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Abstract
Knowledge Graph Completion (KGC) is a task aimed at uncovering the inherent relationships among known
knowledge triplets in a Knowledge Graph (KG) and subsequently predicting missing links. Presently, there is a
rising interest in inductive knowledge graph completion, where missing links may pertain to previously unobserved
entities. Previous inductive KGC methods mainly rely on descriptive information of entities to improve the repre-
sentation of unseen entities, neglecting to provide effective prior knowledge for relation modeling. To tackle this
challenge, we capture prior schema-level interactions related to relations by leveraging entity type information,
thereby furnishing effective prior constraints when reasoning with newly introduced entities. Moreover, We employ
normal in-batch negatives and introduce schema-guided negatives to bolster the efficiency of normal contrastive
representation learning. Experimental results demonstrate that our approach consistently achieves state-of-the-art
performance on various established metrics across multiple benchmark datasets for link prediction. Notably, our
method achieves a 20.5% relative increase in Hits@1 on the HumanWiki-Ind dataset. Our code is available at
https://github.com/lrlbbzl/PReSA.
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1. Introduction
Knowledge Graphs (KGs) store a vast repository
of factual knowledge in the form of triplets. A
triplet (h, r, t) consists of a head entity h, a tail
entity t, and a relation r linking them. There are
many existing large-scale knowledge graphs, e.g.
FreeBase (Bollacker et al., 2008), Wikidata (Tanon
et al., 2016), and WordNet (Miller, 1994). KGs
find applications in diverse domains, including
recommendation systems (Yang et al., 2022),
question answering (Liu et al., 2022), and web
search (Xiong et al., 2017). Nonetheless, KGs
consistently grapple with incompleteness (Carl-
son et al., 2010), necessitating Knowledge Graph
Completion (KGC) to enhance their utility. With
the emergence of various Large Language Mod-
els (LLMs), their capabilities in KGC have also at-
tracted significant attention.
The main task of KGC is link prediction. Based on
the kinds of links involved in testing, link prediction
tasks can be divided into two categories: i) trans-
ductive setting calls for links between visible en-
tities that have been observed during the training
process; ii) inductive setting requires judgement of
links in the event that fresh entities are added to
the KG (Ali et al., 2021). Moreover, semi-inductive
scenarios will occur more frequently in the real-
world (Anil et al., 2023), meaning considering con-
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Figure 1: An example showcasing the effective uti-
lization of schema learning for inductive link predic-
tion.

nections between known and newly introduced en-
tities.
In contrast to transductive setting, inductive KGC
relies more on external facts to enhance the
model’s generalization. For example, BLP (Daza
et al., 2021) emphasizes incorporating textual de-
scriptions of entities to enhance their representa-
tions and subsequently as input to the Knowledge
Graph Embedding (KGE) model. Many common
knowledge queries can yield accurate responses
by leveraging factual information and the exten-
sive prior knowledge ingrained within pretrained
language models (PLMs). Nevertheless, previ-
ous work underestimate the modeling of relations,
leading to two noteworthy issues. Firstly, real-
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world relations frequently lack descriptions, con-
straining the model’s ability to generalize relation
representations across diverse contexts. Sec-
ondly, relations in KGs exhibit a substantial scale
inferiority compared to entities, potentially result-
ing in imbalances during fine-tuning process of
PLMs. As a result, the model’s ability to perform
high-quality reasoning in an inductive setting is lim-
ited.
Therefore, we harness schema information to ad-
dress these issues, with schema essentially be-
ing the prior constraints formed by entity types
and relations. On the one hand, schema is a
bridge to bring high-level entity information into re-
lations. On the other hand, each relation can be
derived into numerous schemas in different con-
texts. We introduce PReSA, an acronym denot-
ing Prior Relational SchemaAssists Effective Con-
trastive Learning, which employs schema-level
learning to enhance the model’s generalization
in an inductive setting. As depicted in Figure 1,
once the schemamammal_skin_feature has been
assimilated, the model can rectify the inference
about the skin feature of solenodon from the in-
accurate scale to fur. From this perspective, the
training process captures the synergy between en-
tity types and relations, facilitating the modeling of
interactions with similar types of unobserved enti-
ties in inductive settings.
Moreover, we introduce a contrastive learning
framework to ensure high-quality learning within
embedding spaces for entities and schemas.
Specifically, it involves the use of traditional in-
batch negatives and proposes schema-guided
negatives to serve as hard samples.
In summary, the contributions of this paper can be
delineated as follows:

• We propose PReSA, which leverages
schema information to underscore the sig-
nificance of relation modeling in the process
of link prediction inference, thereby mitigat-
ing the issue of weak generalization in the
model. Additionally, we employ an efficient
contrastive learning framework to acquire
embeddings for both entities and schemas.

• We conduct a comprehensive evaluation of
link prediction on HumanWiki, WN18RR and
FB15k-237. Experimental results demon-
strate that PReSA achieves SOTA perfor-
mance across various metrics. Remarkably,
in the HumanWiki-Ind dataset, PReSA ex-
hibits a 10.2% relative improvement in MRR
and a 20.5% relative enhancement in Hits@1
compared to the current leading model.

• Additionally, we delve into the performance of
LLMs on link prediction, aiming to reveal both
the opportunities and challenges.

2. Related Work
Structure-based KGE deduces representation of
entities and relations from structural interaction.
TransE (Bordes et al., 2013) embeds entities and
relations as h, r, t ∈ Rd and measures the plausi-
bility of a triple (h, r, t) by ∥h+ r− t∥. RotatE (Sun
et al., 2019) views relation r as a rotation from
h to t in a complex space, in which entites and
relations are embed, i.e. h, r, t ∈ Cd. Semantic
matching models define score function based on
the similarity of latent semantics in a triple (h, r, t).
RESCAL (Nickel et al., 2011) represents r as ama-
trix Mr and expect bilinear function h⊤Mrt to ap-
proach X. Distmult (Yang et al., 2015) simplifies
Mr to be diagonal matrix to lighten the parame-
ters. However, the utilization of structure-based in
inductive KGC needs retraining, which is not cost-
effective.
Description-based KGE that incorporates de-
scriptive information has gained more attention
than structure-based methods with the rapid de-
velopment of natural language processing (NLP)
technique. The first model to utilize exogenous
text information is DKRL (Xie et al., 2016), which
encodes entities’ descriptions via convolution neu-
ral network. KEPLER (Wang et al., 2021b) uses
PLMs to jointly optimize KGE and Masked Lan-
guage Model(MLM) objectives. BLP (Daza et al.,
2021) harnesses PLMs for learning representa-
tions of entities via a link prediction objective.
StAR (Wang et al., 2021a) optimize the distance-
based objectives while utilizing the description
and thus structural information at the same time.
RAILD (Gesese et al., 2022) proposes a novel
GNN-based approach to generate features for re-
lations.
Contrastive Learning is a popular technique in
the field of unsupervised representation learning,
which has shown promising results in various com-
puter vision (Grill et al., 2020) and natural lan-
guage processing tasks (Gunel et al., 2021). The
principal idea behind contrastive learning is con-
trasting the representation between positives and
negatives in a latent space. In contrastive learn-
ing, positive examples are pairs of similar data
points that are pulled closer together in the latent
space, while negative examples are pairs of dis-
similar data points that are pushed farther apart.
It is typically achieved through a contrastive loss
function such as InfoNCE (van den Oord et al.,
2018), which encourages the model to learn rep-
resentations that are more discriminative.

3. Methodology
In this section, we offer a comprehensive intro-
duction to the language model employed and how
PReSA leverages in-batch negatives and schema-
guided negatives to facilitate efficient contrastive
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Figure 2: Overview of PReSA. The model employs three PLM encoders to capture information pertaining
to the head entity, tail entity, and relational schema. Within the contrastive learning framework, two dis-
tinct categories of negative samples are introduced: i) Other tail entities in the same mini-batch, denoted
asNB , and ii) Head entities and similar schemas are passed through the MLP module, as demonstrated
in Eq.5, to produce NS .

learning, with the aim of obtaining high-quality em-
beddings for entities and upper schemas.

3.1. Language Models
As in previous work, we utilize PLMs to encode
entities and relations. PLMs have exhibited signifi-
cant progress in recent years (Peters et al., 2018).
They undergo extensive training on large text cor-
pora to acquire knowledge and have proven to
be highly valuable in a wide range of downstream
NLP tasks.
BERT (Devlin et al., 2019) is a variation of
the Transformer Encoder architecture that utilizes
masked language modeling (MLM) to predict con-
cealed words, enabling it to capture contextual rep-
resentations. We provide textual data related to
entities and relations as sequential input to BERT,
leveraging the state of the final layer as a learned
vector, awaiting further operations and ultimately
using it for KGC.

3.2. Model Architecture
As depicted in Figure 2, for a given triple (h, r, t),
we incorporate external descriptions dh, dt, along
with the types associated with the head entity h,
denoted as Sh = (sh1 , s

h
2 , · · · , shnh

), as auxiliary in-
put. The components of a triple undergo transfor-
mation into sequences of tokens, which are sub-
sequently ingested by PLMs. To be more specific,
the head entity h is presented as a sequence that
encompasses its name, description, and a selec-
tion of names from neighboring entities. We as-
sume that the linked entities of the central entity e
are denoted as Ne. The sentence-like prompts for
h and t are illustrated in Eq.1 and Eq.2.

Th = (h, dh, concat(ei)), ei ∈ Nh (1)

T t = (t, dt, concat(ei)), ei ∈ Nt (2)

Instead of directly using name of relation, we
model schema which comprises the types of head
entity h and the corresponding relation’s name r in
the specific triple. Its prompt is illustrated in Eq.3.

T r = (concat(shi , [SEP ]), r), shi ∈ Sh (3)

Given the sequence representations, we employ
three encoders to compute the embeddings of
Th, Tr, Tt. As depicted in Eq.4, following the ac-
quisition of the last-layer hidden states, we utilize
a pooling layer, as suggested for enhanced perfor-
mance (Gao et al., 2021).

eh = Pooling(BERT1(T
h))

er = Pooling(BERT2(T
r))

et = Pooling(BERT3(T
t))

(4)

To effectively incorporate the complex structural in-
teraction between h and r, we exploit several struc-
tural actions and a two-layer MLP to compute the
embedding of the anticipated tail entity et̂:

et̂ = MLP ([eh; er; eh − er; eh · er]) (5)

Finally, we calculate the cosine similarity, which we
use to quantify the difference between et̂ and et, as
follows:

φ(et̂, et) =
et̂ · et

∥et̂∥∥et∥
(6)

3.3. Optimization
During the training process, we employ a con-
trastive learning framework to fine-tune Pretrained
Language Models (PLMs). Furthermore, we ex-
ploit two negative sampling methods, in order to
balance the efficiency of negative sample genera-
tion and the exploration of hard samples (Wu and
Wang, 2021; Wang et al., 2022c).
We firstly propose in-batch negative samples, de-
noted as NB , which consist of other entities within
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the same mini-batch. As discussed in previous
work (Chen et al., 2021), a larger in-batch neg-
ative size tends to enhance the effectiveness of
contrastive learning. However, simply introduc-
ing more negative tail entities results in increased
computational overhead. However, since the
schema is rich in semantic information, it can be
used to mine hard samples within a mini-batch
while expanding the pool of negatives.
Specifically, we leverage the most similar schema
to generate schema-guided negatives. We
firstly compute the cosine similarity matrix W of
schemas within the mini-batch, as denoted in
Eq.7.

W = ϕ(Er)ϕ(Er)
T (7)

ϕ(·) in Eq.7 means normalization. As demon-
strated in Eq.8, we then select themost similar one
for each schema, excluding itself.

Vr = {j|argmax(DM(W )[i, :]) = j, i = 0, 1, · · · }
(8)

DM operation means diagonal masking. Follow-
ing the reorganization of Vr, we derive the similar
schema matrix denoted as E

′

r = Er[Vr, :]. Sub-
sequently, we utilize Er and Eh as inputs for the
MLP outlined in Eq.5 to acquire the embeddings
representing schema-guided negatives NS . We
propose that, when subjected to analogous guid-
ance or behavior, the head entity and the relation
may correspond to tail entities that exhibit proxim-
ity within the vector space but remain conceptually
distinct.
To accommodate the negative samples presented
above, we design loss function based on In-
foNCE (van den Oord et al., 2018):

fneg =

|NB |∑
i=1

e
φ(et̂,eti

B
)/τ

+

|NS |∑
i=1

λe
φ(et̂,eti

S
)/τ (9)

L = −log
e(φ(et̂,et)−γ)/τ

e(φ(et̂,et)−γ)/τ + fneg
(10)

The parameter λ in Eq.9 is used to adjust the loss
weight of schema-guided negatives. Additive posi-
tive γ in Eq.10 encourages factual triple to obtain a
higher score. Here, etB and etS represent embed-
dings for in-batch negatives and schema-guided
negatives, respectively.

4. Experiments
4.1. Experimental Setup
Datasets - To evaluate the performance of
PReSA, we have conducted experiments within

Dataset #entity #relation #train #valid #test
HumanWiki-Trans 37262 221 92821 6045 6044
HumanWiki-Ind 37262 221 101195 1705 2010
WN18RR 40943 11 69585 11381 12087
FB15k-237 14541 237 215082 42164 52870

Table 1: Statistics of four used for evaluation.

a semi-inductive setting using the WN18RR and
FB15k-237 datasets, both generously provided by
BLP (Daza et al., 2021). Additionally, we have cu-
rated two additional datasets: HumanWiki-Trans
and HumanWiki-Ind for a more comprehensive
evaluation of the model. These datasets are de-
rived from the original HumanWiki dataset (Rosso
et al., 2021), which was initially designed for in-
stance completion tasks. The HumanWiki dataset,
sourced from Wikidata1, comprises triples, with
each triple featuring an entity classified as human.
We obtain type and description information conve-
niently via the Wikidata open API. Further details
regarding the four datasets are provided in Table
1.
Additionally, we conduct an evaluation on the clas-
sical triple classification task, for which we ex-
ploit the WN11 and FB13 datasets (Socher et al.,
2013).
Baselines - In the evaluation of the semi-inductive
setting across three datasets, we have selected
several description-based approaches for com-
parison. These approaches include BE-BOW,
BE-DKRL (Xie et al., 2016), BLP (Daza et al.,
2021), StAR (Wang et al., 2021a), RAILD (Gesese
et al., 2022), SimKGC (Wang et al., 2022a), and
kNN-KGE (Wang et al., 2022b). For transduc-
tive link prediction on the HumanWiki-Trans, we
have extended our baseline comparison to include
structure-based models such as TransE (Bordes
et al., 2013), RotatE (Sun et al., 2019), and
HAKE (Zhang et al., 2020).
Metrics - In the context of link prediction, the
most widely used metrics for evaluation include
Mean Reciprocal Rank (MRR) and Hits@n (where
n takes values from the set {1, 3, 10}). In this pa-
per, we adhere to the established evaluation pro-
tocol. In test mode, for a given factual test triple
(h, r, t), the model is tasked with predicting the
missing t in (h, r, ?) and h in (?, r, t), respectively,
by providing a sorted plausibility ranking of candi-
date entities. MRR calculates the average recipro-
cal rank across all test triples, providing a measure
of overall prediction accuracy. Hits@n assesses
the proportion of the correct target entity appear-
ing within the top n positions of the ranking. Im-
portantly, our evaluation is conducted under the
filtered setting (Bordes et al., 2013). This entails
excluding correct matches that already exist in the
training set for each query in the test set.

1https://www.wikidata.org/wiki/Wikidata:Main_Page
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For triple classification, we report the model’s ac-
curacy in correctly determining whether triples are
factual or not.
Implementation Details - We inherit the choice of
most previous work to use bert-base-uncased as
the initial encoder. We perform a grid search on
the following hyperparameters: the learning rate
of the PLM from the set {1e − 5, 3e − 5, 5e − 5},
and the batch size from the set {256, 512, 1024}.
The temperature coefficient τ is empirically set to
0.05. As for optimization, we utilize AdamW and
implement a linear learning rate decay strategy.
The selection of the saved model for inference
is determined based on Hits@1 performance on
the validation dataset. The maximum number of
training epochs for HumanWiki (in both settings),
WN18RR, and FB15k-237 are set to 5, 50, and 15,
respectively. All experiments are executed on a
system equipped with 3× A40 GPUs.

4.2. Main Results
Table 2 presents a comparison between
PReSA with some other recent state-of-the-
art models in transductive and inductive settings.
The table demonstrates that PReSA consistently
attains either the best or second-best results on
the two HumanWiki datasets. Significantly, on the
HumanWiki-Ind dataset, PReSA performs rela-
tively 10.2% and 20.5% improvement in MRR and
Hits@1, respectively. Moreover, Table 3 provides
a detailed depiction of PReSA’s performance
in comparison to recent baseline models in the
inductive setting, on the FB15k-237 and WN18RR
datasets. Remarkably, PReSA achieves the best
or second-best results across all metrics.
We continue to present the transductive link pre-
diction performance of PReSA on FB15K-237 and
WN18RR, and traditional triple classification on
WN11 and FB13, to further portray the universal
superiority of PReSA as a KGE approach in Ta-
ble 4 and 5 respectively. In the triple classification
task, we utilize the similarity function described in
Eq.5 to evaluate the plausibility of each triple and
establish a score threshold accordingly.
The results presented in Table 4 highlight PReSA’s
strong performance on the WN18RR dataset but
also reveal a performance gap when compared
to state-of-the-art models on FB15k-237. We at-
tribute this difference in performance to the vary-
ing structural complexities inherent in these two
datasets. Specifically, the average node degree
within the heterogeneous graph formed by the
WN18RR dataset stands at 4.59, whereas FB15k-
237 exhibits a considerably higher average node
degree at 42.65. Consequently, reasoning on
FB15k-237 necessitates a more comprehensive
consideration of structural information due to its
higher complexity.

It’s worth noting that PReSA demonstrates out-
standing performance across all triple classifica-
tion tasks. This achievement can be attributed to
the fine-tuning of the PLM on specific knowledge
graph triple contexts, enhancing its overall perfor-
mance.

5. Analysis
5.1. Ablation on Batch Size
In Figure 3, we perform an evaluation to gauge
the influence of varying batch sizes on contrastive
learning, a process inherently involving different
quantities of negative samples. In Figure 3, we
perform an evaluation to gauge the influence of
varying batch sizes on contrastive learning, a pro-
cess inherently involving different quantities of
negative samples. Our experiments consistently
demonstrate that increasing the batch size has
a beneficial effect on the model’s performance.
However, it is essential to highlight that this per-
formance improvement gradually wanes as the
batch size becomes larger, ultimately approaching
an upper threshold. It is noteworthy that exces-
sively large batch sizes can significantly impede
themodel’s convergence, while simultaneously im-
posing greater demands on graphics memory re-
sources.
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Figure 3: MRR on the four datasets w.r.t the num-
ber of negatives including NB and NS .

Moreover, Figure 3 underscores the advantages
of integrating schema-guided negatives NS . This
approach proves to be beneficial as it doubles
the pool of negative sample embeddings, all while
incurring minimal computational overhead. Im-
portantly, this augmentation of negative samples
does not compromise the overall effectiveness of
the model.

5.2. Ablation on Proposed Modules
Table 6 presents the results of our ablation
study concerning type-augmented schemas and
schema-guided negatives. PReSA (w/o type)
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Method HumanWiki-Trans HumanWiki-Ind
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE (Bordes et al., 2013) 0.392 0.323 0.432 0.509 - - - -
RotatE (Sun et al., 2019) 0.403 0.334 0.441 0.523 - - - -
HAKE (Zhang et al., 2020) 0.394 0.322 0.435 0.521 - - - -
BLP-TransE (Daza et al., 2021) 0.386 0.319 0.414 0.513 0.365 0.213 0.443 0.664
BLP-ComplEx (Daza et al., 2021) 0.368 0.314 0.398 0.491 0.351 0.201 0.430 0.627
BLP-SimplE (Daza et al., 2021) 0.366 0.301 0.396 0.493 0.359 0.208 0.442 0.650
RAILD-ComplEx (Gesese et al., 2022) 0.371 0.321 0.401 0.498 0.372 0.244 0.448 0.626
SimKGC (Wang et al., 2022a) 0.478 0.396 0.510 0.636 0.294 0.230 0.323 0.416
PReSA 0.475 0.390 0.517 0.650 0.410 0.294 0.460 0.650

Table 2: Link prediction results on HumanWiki-Trans and HumanWiki-Ind. The results of baselines come
from our implementation. ’-’ indicates that these approaches cannot be directly leveraged for inductive
setting. Best results are in bold and the seconds are underlined.

Method FB15k-237 WN18RR
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

BE-BOW† 0.172 0.099 0.188 0.316 0.180 0.045 0.244 0.450
BE-DKRL† 0.144 0.084 0.151 0.263 0.139 0.048 0.169 0.320
BLP-TransE (Daza et al., 2021)† 0.195 0.113 0.213 0.363 0.285 0.135 0.361 0.580
BLP-ComplEx (Daza et al., 2021)† 0.148 0.081 0.154 0.283 0.261 0.156 0.297 0.472
BLP-SimplE (Daza et al., 2021)† 0.144 0.077 0.152 0.274 0.239 0.144 0.265 0.435
StAR (Wang et al., 2021a)* 0.169 0.101 0.180 0.312 0.307 0.184 0.364 0.566
RAILD-ComplEx (Gesese et al., 2022)‡ 0.197 0.117 0.212 0.364 0.320 0.177 0.390 0.609
kNN-KGE (Wang et al., 2022b)∗∗ 0.198 0.146 0.214 0.293 0.294 0.223 0.320 0.431
PReSA 0.198 0.121 0.215 0.367 0.323 0.193 0.370 0.582

Table 3: Inductive link prediction results on WN18RR and FB15k-237. † Results from (Daza et al., 2021).
‡ Results from (Gesese et al., 2022). * Results from our implementation. ** Results from (Wang et al.,
2022b). Best results are in bold and the seconds are underlined.

Method WN18RR FB15k-237
Hits@1 Hits@10 Hits@1 Hits@10

TransE (Bordes et al., 2013) 0.043 0.532 0.198 0.441
ComplEx (Trouillon et al., 2016) 0.410 0.510 0.158 0.428
RotatE (Sun et al., 2019) 0.428 0.571 0.241 0.533
HAKE (Zhang et al., 2020) 0.452 0.582 0.250 0.542
MEM-KGC (Choi et al., 2021) 0.473 0.636 0.249 0.522
StAR (Wang et al., 2021a) 0.243 0.709 0.205 0.482
LASSBERT−base (Shen et al., 2022)† 0.459 0.720 0.217 0.473
KGLM (Youn and Tagkopoulos, 2022) 0.330 0.741 0.200 0.468
LP-BERT (Li et al., 2022) 0.343 0.752 0.223 0.490
PReSA 0.498 0.760 0.221 0.512

Table 4: Transductive link prediction results on
WN18RR and FB15k-237. † Results from our im-
plementation due to the ungiven Hits@1. Other
results are taken from original papers.
Method WN11 FB13 Avg
TransE (Bordes et al., 2013) 75.9 81.5 78.7
TransD (Bordes et al., 2013) 86.4 89.1 87.8
TransR (Lin et al., 2015) 85.9 82.5 84.2
DistMult (Yang et al., 2015) 87.1 86.2 86.7
ConvKB (Nguyen et al., 2018) 87.6 88.8 88.2
KG-BERT (Yao et al., 2019) 93.5 90.4 92.0
R-MeN (Nguyen et al., 2020) 90.5 88.9 89.7
LASSBERT−base (Shen et al., 2022) 93.3 91.2 92.3
PReSA 93.3 91.7 92.5

Table 5: Accuracy of triple classification on WN11
and FB13. Results of baselines are taken from
Nguyen et al. (2020), Shen et al. (2022), and Nas-
siri et al. (2022).

model variant which leverages only relations’
name is similar to BLP (Daza et al., 2021).
PReSA (w/o sgn) confines its use to in-batch neg-

atives while ensuring the total number of negative
samples aligns with other variants. The combina-
tion of these two strategies leads to improvements
across most evaluation metrics compared to their
individual utilization. Nonetheless, it’s worth not-
ing that PReSA displays minimal distinguishable
differences from the two aforementioned counter-
parts.
We hypothesize that this observation stems from
the fact that entities are visible in the transductive
setting, which inherently provides a good fit for or-
dinary relations. Nonetheless, the remarkable im-
provements in MRR and Hits@n from PReSA(w/o
type) to PReSA underscore that expanding re-
lations based purely on lexical context remains
equally beneficial.

5.3. Fine-grained Analysis
Following widely accepted conventions (Bordes
et al., 2013; Wang et al., 2014), relations are cat-
egorized into four distinct types: 1-1, 1-n, n-1,
and n-n. Previous research has consistently high-
lighted the relative difficulty in modeling relations
of the 1-n and n-n types. This complexity arises
from the model’s limited capacity to generalize ef-
fectively when the target entity has multiple po-
tential associations. Additionally, some accurate
triples may not be present within the KGs. We ad-
dress that PReSA alleviates the dilemma by em-
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HumanWiki-Trans HumanWiki-Ind
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

PReSA 0.475 0.390 0.517 0.650 0.410 0.294 0.460 0.650
w/o type 0.479 0.384 0.519 0.636 0.397 0.281 0.462 0.639
w/o sgn 0.474 0.388 0.520 0.644 0.402 0.287 0.455 0.645

FB15k-237 WN18RR
PReSA 0.198 0.121 0.215 0.367 0.323 0.193 0.370 0.582
w/o type 0.191 0.117 0.206 0.354 0.317 0.184 0.361 0.569
w/o sgn 0.197 0.124 0.218 0.364 0.325 0.190 0.362 0.575

Table 6: Ablation studies w.r.t entity type information and proposed schema-guided negative samples.

Method 1-1 1-n n-1 n-n
BLP-TransE (Daza et al., 2021) 0.606 0.367 0.644 0.434
SimKGC (Wang et al., 2022a) 0.586 0.196 0.502 0.333
PReSA 0.630 0.486 0.693 0.565

Table 7: MRR grouped by four types of relations
on the HumanWiki-Ind dataset (tail-batch).

ploying schema-level learning which guides unfa-
miliar entities toward actions under familiar pop-
ulations. The results, as presented in Table 7,
clearly illustrate a significant performance dispar-
ity within the 1-n and n-n relations. In these cate-
gories, SimKGC and BLP-TransE exhibit marked
inferiority compared to PReSA.
To elucidate this point further, we offer a spe-
cific example from HumanWiki-Ind dataset. Let’s
consider the query (Wolfgang Schäuble, partic-
ipant_in, ?). Notably, PReSA yields a precise
prediction, correctly identifying coalition talks be-
tween the CDU/CSU and SPD in 2013. In stark
contrast, SimKGC and BLP-TransE provide pre-
dictions of Paris Peace Conference and Nurem-
berg trials, respectively. This discrepancy can
be traced back to the acquired schema, namely
politician_lawyer_participant_in. The schema aug-
mented by entity types effectively directs the
model’s attention toward activities of a political and
legal nature. Despite the availability of descriptive
information, SimKGC and BLP-TransE generate
responses that lack relevance.

5.4. Visualization
We provide a 2-D visualization of schemas and en-
tities on test set to demonstrate the generalization
and rationality. Specifically, we randomly select
30 embeddings of schemas derived from each of
the seven most frequently occurring relations. Fur-
thermore, we visualize entities from six randomly
selected categories. In Figure 4(a), it is obvious
that the utilization of different types of information
does not lead to significant deviations. This phe-
nomenon can be attributed to the effectiveness of
our contrastive learning approach.
Nevertheless, we observe a degree of over-
lap among the types ”diplomat”, ”politician”, and
”lawyer”. This overlap can be attributed to the pres-
ence of entities in the dataset that exhibit behav-
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(a) Visualization of inductive entity embeddings.
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(b) Visualization of relation embeddings.

Figure 4: 2-D visualization of the head entities
and schemas in test set of HumanWiki-Ind dataset
using t-SNE (van der Maaten and Hinton, 2008)
downscaling method.

iors associated with all three occupations. This ob-
servation highlights the inherent limitations of em-
bedding learning.

Figure 4(b) illustrates that the relation embeddings,
even after generalization through entity type infor-
mation, still maintain a clustered distribution as ex-
pected, without significant deviations.
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Figure 5: Examples of our evaluation. In the zero-
shot setting, we only serve the content under the
dotted line.

6. Discussion with LLMs
In recent times, the rapid advancement of LLMs
has garnered significant attention. Notable LLMs
like ChatGPT and GPT-4 (OpenAI, 2023) have
emerged as exceptional language understanding
systems. In this section, we delve into an assess-
ment of various LLMs’ performance in link predic-
tion tasks, with the aim of exploring their potential
in knowledge graph reasoning.
Given the extensive amount of entity information
stored within these large models, it is impractical
to anticipate a ranked list of candidates for every
query. Thus, we employ exact-match accuracy as
a metric, aligning it with the Hits@1 metric com-
monly used in link prediction tasks. We not only
present the results in a zero-shot setting but also
delve into a comprehensive exploration of how the
one-shot setting can augment the reasoning capa-
bilities of LLMs. Refer to Figure 5 for a visual rep-
resentation of the prompt.

Model FB15k-237 WN18RR HumanWiki

Zero-shot

GPT-3.5-Turbo 0.220 0.320 0.380
GPT-4 0.280 0.440 0.480
Claude-2 0.220 0.420 0.420

One-shot

GPT-3.5-Turbo 0.260 0.400 0.400
GPT-4 0.340 0.500 0.520
Claude-2 0.240 0.480 0.440

Table 8: Exact-match accuracy results on GPT-
3.5-Turbo, GPT-4 and Claude-2. Best results are
in bold and the seconds are underlined.

As depicted in Table 8, even when employing
LLMs, achieving optimal accuracy on FB15k-237
remains a challenging task, whereas more sat-
isfactory results are obtained on WN18RR and
HumanWiki. We attribute this disparity in perfor-

mance to several factors. Firstly, FB15k-237 rep-
resents real-world knowledge, which can be intri-
cate. In contrast, WN18RR primarily deals with
logical relations between words, which tends to
reduce ambiguity and result in more favorable
performance for LLMs. HumanWiki, reliant on
the acquired corpus, exhibits distinctive behav-
iors among the models. For instance, we ob-
serve that GPT-3.5-turbo occasionally requests
additional contextual information to aid in decision-
making instead of providing a direct answer. This
behavior may stem from the limitations in the
scope of stored knowledge within the model. Fur-
thermore, Claude-2 exhibits a similar approach to
CoT (Wei et al., 2022). It initially presents relevant
knowledge, then seeks to understand the query’s
intent, and finally predicts the target entity.
The results clearly demonstrate that the one-shot
setting significantly enhances the model’s reason-
ing capabilities. In both settings, GPT-4 stands
out as the top performer, largely owing to its sub-
stantial parameter count and superior training data.
However, it’s worth noting that the impact of the
one-shot setting appears to be more limited when
applied to FB15k-237 and HumanWiki. In these
cases, the models seem to rely more on their in-
trinsic knowledge rather than discerning underly-
ing logic from the provided relations.
Given the extensive training data used for LLMs,
it is reasonable to consider KG reasoning on
them as a form of transductive inference. Our
results, presented in Figure 4, demonstrate that
the PReSA model performs only slightly less ef-
fectively than GPT-4 in the one-shot setting on the
WN18RR dataset, achieving scores of 0.498 and
0.500, respectively. This performance is indicative
of high competitiveness. Furthermore, our model
exhibits similar performance to gpt-3.5-turbo and
Claude-2 in zero-shot scenarios on FB15k-237,
with scores of 0.221, 0.220, and 0.220, and on Hu-
manWiki, with scores of 0.390, 0.380, and 0.420.

7. Conclusion
This paper focuses on investigating the general-
ization properties of entity and relation representa-
tions using PLMs and a contrastive learning frame-
work. It addresses the oversight in previous re-
search concerning relation representations. To
comprehensively characterize contrastive learn-
ing and account for computational cost, we intro-
duce shema-guided negative sampling. Exten-
sive experiments conducted on the FB15k-237,
WN18RR, and HumanWiki datasets validate the
superior performance of PReSA in the inductive
setting. Additionally, PReSA also achieves out-
standing results in transductive link prediction and
traditional triple classification tasks.
Regarding future research directions, we empha-
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size the importance of improving the effective-
ness of head-batch techniques. This is crucial
because PLMs still struggle to fully comprehend
the nuances of inverse relations. Furthermore,
at the level of contrastive learning, considering
the inherent incompleteness of knowledge graphs,
we propose designing more robust loss functions
to enhance model resilience, as discussed in
RINCE (Chuang et al., 2022).

8. Ethical Considerations
We believe that all authors highly value and strictly
adhere to a code of ethics. In our approach, we
use a language model and make use of person-
related data from the publicly available Wikidata.
However, we do not expect the model to gener-
ate harmful conclusions based on the dataset. We
solely focus on the efficient application of the lan-
guage model in KGC tasks.
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