
LREC-COLING 2024, pages 12977–12987
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

12977

Pre-training Cross-Modal Retrieval by Expansive
Lexicon-Patch Alignment

Yang Yiyuan1, Guodong Long1, Michael Blumenstein1, Xiubo Geng2,
Chongyang Tao2, Tao Shen2, Daxin Jiang2∗

1University of Technology Sydney, Australia
2Microsoft Corporation

Yiyuan.Yang-1@student.uts.edu.au, {Guodong.Long, Michael.Blumenstein}@uts.edu.au
{xigeng,chongyang.tao,shentao,djiang}@microsoft.com

Abstract
Recent large-scale vision-language pre-training depends on image-text global alignment by contrastive learning and
is further boosted by fine-grained alignment in a weakly contrastive manner for cross-modal retrieval. Nonetheless,
besides semantic matching learned by contrastive learning, cross-modal retrieval also largely relies on object
matching between modalities. This necessitates fine-grained categorical discriminative learning, which however
suffers from scarce data in full-supervised scenarios and information asymmetry in weakly-supervised scenarios
when applied to cross-modal retrieval. To address these issues, we propose expansive lexicon-patch alignment
(ELA) to align image patches with a vocabulary rather than only the words explicitly in the text for annotation-free
alignment and information augmentation, thus enabling more effective fine-grained categorical discriminative learning
for cross-modal retrieval. Experimental results show that ELA could effectively learn representative fine-grained
information and outperform state-of-the-art methods on cross-modal retrieval.
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1. Introduction

With the surge of multimedia data online, the need
has shifted from just text searches to multi-modal
searches. Cross-modal retrieval, which uses one
form of content (e.g., image or text) to find related
content in another, aims to bridge this modality
gap. This technique has applications ranging from
recipe suggestions (Carvalho et al., 2018) to visual
searches (Bain et al., 2021) and story creation (Fan
et al., 2018).

Recently, inspired by the success of self-
supervised learning in intra-modal tasks, large-
scale pre-training has attracted surging attention
in the vision-language (VL) community. The most
prevalent pre-training methods, e.g., CLIP (Rad-
ford et al., 2021) and ALIGN (Jia et al., 2021),
train over hundreds of million pseudo image-text
pairs via contrastive learning for global alignment.
These methods are proposed to benefit general-
purpose VL tasks by fine-tuning but appear to be
sub-optimal in cross-modal retrieval due to a lack
of fine-grained alignments between modalities (Yao
et al., 2021; Yang et al., 2022). To mitigate this,
many works, e.g., ViLT (Kim et al., 2021), FILIP
(Yao et al., 2021) and ALBEF (Li et al., 2021),
are proposed to complement the global alignment
with fine-grained ones by weakly-supervised con-
trastive learning.

However, the above works mainly depend on
contrastive learning, leading to insufficient categor-
ical information and thus sub-optimal performance
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Caption: a boat floating on a lake through a brick bridge

Query: peaceful water scene with a stone bridge and purple flowers.

Objects in caption: boat, lake, bridge

Object not in caption: flowers

Same Object with different words: water, lake 

 

Figure 1: An illustration of cross-modal retrieval.
Cross-modal retrieval depends on objects match-
ing with referred words like dog and horse. As
shown in the figure, the pre-train caption can only
capture a portion of the information in the image
(such as the boat, lake, and bridge), leaving out
other objects (such as flowers) and synonyms
(such as water) that may be included in a query.

in cross-modal retrieval. This is because compared
to heavy semantic-matching dependency in pure
text retrieval (Karpukhin et al., 2020), cross-modal
retrieval relies primarily on matching multiple ob-
jects (e.g., horse, dog in Figure 1) between men-
tions in a text and concepts in an image. There-
fore, fine-grained categorical discriminative learn-
ing (Dosovitskiy et al., 2020), which aims at learn-
ing to distinguish between different categories for
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improving image understanding, is highlighted in
cross-modal retrieval tasks.

Despite promising, human-annotated cate-
gorical supervisions in a fine-grained fashion
(Kazemzadeh et al., 2014) are too scarce to pre-
train a VL model. Additionally, weakly fine-grained
categorical supervision methods (Zareian et al.,
2021), which rely on noun phrases in captions for
patch-level discriminative learning, suffer from in-
formation asymmetry problems. As illustrated in
Figure 1, the short text cannot exhaustively de-
scribe the image, making categorical learning less
effective.

To address these issues, we propose a vision-
language pre-training framework, dubbed Expan-
sive Lexicon-patch Alignment (ELA), for cross-
modal retrieval. Unlike previous work reliant on
contrastive learning and fine-grained alignments
between the paired image and texts, ELA intro-
duces fine-grained categorical discriminative learn-
ing by expansive lexicon-patch alignment to align
patches with all relevant words in a vocabulary,
expanding beyond just paired text. Specifically,
built upon the popular backbone ALBEF (Li et al.,
2021), we first propose a discriminative patch-to-
lexicon head in section 3.1 to map encoded patch
embeddings to the vocabulary space of language,
producing distributions of image patches on vocab-
ulary. After getting these distributions of patches,
to achieve a fine-grained cross-modal alignment
using distributions from the text head, we present
an expansive lexicon-patch alignment module in
section 3.2 to align the distributions of patches and
words in the whole vocabulary space. Lastly, to
make the alignment more precise, we propose a
cross-modal lexicon-distillation module in section
3.3 to distill cross-modal-aware lexicon distribution
into the masked language modeling (MLM) head.

As such, the fine-grained alignment in our frame-
work is not restricted to leveraging words/phrases
that explicitly appear in the paired text, but also
the expansive lexicons (full of synonyms and co-
ordinate terms) in light of contextualization of
the text. This is achieved by our carefully de-
signed fine-grained cross-modal alignment in the
entire language vocabulary space, which could
greatly alleviate the information asymmetry prob-
lem above. Extensive experiments demonstrate
that ELA achieves state-of-the-art performance on
cross-modal retrieval by learning fine-grained infor-
mation with expansive lexicon-patch alignment.

2. Related Work

Contrastive Vision-language Pre-training. Ex-
isting vision-language pre-training (VLP) relies on
large-scale pre-train data and learns information by
self-supervised contrastive learning. According to

the granularity of learning, they can be categorized
as global contrastive models or fine-grained con-
trastive models. Unlike global contrastive models
such as CLIP (Radford et al., 2021) and ALIGN (Jia
et al., 2021), fine-grained contrastive VLP models
either rely on the detector to extract objects for im-
age objects and text words matching like UNITER
(Chen et al., 2020c), or use the paired caption text
as weak supervision to align patches and words
for annotation-free, e.g. ViLT (Kim et al., 2021)
and FILIP (Yao et al., 2021). Additionally, deep
fusion models like ALBEF (Li et al., 2021), TCL
(Yang et al., 2022) and X-VLM (Zeng et al., 2021)
introduce a cross-encoder for better interactions
between different modalities. Despite introducing
an object detection task as fine-grained discrimina-
tive learning, X-VLM (Zeng et al., 2021) still relies
on partially annotated data in pre-training. Given
their lack of categorical information, these con-
trastive VLP models might struggle in cross-modal
retrieval, which motivates this work.

Categorical Discriminative Learning. Categori-
cal discriminative learning enhances image under-
standing by aiming at learning generalized image
representation for recognition. One simple task
is image classification, labeling images with pre-
defined categories. Convolutional neural network
(CNN) (Szegedy et al., 2015; He et al., 2016) is the
first proposed network for image classification by
learning multi-scale features of images with deep
layers. With the NLP success of the Transformer
(Vaswani et al., 2017), models like ViT (Dosovit-
skiy et al., 2020) and Swin-transformer (Liu et al.,
2021b) adopted its architecture for images. How-
ever, these approaches above mainly focus on
global category learning, which may fail in multiple
object detection in one image. Therefore, fine-
grained categorical learning such as visual ground-
ing is needed. Since cross-modal retrieval heavily
relies on the category matching between image
and text, some research works (Peng and Qi, 2019;
Zhen et al., 2019) use categorical discriminative
learning for supervised cross-modal retrieval. How-
ever, they only consider global categorical learning
and require human-annotated data. To mitigate
this, we add fine-grained categorical discrimina-
tive learning in pre-training and take paired text as
weak supervision.

Visual Grounding. Visual grounding involves lo-
cating an object in an image based on a provided
noun phrase. Traditional classical methods (Liu
et al., 2020; Yang et al., 2020) require human an-
notations which can be costly and error-prone. To
address this, weakly supervised visual grounding
methods (Datta et al., 2019; Akbari et al., 2019;
Liu et al., 2021a) utilize noun phrases from paired
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captions as labels. Inspired by this, Zareian et al.
(2021) expanded object detection to the open vo-
cabulary through a weak-supervised visual ground-
ing pre-training model to learn the matched objects
and words. However, directly applying this objec-
tive suffers from data scarcity in full-supervised
scenarios and information asymmetry in weakly-
supervised scenarios. Thus, we propose ELA to
align the image patch and text word in the lexicon
space and expand the candidate words for abun-
dant image information learning.

3. Pre-training Cross-Modal Retrieval

Vision-Language Pre-training Task. Given a
pseudo image-text pair, i.e., < I, T >, the visual-
language pre-training task focuses on capturing
semantics underlying both the image and text by
a cross-modal neural architecture. It endeavors to
not only identify and reinforce the semantic con-
gruence within the given image-text pair but also
alienate pairs that are semantically irrelevant.

Built on ALBEF (Li et al., 2021) backbone, which
consists of an image encoder, a text encoder, and
a cross-modal encoder, our pre-training method
proposes to leverage a lexicon-centric alignment
between modalities, as shown in Figure 2.

3.1. Discriminative Patch-to-Lexicon
Head

Previous works in learning cross-modal alignment
depend heavily on contrastive learning due to its
powerful generalization ability in cross-modal rep-
resentation learning (Radford et al., 2021; Jia et al.,
2021). In particular, fine-grained contrastive learn-
ing between image patches and text words has
been proven effective in a weakly supervised man-
ner for cross-modal retrieval (Yao et al., 2021).
Nonetheless, a recent work (Zeng and Mao, 2022)
found that contrastive learning can be incompe-
tent to learn the alignment for cross-modal retrieval
tasks because the key to this task lies in object
matching across modalities. Therefore, it is imper-
ative to integrate categorical discriminative learn-
ing into the pre-training framework for cross-modal
object matching.

Despite the inherent challenges associated with
pre-defining real-world object categories for all vi-
sual patches, a feasible solution is resorting to the
textual vocabulary at the text side, which provides
an exhaustive categorical definition by a close set
of lexicons or subwords. Such a solution is aligned
with open-vocab visual grounding (Zareian et al.,
2021). But in contrast to the conventional visual
grounding that detects bounding boxes of objects,
our method applies categorical learning to each in-
dividual patch, enabling a more general alignment

in representation learning.
Formally, given an image, we first split it into a se-

quence of flattened patches, i.e., I = [a1, . . . , aN ],
to satisfy the input format of the Transformer en-
coder. Then, the flattened patches are fed into
a Transformer encoder for patch-level contextual-
ized representation. Instead of taking the orig-
inal patches of the image as input, we apply a
masking perturbation (30% of original tokens are
masked), where the indices of masked patches are
denoted as M(img). This approach shares a similar
inspiration with mask-regularized pre-training (Gao
and Callan, 2021), which inherently bolsters the ro-
bustness of the model, enhancing its resilience to
perturbations. We denotes the masked image as
Ī = [ā1, . . . , āN ] and the image encoding is written
as

V=f img(Ī) :=Transfm([ā1, . . . , āN ];θ(img)), (1)

where N is the number of patches, θ(img)

parameterizes this image encoder, and V =
[v1, . . . ,vN ] ∈ Rd×N denotes the resulting patch
embeddings. Next, to facilitate lexicon-centric align-
ment with the language counterpart, we introduce
a discriminative patch-to-lexicon (P2L) head. This
P2L head is designed to map each patch-level
embedding vi into a probability distribution over
language vocabulary V, i.e.,

P (p2l)=σ(W (we)(Wθ(p2l)V + bθ(p2l))), (2)

where σ(·) is a softmax along with |V|, W (we) ∈
R|V|×d denotes word embedding weight matrix,
Wθ(p2l) and bθ(p2l) denotes a θ(p2l)-parameterized
linear layer, and the P (p2l) = [p(p2l)

1 , . . . ,p(p2l)
N ] ∈

R|V|×N . With the integration of our proposed patch-
to-lexicon module, the alignment of an image with
a corresponding text through P (p2l) becomes in-
trinsically feasible, and this method will be fully
explained in the next section.

3.2. Expansive Lexicon-Patch Alignment

Given the distribution p(p2l)
i ∈ P (img) that maps each

visual patch into lexicons, a straightforward learn-
ing strategy might be to assign a pseudo label
to each patch and subsequently apply discrimina-
tive learning. Conventionally, these pseudo labels
are derived from explicit words [w1, . . . , wM ], in the
paired text T , where M denotes the number of
words in T .

However, the short length of text T often fails to
exhaustively describe the rich contents of the im-
age I while typically concentrating on a constricted
viewpoint. Such a constraint could cause an infor-
mation asymmetry problem, wherein a pre-trained
model may be prone to learn image representa-
tions biased to the text distribution of a specific
corpus.
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Figure 2: The overall architecture of ELA. It consists of an image encoder, a text encoder, a cross-modal
encoder, a patch-to-lexicon head and a cross-modal lexicon distillation module. As shown on the right
side, we use optimal transport to get the similarity scores of each image patch and text word, and use
MLM head to get the lexicon distribution of each word as an expansion. By multiplying them together, the
final lexicon distributions of each patch are obtained as labels of expansive fine-grained discriminative
learning.

Thereby, inspired by recent advances in lexicon
expansion (Formal et al., 2021; Shen et al., 2022;
Nogueira et al., 2019) for text retrieval, we propose
an expansive lexicon-patch alignment between the
patch-to-lexicon (P2L) head at the image side and
the masked language modeling (MLM) head at the
text side. Instead of a hard pseudo label for each
patch, we assign each patch with a soft distribution
over V by deeply exploiting rich lexicon correlations
pre-trained by MLM.

First, similar to the image side, a text encoder
is applied to the input text T , for contextualized
embeddings. That is

U=f txt(T ) :=Transfm([w1, . . . , wM ];θ(txt)). (3)

Then, an MLM head is applied to U by

P (w2l)=σ(W (we)Transfm-Layer(U;θ(w2l))), (4)

where P (w2l) = [p(w2l)
1 , . . . ,p(w2l)

M ] ∈ R|V|×M and
each p(w2l)

j denotes contextualization-based lexi-
con expansions for wj , full of synonyms and coor-
dinate terms from MLM pre-training.

Next, to associate P (w2l) to P (p2l) for cross-modal
alignment learning, we follow the prevalent weakly
label assigning method, optimal transport (OT) by
Xie et al. (2020), which has been proven effective
in many works (Chen et al., 2020b,a; Kim et al.,
2021). Instead of directly using P (w2l) and P (p2l) for

OT, we propose to use the hidden states, V and
U , to calculate each distance from a word wj to a
patch ai, i.e.,

ci,j = OptimalTrans(V ,U). (5)

Here, we use the inexact proximal point method
optimal transport algorithm (IPOT) (Xie et al., 2020)
to calculate the cost from wj to ai. Thereby, we
can easily derive a soft label for each patch by

p̂(p2l)
i =

∑
j(1− ci,j) · p(w2l)

j∑
j(1− ci,j)

. (6)

Lastly, The loss function for our expansive
lexicon-patch alignment is defined as

Lela =
∑

i∈M(img)
KL-Div(p(p2l)

i , p̂(p2l)
i ). (7)

Note that we cut off the gradient backward to p(p2l)
i

as its back-end is updated with main modules.

Remark. Compared to hidden states-based OT
loss to directly optimize cross-modal alignment,
ELA depends on the OT over hidden states to cal-
culate cross-modal weights merely and then inte-
grates the weights for our expansive lexicon-patch
alignment. With masking perturbation, our ELA,
similar to momentum-based pre-training (He et al.,
2020), can be seen as a robust boosting mech-
anism via transferring lexicon-augmented knowl-
edge in MLM into the image encoder.
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3.3. Cross-Modal Lexicon-Distillation

As detailed in expansive lexicon-patch alignment,
a precise distribution p(w2l)

j is critical to p̂(p2l)
i , there-

fore serving as an essential foundation for the ef-
ficacy of our model. In order to further improve
the accuracy of p(w2l)

j , we employ a heterogeneous
knowledge distillation, where the teacher is a pow-
erful cross-modal encoder to provide image-aware
language modeling results. Such image-aware in-
formation can subsequently equip the MLM head
on top of the text encoder to expand its vocabulary
with more visual object-related lexicons.

Formally, we present a cross-modal encoder de-
fined over a combination of the patch embeddings
V and word embeddings U , i.e.,

[Ṽ , Ũ ] = f cross(I, T )

:= Transfm-Layer([V ,U ]; θ(xm)), (8)

where Ũ = [ũ1, . . . , ũM ] are image-aware
word representations, corresponding to U =
[u1, . . . ,uM ]. Then, we apply word embedding
matrix to Ũ for image-aware distribution, i.e.,

P (mlm) = σ(W (we)Ũ). (9)

Here, P (mlm) = [p(mlm)
1 , . . . ,p(mlm)

M ] denotes the
image-aware prediction distributions for masked
language modeling. Lastly, a position-wise distilla-
tion loss on masked words in T is defined as

Ldistill=
∑

j∈M(txt)
KL-Div(p(w2l)

j ,p(mlm)
j ). (10)

Since the cross-modal encoder enables fine-
grained interaction between modalities, masked
language modeling can perform more precise ex-
pansive predictions based on the visibility of image
semantics. Distilling such precise expansive lexi-
con information makes the text encoder aware of its
counterpart image – thus improving the feasibility
of our expansive lexicon-patch alignment objective.

3.4. Pre-training Objectives

In addition to the above two learning objectives,
the other three widely-used pre-training objec-
tives in VLP are adopted in our model: Cross-
Modal Alignment (CMA) Lcma, Image-Text Match-
ing (ITM) Litm, Mask Language Modeling (MLM)
Lmlm. CMA aligns paired images and texts based
on global information by contrastive learning and
is regarded as preliminary overall alignment before
further fusion. ITM is used to further fuse image
and text representations by determining whether
the input image-text pair is matched or not, where
one negative pair is sampled in batch for each in-
put image and text in training. MLM is another way
to enhance the interactions between images and

Model
MSCOCO(5K)

Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

UNIT 64.1 87.7 93.3 48.8 76.7 85.8
ViLT 56.5 82.6 89.6 40.4 70.0 81.1
CLIP 58.4 81.5 88.1 37.8 62.4 72.2
ALBEF(4M) 68.7 89.5 94.7 50.1 76.4 84.5
TCL 71.4 90.8 95.4 53.5 79.0 87.1
ELA 72.2 91.3 95.4 54.6 80.3 88.1

Table 1: Zero-shot performance on COCO compared
with previous work, and R@1, R@5 and R@10 of text-
retrieval and image-retrieval results are reported.

text, which aims at predicting the masked tokens
for better representation learning in accordance
with the context of text and image. Therefore, the
overall loss for our pre-training is:

L =Lela + Ldistill

+ Lcma + Litm + Lmlm (11)

4. Experiment

Data and Metrics. For pre-training, we use
COCO (Lin et al., 2014), Visual Genome (VG)
(Krishna et al., 2017), Conceptual Captions (CC)
(Sharma et al., 2018), and SBU Captions (Ordonez
et al., 2011), which consist of 4.0M images and
5.1M image-text pairs in total. Following most
image-text retrieval methods, we evaluate the pre-
trained model on COCO (Lin et al., 2014) and
Flickr30K (Plummer et al., 2015) under the set-
tings of fine-tuning and zero-shot, and the recalled
results are used for calculating the metrics. For
the setting of fine-tuning, we just keep the image
encoder, text encoder and fusion encoder for sim-
plicity. At the same time, only CMA and ITM are
left to calculate the retrieval results. CMA is first
used to select a wide range of pre-ranking retrieval
results and then ITM is to rerank the selected re-
sults as the final ranking results. For the setting
of zero-shot, test results are directly obtained by
evaluating the pre-trained model on test data.

Implementation Details. We implement1 our
model based on the framework of ALBEF (Li et al.,
2021), where the image encoder is ViT-B/16 with
12 layers, the text encoder is a 6-layer transformer
and the fusion encoder is also a 6-layer transformer.
All of them are initialized by TCL (Yang et al., 2022)
for efficient training. The text head for distill learn-
ing is a two-layer transformer with random initial-
ization. Both the text distillation classification head
and the P2W classification head share the same
word embedding in the text encoder. We set the

1https://github.com/Lydia-yang/ELA

https://github.com/Lydia-yang/ELA
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Model
MSCOCO(5K)

Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

UNIT 65.7 88.6 93.8 52.9 79.9 88.0
ViLT 61.5 86.3 92.7 42.7 72.9 83.1
ALBEF(4M) 73.1 91.4 96.0 56.8 81.5 89.2
TCL 75.6 92.8 96.7 59.0 83.2 89.9
ELA 76.4 92.8 96.8 59.0 83.1 89.8

Table 2: Fine-tune performance on COCO compared
with previous work, and R@1, R@5 and R@10 of text-
retrieval and image-retrieval results are reported.

Model
Flickr30K(1K)

Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

UNIT 80.7 95.7 98.0 66.2 88.4 92.9
ViLT 73.2 93.6 96.5 55.0 82.5 89.8
CLIP 88.0 98.7 99.4 68.7 90.6 95.2
ALBEF(4M) 90.5 98.8 99.7 76.8 93.7 96.7
TCL 93.0 99.1 99.6 79.6 95.1 97.4
ELA 92.1 99.3 99.8 79.4 95.2 97.4

Table 3: Zero-shot performance on Flickr30K compared
with previous work, and R@1, R@5 and R@10 of text-
retrieval and image-retrieval results are reported.

image mask possibility to 0.30. During the pre-
training, we take a batch size of 32 and train on
8 NVIDIA V100 GPUs for 5 epochs. The learn-
ing rate is initialized as 1e-5 which drops to 1e-6
gradually with AdamW optimizer (Loshchilov and
Hutter, 2017). During pre-training, the input im-
age is randomly cropped to 256 × 256 resolution,
and applied RandAugment4 (Cubuk et al., 2020)
for data augmentation. During downstream fine-
tuning, we increase the image resolution to 384
× 384 and interpolate the positional encodings of
image patches following work (Yang et al., 2022).

4.1. Evaluation Results

Since our proposed model mainly focuses on cross-
modal retrieval tasks, we test ELA on the widely-
used cross-modal retrieval datasets MSCOCO and
Flickr30K, and compare with previous contrastive
VLP models using pre-training data of the same
magnitude under both zero-shot setting and full
fine-tuning setting. Detailed evaluation results are
discussed as follows.

Zero-shot Retrieval Results on MSCOCO. As
illustrated in Table 1, compared with previous con-
trastive VLP models, our model achieves the best
performance, which proves that adding categori-
cal discriminative learning benefits cross-modal re-
trieval tasks. Compared with the global contrastive
model CLIP, our model improves 13.8% of R@1 on
text retrieval and 16.8% of R@1 on image retrieval
respectively, revealing the necessity of fine-grained

Model
Flickr30K(1K)

Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

UNIT 87.3 98.0 99.2 75.6 94.1 96.8
ViLT 83.5 96.7 98.6 64.4 88.7 93.8
ALBEF(4M) 94.3 99.4 99.8 82.8 96.7 98.4
TCL 94.9 99.5 99.8 84.0 96.7 98.5
ELA 95.4 99.6 99.9 83.9 97.0 98.1

Table 4: Fine-tune performance on Flickr30K compared
with previous work, and R@1, R@5 and R@10 of text-
retrieval and image-retrieval results are reported.

Model VQA SNLI-VE
test-dev test-std val test

UNIT 72.70 72.91 78.59 78.28
ViLT 71.26 - - -
ALBEF(4M) 74.54 74.70 80.14 80.30
TCL 74.90 74.92 80.51 80.29
ELA 74.92 74.97 79.96 80.41

Table 5: Performance on other vision-language tasks.

information learning. Compared with fine-grained
contrastive models UNITER, our model could im-
prove the performance by a large margin by us-
ing captions as weak supervision. For Other fine-
grained contrastive models like ALBEF and TCL,
our model achieves the best performance, which
suggests the importance of adding categorical dis-
criminative learning for learning matched objects
and words. In general, the improvement suggests
that our method is more efficient and could learn
more generalized and transferable representations.

Fine-tuned Retrieval Results on MSCOCO. To
evaluate our model in downstream tasks, we also
conduct fine-tuned experiments. As shown in Ta-
ble 2. Our model could perform better than most
contrastive VLP models, including the global con-
trastive model CLIP and fine-grained contrastive
models UNIT, VILT and ALBEF. For the most re-
lated work TCL, our model could improve the per-
formance on text retrieval with comparable results
on image retrieval, that is because TCL uses all
losses of pre-training as fine-tuning losses and
intra-modal contrastive loss would help to improve
the performance by augmenting data with more
negative examples while our model just uses ITM
and CMA with small batch size. Overall, our
designed fine-grained categorical discriminative
learning could learn more suitable representations
for cross-modal retrieval.

Zero-shot Retrieval Results on Flickr30K. We
also evaluate our model on a smaller data
Flickr30K which only contains around 30K images
in total, and the results are displayed in Table 3.
From Table 3, we can see that our model still per-
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Module
MSCOCO(5K)

Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

Baseline 71.4 90.8 95.4 53.5 79.0 87.1
+P2L(w/o exp) 71.9 91.2 95.5 54.5 79.8 87.6
+P2L 72.3 91.1 95.6 54.2 79.8 87.6
+P2L+distll 72.2 91.3 95.4 54.6 80.3 88.1

Table 6: Ablation study of ELA on MSCOO in the zero-
shot setting. We use results in TCL as our baseline here.

Model
MSCOCO(5K)

Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

X-VLM 70.8 92.1 96.5 55.6 82.7 90.0
ELA 72.2 91.3 95.4 54.6 80.3 88.1
ELA-L 74.9 92.7 96.4 56.6 81.2 88.5

Table 7: Ablation study of the model size. Zero-shot
performances are reported. ELA-L represents a larger
model with the same encoder structures as X-VLM.

forms best on R@5 and R@10 compared with the
previous contrastive VLP models, which further
proves that our proposed model could learn more
general representations by adding fine-grained dis-
criminative learning.

Fine-tuned Retrieval Results on Flickr30K.
Since Flickr30K is simpler than MSCOCO, the
whole level of retrieval results is higher than
MSCOCO and leaves less space to improve by
fine-tuning. As shown in Table 4, our model still
performs best in text retrieval and maintains com-
parable results in image retrieval, which demon-
strates the importance of learning in an expansive
alignment for improvement.

Evaluation Results on Other Vision-Language
Tasks. To further evaluate our model, we also
test ELA on two other vision-language tasks, VQA
(Goyal et al., 2017) and SNLI-VE (Xie et al., 2019).
As shown in Table 5, our model ELA achieves the
best results across three out of four criteria, indi-
cating that adding expansive lexicon-patch align-
ment could not only help with object matching in
cross-modal retrieval tasks but also benefit the
multimodal feature fusion in other general vision-
language tasks.

4.2. Ablation Study

To learn the effectiveness of each component in our
model, we conduct ablation studies on MSCOCO
in the zero-shot setting. Since we use TCL to ini-
tialize our model, TCL is regarded as our baseline.
For patch-to-lexicon loss, we consider two kinds
of settings, one is with word expansion referred
to P2L and the other is without word expansion
referred to P2L (w/o exp). As shown in Table 6, all

components are conducive to improving the per-
formance in cross-modal retrieval. Among them,
adding patch-to-lexicon loss brings the most ben-
efit, which demonstrates the effectiveness of fine-
grained categorical discriminative learning in cross-
modal retrieval. Especially, the expansive patch-to-
lexicon loss could further improve the performance
of text retrieval by exploiting related words in the
vocabulary. By blending more accurate informa-
tion for expansion, the cross-modal lexicon distil-
lation can also contribute to the improvement of
the model’s performance by increasing the image
retrieval results. Overall, the combination of all
these proposed modules could achieve the best
performance.

4.3. Insight to Model Structure

As the performance of deep network relies on the
model size and data size, we also implement our
method based on a stronger baseline model X-
VLM (Zeng et al., 2021), where the image encoder
is Swin-transformer (Liu et al., 2021b) with larger
parameters. As shown in Table 7, with a stronger
image encoder, the performance of ELA-L could be
further improved compared with ELA with a small
size. In addition, ELA-L has better performance
than X-VLM, especially increasing 4.1% on R@1
of text retrieval. These experiment results prove
that our proposed modules are beneficial for cross-
modal retrieval and a larger and stronger baseline
can further improve the performance.

Since our model is based on the framework of
ALBEF, which contains a bi-encoder (image en-
coder and text encoder) to retrieve the pre-ranking
results and a cross-modal encoder to rerank the
final results, it is necessary to investigate both the
pre-ranking retrieval results and rerank results for
more comprehensive study. For input data, only
the image encoder and the text encoder are used
to get image embeddings and text embeddings
respectively for pre-ranking retrieval calculation
based on CMA, and results are shown in Table
8. We compare our model with TCL sharing the
same framework of ALBEF with better performance
on MSCOCO under the setting of zero-shot and
fine-tuning. In Table 8, we can see that our model
could perform better than TCL both in the zero-shot
setting and fine-tune setting. These improvements
illustrate that our proposed modules could help
to enhance the image encoder and text encoder
by learning fine-grained discriminative information,
and the cross-encoder could be further improved
based on these enhanced embeddings.

4.4. Visualization and Discussion

To gain an explicit understanding of our model,
we visualize the ability of our model to match re-
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Model
Zero-shot on MSCOCO Fine-tune on MSCOCO

Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

TCL 57.0 84.1 91.3 42.2 70.8 81.0 65.4 88.5 94.1 49.0 77.0 85.4
ELA 59.0 84.9 92.0 43.7 72.9 82.6 66.4 89.4 94.3 50.9 78.4 86.9

Table 8: Pre-ranking retrieval results of COCO in zero-shot and fine-tune settings. Both TCL and ELA use the image
encoder and the text encoder to calculate the Pre-ranking retrieval results for comparison.

Caption: Many teddy bears are
displayed in front of the trees. Extra words: Toy Extra words: Christmas

Caption: A two layered cake sits on
a table top  Extra words: Candles Extra words: Wood

(a) (b) (c)

(d) (e) (f)

Figure 3: Examples of fine-grained alignment of ELA. The paired image and caption are first calculated based on
the OT to get the related patches with words in the caption, then the image is fed into the patch-to-lexicon head for
related word predictions. The attended image patches are highlighted by opaque patches while others are masked.
For each example image, we present one result of predictions of objects in the caption and the other two results of
predictions of words’ absence in the caption.

lated words and objects. To be more specific, for a
paired image and text, we first encode them respec-
tively by the image encoder and the text encoder
to get the image embeddings of each patch and
text embeddings of each text. By calculating OT,
the similarity scores of each patch and word are
obtained, and the top words are selected as cate-
gorical classification results in the caption of each
patch. To get the categorical classification result in
vocabulary, we pass the image embeddings to the
patch-to-lexicon head to get the lexicon distribution
of each image patch and select the top words as
the expansive categorical classification results.

As shown in Figure 3, the well-matched patch
and word in the caption suggest that our model
could learn fine-grained information via OT. For ex-
ample, in image (a) of Figure 3, the related image
patches of objects “teddy bears” in the caption are
mostly covered, same with the object “cake” in im-
age (b). In addition, as shown in Figure 3, words
that are absent in the caption but related to the
patches can be predicted based on the content of

the image patch, which proves the effectiveness
of expansive lexicon-patch alignment. As shown
in image (b), the synonym “toy” of “ teddy bears”
is predicted by our model and image patches are
attended to correctly. More importantly, our model
could predict related words based on the whole
image like image (c). According to the decorates
and colors (green and red) with the Christmas at-
mosphere in the image, the word “Christmas” is
predicted. By learning expansive lexicon-patch
alignment, our model is equipped with the ability to
predict objects not mentioned in the caption. In the
image (e) and image (f), the object “wood” and the
object “candle” are predicted in the image.

5. Conclusion

In conclusion, we propose a vision-language pre-
training framework, expansive lexicon-patch align-
ment, for cross-modal retrieval. Compared with
previous contrastive VLP models lacking categor-
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ical discriminative information, our model learns
fine-grained patch-to-word alignment by transfer-
ring image patches in the lexicon space for lexicon-
centric alignment. Experimental results show that
ELA could outperform existing methods by evaluat-
ing the cross-modal retrieval benchmark.

Limitations

The proposed expansive lexicon-patch alignment
to pre-train cross-modal retriever is limited by i)
applicable scenarios: the proposed ELA is focused
only on cross-modal retrieval tasks by alleviat-
ing the information asymmetry problem in pseudo
image-text pairs. ii) data and model scales: due
to limited computation resources, the proposed
framework is only evaluated on limited pre-training
data over a base-scaled model.

6. Bibliographical References

Hassan Akbari, Svebor Karaman, Surabhi Bhar-
gava, Brian Chen, Carl Vondrick, and Shih-Fu
Chang. 2019. Multi-level multimodal common
semantic space for image-phrase grounding.
In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition,
pages 12476–12486.

Max Bain, Arsha Nagrani, Gül Varol, and Andrew
Zisserman. 2021. Frozen in time: A joint video
and image encoder for end-to-end retrieval. In
Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 1728–1738.

BSI. 1973a. Natural Fibre Twines, 3rd edition.
British Standards Institution, London. BS 2570.

BSI. 1973b. Natural fibre twines. BS 2570, British
Standards Institution, London. 3rd. edn.

Micael Carvalho, Rémi Cadène, David Picard,
Laure Soulier, Nicolas Thome, and Matthieu
Cord. 2018. Cross-modal retrieval in the cooking
context: Learning semantic text-image embed-
dings. In The 41st International ACM SIGIR
Conference on Research & Development in In-
formation Retrieval, pages 35–44.

A. Castor and L. E. Pollux. 1992. The use of user
modelling to guide inference and learning. Ap-
plied Intelligence, 2(1):37–53.

Liqun Chen, Ke Bai, Chenyang Tao, Yizhe Zhang,
Guoyin Wang, Wenlin Wang, Ricardo Henao,
and Lawrence Carin. 2020a. Sequence genera-
tion with optimal-transport-enhanced reinforce-
ment learning. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 34,
pages 7512–7520.

Liqun Chen, Zhe Gan, Yu Cheng, Linjie Li,
Lawrence Carin, and Jingjing Liu. 2020b. Graph
optimal transport for cross-domain alignment. In
International Conference on Machine Learning,
pages 1542–1553. PMLR.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed
El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020c. Uniter: Universal image-text
representation learning. In European conference
on computer vision, pages 104–120. Springer.

J.L. Chercheur. 1994. Case-Based Reasoning,
2nd edition. Morgan Kaufman Publishers, San
Mateo, CA.

N. Chomsky. 1973. Conditions on transformations.
In A festschrift for Morris Halle, New York. Holt,
Rinehart & Winston.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and
Quoc V Le. 2020. Randaugment: Practical auto-
mated data augmentation with a reduced search
space. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition
workshops, pages 702–703.

Samyak Datta, Karan Sikka, Anirban Roy, Karuna
Ahuja, Devi Parikh, and Ajay Divakaran.
2019. Align2ground: Weakly supervised phrase
grounding guided by image-caption alignment.
In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2601–
2610.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. 2020. An image is worth 16x16 words:
Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929.

Umberto Eco. 1990. The Limits of Interpretation.
Indian University Press.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. arXiv
preprint arXiv:1805.04833.

Thibault Formal, Carlos Lassance, Benjamin
Piwowarski, and Stéphane Clinchant. 2021.
Splade v2: Sparse lexical and expansion
model for information retrieval. arXiv preprint
arXiv:2109.10086.



12986

Luyu Gao and Jamie Callan. 2021. Unsuper-
vised corpus aware language model pre-training
for dense passage retrieval. arXiv preprint
arXiv:2108.05540.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making
the v in vqa matter: Elevating the role of im-
age understanding in visual question answer-
ing. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages
6904–6913.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie,
and Ross Girshick. 2020. Momentum contrast
for unsupervised visual representation learning.
In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages
9729–9738.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. 2016. Deep residual learning for image
recognition. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition,
pages 770–778.

Paul Gerhard Hoel. 1971a. Elementary Statistics,
3rd edition. Wiley series in probability and math-
ematical statistics. Wiley, New York, Chichester.
ISBN 0 471 40300.

Paul Gerhard Hoel. 1971b. Elementary Statistics,
3rd edition, Wiley series in probability and mathe-
matical statistics, pages 19–33. Wiley, New York,
Chichester. ISBN 0 471 40300.

Otto Jespersen. 1922. Language: Its Nature, De-
velopment, and Origin. Allen and Unwin.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen,
Zarana Parekh, Hieu Pham, Quoc Le, Yun-
Hsuan Sung, Zhen Li, and Tom Duerig. 2021.
Scaling up visual and vision-language represen-
tation learning with noisy text supervision. In
International Conference on Machine Learning,
pages 4904–4916. PMLR.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min,
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