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Abstract
Step-by-step reasoning methods, such as the Chain-of-Thought (CoT), have been demonstrated to be highly effective
in harnessing the reasoning capabilities of Large Language Models (LLMs). Recent research efforts have sought to
distill LLMs into Small Language Models (SLMs), with a significant focus on transferring the reasoning capabilities of
LLMs to SLMs via CoT. However, the outcomes of CoT distillation are inadequate for knowledge-intensive reasoning
tasks. This is because generating accurate rationales requires crucial factual knowledge, which SLMs struggle to
retain due to their parameter constraints. We propose a retrieval-based CoT distillation framework, named Probe then
Retrieve and Reason (PRR), which distills the question probing and reasoning capabilities from LLMs into SLMs.
We train two complementary distilled SLMs, a probing model and a reasoning model, in tandem. When presented
with a new question, the probing model first identifies the necessary knowledge to answer it, generating queries for
retrieval. Subsequently, the reasoning model uses the retrieved knowledge to construct a step-by-step rationale
for the answer. In knowledge-intensive reasoning tasks, such as StrategyQA and OpenbookQA, our distillation
framework yields superior performance for SLMs compared to conventional methods, including simple CoT distillation
and knowledge-augmented distillation using raw questions.
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1. Introduction

Large Language Models (LLMs) have shown excep-
tional capabilities across a wide range of tasks in
various domains through the method of in-context
learning (Brown et al., 2020; Ouyang et al., 2022;
OpenAI, 2023). Recent research suggests that in-
creasing the number of parameters of LLMs can sig-
nificantly enhance their knowledge encoding and
reasoning capabilities (Wei et al., 2022a; Kaplan
et al., 2020). Impressively, LLMs have excelled
in domains demanding profound knowledge and
reasoning, addressing significant challenges.

However, the real-world deployment of LLMs
presents difficulties. Primarily, predictions from
LLMs are computationally intensive. Furthermore,
there are concerns regarding potential privacy
breaches, as many commercially available LLMs
(Brown et al., 2020; Ouyang et al., 2022; OpenAI,
2023) operate as opaque systems. These models
typically restrict users to interfacing solely with the
outputs, providing no access to or visibility of the
underlying parameters.

In order to address deployment challenges, past
studies (Ho et al., 2022; Li et al., 2022; Magister
et al., 2022; Fu et al., 2023; Hsieh et al., 2023)
have explored CoT distillation, aiming to transfer the
reasoning capabilities of LLMs to Small Language
Models (SLMs). These methods involve LLMs in
creating high-quality rationales step by step, fine-
tuning SLMs using these rationales. Such distil-
lation techniques have significantly enhanced the
capabilities of smaller models in tasks like arith-

metic and symbolic reasoning (Cobbe et al., 2021;
Wei et al., 2022b). However, the current distillation
methods fall short in knowledge-intensive tasks
because SLMs can’t capture all necessary knowl-
edge with their limited parameters. Consequently,
there is a recognized need to incorporate task-
specific knowledge during the distillation from LLMs
to SLMs. (Kang et al., 2023) utilized a retriever
(Robertson et al., 2009) to fetch relevant knowledge
paragraphs from external databases like Wikipedia
and fine-tune SLMs using both the raw questions
and the retrieved paragraphs to generate rationales.
However, the methodology in (Kang et al., 2023)
has an inconsistency: it leverages LLM-generated
rationales for knowledge retrieval during training
but uses the raw questions for retrieval during in-
ference, potentially compromising performance.

In this paper, we postulate that while SLMs lack
the capacity for extensive knowledge storage, they
can ascertain the requisite knowledge needed for
question answering, which is a capability that can
potentially be transferred from LLMs. Building on
this insight, we propose a framework Probe then
Retrieve and Reason (PRR) which separates the
transfer of probing and reasoning from LLMs to two
distinct SLMs, thereby improving retrieval and en-
riching the SLMs for knowledge-intensive tasks. Ini-
tially, an LLM is prompted to probe the raw question,
dissecting it into related sub-queries that identify
the necessary knowledge to answer the main ques-
tion, and generating a rationale to answer it step by
step. Subsequently, retrievers source paragraphs
that correspond to the dissected sub-queries from
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external knowledge bases. Finally, we fine-tune
two SLMs based on the sub-queries and rationales
obtained from LLMs with retrieved paragraphs. A
high-level illustration of the process is provided in
Figure 1.

Figure 1: Illustration of the proposed framework
PRR. SLM1 denotes the probing model and SLM2
denotes the reasoning model.

To demonstrate the effectiveness of PRR, we
conducted an empirical evaluation using T5-base
(Raffel et al., 2020) as a Small Language Model
(SLM). Our results showed significant improve-
ments compared to both basic CoT distillation and
knowledge-augmented distillation using raw ques-
tions on multi-step factual QA datasets such as
StrategyQA (Geva et al., 2021) and OpenbookQA
(Mihaylov et al., 2018).

2. Related Works

Large Language Models Large Language Mod-
els (LLMs) have showcased impressive capabilities
in a wide array of tasks. Their primary strength
lies in the storage and utilization of knowledge for
complex reasoning. For instance, LLMs such as
GPT-3.5 (Ouyang et al., 2022) and GPT-4 (OpenAI,
2023) have delivered promising performances in
various assessments. However, deploying LLMs in
offline and privacy-conscious settings poses signif-
icant challenges, primarily because these models
are often treated as black boxes accessible only
via APIs, and are associated with substantial com-
putational overheads. This calls for alternative ap-
proaches that utilize the full potential of LLMs in
knowledge-intensive reasoning tasks.

CoT Distillation Recent studies have aimed to
distill LLMs into SLMs (Ho et al., 2022; Li et al.,
2022; Magister et al., 2022; Fu et al., 2023; Hsieh

et al., 2023). A key focus of these efforts has been
the transfer of specialized abilities like the Chain-
of-Thought (CoT) paradigm from LLMs to SLMs,
thereby enhancing their performance in arithmetic
and complex reasoning tasks (Kojima et al., 2022;
Wei et al., 2022b). (Shridhar et al., 2023) trained a
combination of two small distilled models: a prob-
lem decomposer and a subproblem solver to rea-
son better. However, prior research (Li et al., 2022;
Ho et al., 2022) suggested that CoT distillation be-
comes less effective for knowledge-intensive rea-
soning tasks(Geva et al., 2021), as accurate ra-
tionales require a deep understanding of factual
knowledge. (Kang et al., 2023) distilled SLMs us-
ing both the raw questions and the retrieved para-
graphs to generate rationales while exhibits an
inconsistency between the training and inference
phases.

3. Methodology

3.1. Query and Rationale Generation
from LLM

Based on prior research (Li et al., 2022), we har-
ness the LLMs’ capacity to identify knowledge for
retrieval and to reason about their predictions in
order to train SLMs. Let D = {(xi, yi)}N repre-
sent a dataset comprising N training instances,
where xi denotes a question and yi denotes its cor-
responding answer. We also have a curated set of
human-authored instances E = {(xp

i , q
p
i , e

p
i , y

p
i )}M ,

with M ≪ N (for our experiments, we set M = 7)
based on prompts in (Li et al., 2022). In this set,
qpi represents the probed queries that focus on the
knowledge needed to answer the question xp

i , while
epi is a free-text rationale elplaining why question
xp
i yields ypi as its answer. The set (xp

i , y
p
i )

M is a
subset of D. Our primary objective is to optimally
utilize the LLM, using E as reference demonstra-
tions for in-context learning. This will enable the
generation of queries qi and rationale ei for every
(xi, yi) where 1 ≤ i ≤ N . Subsequently, these
LLM-generated queries and rationales can be used
to augment the probing and reasoning capabilities
of SLMs.

3.2. Training the Probing Model with
Probed Queries

The first SLM which named the probing model, is
trained with the objective of minimizing the query
generation loss as follows:

Lprobe =
1

N

N∑
i=1

l(f1(xi), qi) (1)

In this equation, f1 represents the probing model,
and l denotes the cross-entropy loss, which is com-
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Figure 2: Illustration of the inferring process.

puted between the predicted tokens of the gener-
ated queries and the corresponding target tokens
of the probed queries. The goal of this training
process is to fine-tune the probing model to accu-
rately generate queries that capture the necessary
knowledge for answering the given questions.

3.3. Retrieving Knowledge with Probed
Queries

We propose a method to retrieve paragraphs from
an external Knowledge Base (KB) denoted as
P = {p1, · · · , pk}. Retrieving the appropriate para-
graph from P is crucial for training SLMs to produce
high-quality rationales that, in turn, generate accu-
rate answers to the raw questions. Following the
approach of (Kang et al., 2023), we employ the
sparse retriever BM25 (Robertson et al., 2009). To
extract the most relevant knowledge for answering
a given question, we use probed queries gener-
ated by the LLM during training or by the prob-
ing model at inference time. These queries facil-
itate the retrieval of a set of paragraphs given by
pri = topk(R(pr|qi;P), k) ∈ P , where pri represents
the top k paragraphs with the highest relevance
scores, as determined by the retriever R based on
their relevance to the probed query qi.

3.4. Training the Reasoning Model with
Retrieved Knowledge and Rationales

To enhance the performance of the reasoning
model, we leverage the raw question xi along with
the retrieved paragraphs pri to generate an answer
yi and its corresponding rationale ei for the ques-
tion xi. Two loss functions are given by:

Lanswer =
1

N

N∑
i=1

l(fanswer
2 (xi, p

r
i ), yi) (2)

Lreason =
1

N

N∑
i=1

l(freason
2 (xi, p

r
i ), ei) (3)

where f2 represents the reasoning model, Lanswer

denotes the label generation loss, while Lreason

denotes the rationale generation loss.
The total loss function is a combination of both

losses:
L = Lanswer + λLreason (4)

where λ is a hyperparameter that weights the im-
portance of the rationale generation loss relative
to the label generation loss. When λ is set to 0,
the training process degenerates into a single-task
fine-tuning that relies only on the raw classification
labels.

3.5. Inferring with the Probing Model and
the Reasoning Model

For inferring the dataset D̃ = {(x̃i, ỹi)}I , we first
generate the probed query q̃i = f1(x̃i) with the
probing model and then retrieve top-k paragraphs
as p̃ri = topk(R(p̃r|q̃i;P)), k) ∈ P) from the ex-
ternal Knowledge Base. Finally, the answer ỹi =
f2(x̃i, p̃

r
i ) is generated by the reasoning model. An

illustration of the inferring process is provided in
Figure 2.

4. Experiments

4.1. Datasets and Metrics
We conducted experiments on the following two QA
benchmark datasets:

StrategyQA is a dataset tailored for binary
yes/no question-answering scenarios, which ne-
cessitates implicit multi-hop reasoning for inference
(Geva et al., 2021). It includes 2,290 questions in
the training set and 490 in the test set. Due to the
inaccessibility of the official test set, we adopts an
alternative approach using the split provided in their
GitHub repository1 where the original training set
is partitioned randomly, allocating 90% for training
and the residual 10% for the development set. We
report results on their Github development set and
utilize their Github training set for training, without
utilizing rationales from their original annotations.

OpenbookQA is designed as a 4-way multiple-
choice question-answering challenge, requiring ex-
tensive common knowledge as well as sophisti-
cated multi-hop reasoning (Mihaylov et al., 2018).
The dataset is divided into 4,957, 500, and 500
questions for the training, development, and test
sets, respectively.

1https://github.com/eladsegal/
strategyqa

https://github.com/eladsegal/strategyqa
https://github.com/eladsegal/strategyqa
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StrategyQA OpenbookQA
WK RQ PQ RQ+PQ WK RQ PQ RQ+PQ

ST 58.081.05 56.100.99 58.100.42 56.250.56 55.070.90 54.231.46 66.200.29 62.271.55
MT-CoT 59.820.24 59.101.29 60.670.61 57.200.62 62.270.66 60.870.50 68.670.77 65.330.66

Table 1: Accuracy comparison (%) of Single-Task fine-tuning (ST) and Multi-Task Chain-of-Thought
fine-tuning (MT-CoT) utilizing knowledge retrieved with raw question (RQ), probed queries (PQ), both
(RQ+PQ) or without knowledge (WK). Results are averaged over five runs with their standard deviation in
the subscript. Best and second results for each dataset are bold and underlined.

To evaluate the question-answering performance
on StrategyQA and OpenbookQA datasets, we em-
ploy the accuracy metric based on the final answer
provided by the reasoning model. Each experiment
is run 5 times with different random seeds, and we
report the average accuracy score on the test set
for reproducibility.

4.2. Implementation Details
In our experiments, we utilize the GPT-3.5-turbo
model through the official OpenAI API2 as the Large
Language Model. For task-specific downstream ap-
plications, we employ the T5-base model (Raffel
et al., 2020). Our framework is developed using Py-
Torch3 and the Huggingface transformers library4.
To implement BM25, we use the pyserini library5

which provides a reproducible information retrieval
framework. For CoT prompting, we follow the ap-
proach of (Li et al., 2022) and prepare our own
examples tailored to new datasets. We empirically
set the hyper-parameters and apply them consis-
tently in all experiments. Specifically, the retrieving
parameter k is set to 3, and the weight parameter
λ in Eq. 4 is set to 0.5 to balance the label and
rationale generation losses.

4.3. Main Results
The main results of our experiments on StrategyQA
and OpenbookQA are shown in Table 1.

Overall, the Multi-Task Chain-of-Thought (MT-
CoT) models, with the weight parameter λ set to
0.5 in Eq. 4, consistently outperform their Single-
Task (ST) counterparts, where λ is set to 0, across
a range of retrieval strategies. This result under-
scores the benefits of leveraging rationales from
LLMs to augment the reasoning capabilities of
SLMs.

The MT-CoT model demonstrates superior per-
formance on the two datasets when utilizing knowl-
edge retrieved through probed queries (PQ) as op-

2https://platform.openai.com/docs/
models/gpt-3-5

3https://pytorch.org/
4https://github.com/huggingface/

transformers
5https://github.com/castorini/pyserini

posed to using knowledge retrieved through raw
questions (RQ) or a combination of both (RQ+PQ).
This underscores the potency of our Probe then
Retrieve and Reason (PRR) framework. By distill-
ing the probed queries and rationales generated by
LLMs into SLMs and effectively integrating them,
the quality of knowledge retrieval can be signifi-
cantly improved, and the reasoning capabilities of
the SLM can be more effectively harnessed.

Comparing the results between StrategyQA and
OpenbookQA, we observe that the benefits from re-
trieval are more pronounced on OpenbookQA. This
may be attributed to the fact that OpenbookQA is a
more knowledge-intensive task. Additionally, when
comparing different retrieval strategies, we find that
using probed queries (PQ) yields greater improve-
ments on OpenbookQA than on StrategyQA. We
believe this is because the questions in StrategyQA
are essentially standard queries without the explicit
expression of the knowledge needed to answer
them. In contrast, the questions in OpenbookQA
are formatted as cloze tests. In this scenario, our
probing model can not only identify the necessary
knowledge but also transform the raw question into
a refined query, thereby significantly enhancing the
retrieval’s effectiveness.

4.4. Analysis of the Necessity for
Another Probing Model

In our study, we investigated an alternative train-
ing approach that avoids the use of an additional
probing model. Instead, we integrated a query gen-
eration sub-task directly into the training of the rea-
soning model, effectively combining the two tasks
into one. A comparative analysis of the model per-
formance is presented in Table 2.

StrategyQA OpenbookQA
OM 59.770.28 68.020.34
TM 60.670.61 68.670.77

Table 2: Accuracy comparison (%) of one model
(OM) and two model (TM) utilizing knowledge re-
trieved with probed queries (PQ).

According to the results, we found that using two
separate SLMs sequentially yields better perfor-

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://pytorch.org/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/castorini/pyserini
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mance than using a single SLM. This suggests that
when the model lacks sufficient parameters, the
two tasks do not complement each other. It is more
effective for the T5-base model to concentrate on
a single task.

5. Conclusion

In this paper, we introduce the Probe then Retrieve
and Reason (PRR) framework, which effectively dis-
tills probing and reasoning capabilities from Large
Language Models (LLMs) into Small Language
Models (SLMs). Our approach involves training
two distilled SLMs in tandem: a probing model
that probes into the question to generate queries
identifying the necessary knowledge for retrieval,
and a reasoning model that constructs a rationale
to answer the question step by step, utilizing the
retrieved knowledge. When applied to knowledge-
intensive reasoning tasks such as StrategyQA and
OpenbookQA, our PRR framework demonstrates
superior performance for SLMs compared to tradi-
tional methods, including simple Chain-of-Thought
(CoT) distillation and knowledge-augmented distil-
lation with raw questions.
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