is the same, our translation
is closer to the expression style of the original au-
thor/user. Similarly, our method properly translates
the word “call” to “呼唤” while the other methods
translate it to “打电话” or “叫” in case 3. Also, our
method translates the phrase “that night” to “那夜”
while the other methods translate it to “那一晚” or
“昨夜” in case 4. Furthermore, it can also be easily
found that our method can generate similar sen-
tences that have similar syntactic styles. From case
1 and case 6, we can see that the sentence gener-
ated by our method is more similar to the reference
in terms of sentence segmentation.

These cases from lexical level to syntactic struc-
ture also demonstrate the rationality and effective-
ness of our multi-granularity memory design.

10.4. Application to Larger Model
We also conduct experiments on a model of a larger
scale, whose hidden size is 1024 and parameter
size is 596.0M. On the test set of En-Zh style cus-
tomization, our memory-augmented adapter (with-
out kNN decoding) outperforms Adapter (Houlsby
et al., 2019) by 2.9 BLEU and kNN-MT (Khandel-
wal et al., 2021) by 2.2 BLEU. This demonstrates
that our method is also effective when the model
size is larger. How to apply our method to larger
models deserves further exploration.

12808

Table 8: Case study on En-Zh style customization. For clarity, we only choose the representative baselines
(i.e., Adapter (Houlsby et al., 2019) and kNN-MT (Khandelwal et al., 2021)) for comparison.

Source So biological truth is by no means a talisman for polygamy.
Adapter 因此，生物学真理决不是一夫多妻制的护身符。

kNN-MT 所以，生物学的真理，决不是一夫多妻制的护身的挡牌。

Ours 所以生物学上的道理，决不是一夫多妻的护身符。

Reference 所以生物学的真理，决非多妻主义的护符。

Source Could it be that when he built the tower, he didn’t think that the tower would fall down after all.
Adapter 难道他修建塔的时候，总不认为塔会倒塌吗。

kNN-MT 倘若他建造雷峰塔的时候，他没有想到那塔终究会倒塌。

Ours 难道他造塔的时候，总不觉得那塔到底要倒下去么。

Reference 莫非他造塔的时候，竟没有想到塔是终究要倒的么。

Source It was the morning of the fifth day that everyone dragged him up early in the morning and stood on the
shore listening to the call.

Adapter 这是第五天早晨，大家一大早就把他拖起来，站在岸上听着叫。

kNN-MT 第二天的早晨，大家一大早把他拖起来，站在岸上听听差打电话。

Ours 这是第五天的早晨，大家早把他拖起来，站在岸上听着呼唤。

Reference 就是这第五天的早晨，大家一早就把他拖起来，站在岸上听呼唤。

Source Really, until now, I really haven’t eaten the good beans like that night, and I haven’t seen the good show
like that night anymore.

Adapter 真的，到目前为止，我实在没有吃过那一晚这样的好豆子，我再也没有见过那晚这样的好秀了。

kNN-MT 真的，直到现在，我实在没有吃过昨夜的豆子，我也从来没见过这样的好东西。

Ours 真的，直到现在，我实在没有吃过那夜那样好的豆子了，我也再没有见过那夜那样的好节目了。

Reference 真的，一直到现在，我实在再没有吃到那夜似的好豆，也不再看到那夜似的好戏了。

Source This affair happened at the turn of winter and spring. The wind was not so cold anymore, and I wandered
outside for a longer time; by the time I got home, it had been probably already dark.

Adapter 这事发生在冬春交替的时候，风不再那么冷了，我在外面漫游了更长的时间；到我到家的时候，大概是
已经暗了。

kNN-MT 这事发生在冬或今年春末，微风不再那么冷，我徘徊了大半天，到我回家的时候，天气大概已经很深
了。

Ours 这事发生于冬春之交，风已不再那么冷，我在外面徘徊了更长的时间；到我到家的时候，大概已经天黑
了。

Reference 这是冬春之交的事，风已没有这么冷，我也更久地在外面徘徊；待到回家，大概已经昏黑。

Source
For example, to build a railway, if we tell them how beneficial this thing is, they will never listen. If we,
according to a myth, tell that previously a great immortal pushed a wheelbarrow over the rainbow, and now
we imitate him to build a road, then everything can be done.

Adapter
举例来说，要修建铁路，如果我们告诉他们这事是何等的益处，他们就决不肯听从，如果我们，根据一
个神话，告诉以前一个伟大的不朽的推车推着彩虹之上，现在我们模仿他修筑一条路，那么一切都可以
完成了。

kNN-MT 譬如说，如果我们告诉他们，铁路的建设是多么有益，他们决不听，如果我们根据神话说，先前一个大
不朽的独轮车从彩虹上推过，现在我们模仿他造路，便可以做点事了。

Ours 譬如造铁路罢，倘告诉他们这东西有多大益处，他们便决不肯听话，倘使我们据传说，说先前一个伟大
的不朽的车手推着彩虹，现在就模仿他来造一条路，那么，一切便都可以做。

Reference 譬如要造一条铁路，倘若对他们说这事如何有益，他们决不肯听；我们如果根据神话，说从前某某大
仙，曾推着独轮车在虹霓上走，现在要仿他造一条路，那便无所不可了。

	Introduction
	Related Work
	Style / Domain Adaptation for NMT
	Machine Translation Customization
	Pluggable Pretrained Models

	Background
	Transformer Model
	Style Customization in NMT

	Approach
	Overview
	Multi-granular Continuous Memory
	Memory-augmented Adapter

	Style Customization
	Setup
	Main Results
	Performance at Different Data Scales

	Domain Customization
	Setup
	Main Results
	Inference Time

	Discussion
	Effect of Different Components
	Comparison with Fine-tuning

	Conclusion
	Bibliographical References
	Appendix
	Training Details
	Details on Baselines
	Case study
	Application to Larger Model

