
LREC-COLING 2024, pages 13057–13067
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

13057

ProCQA: A Large-scale Community-based Programming Question
Answering Dataset for Code Search

Zehan Li1,2, Jianfei Zhang3, Chuantao Yin2, Yuanxin Ouyang3, Wenge Rong1,3

1State Key Laboratory of Complex & Critical Software Environment, Beihang University, China
2Sino-French Engineer School, Beihang University, China

3School of Computer Science and Engineering, Beihang University, China
{lizehan, zhangjf, chuantao.yin, oyyx, w.rong}@buaa.edu.cn

Abstract
Retrieval-based code question answering seeks to match user queries in natural language to relevant code snippets.
Previous approaches typically rely on pretraining models using crafted bi-modal and uni-modal datasets to align text
and code representations. In this paper, we introduce ProCQA, a large-scale programming question answering
dataset extracted from the StackOverflow community, offering naturally structured mixed-modal QA pairs. To validate
its effectiveness, we propose a modality-agnostic contrastive pre-training approach to improve the alignment of
text and code representations of current code language models. Compared to previous models that primarily
employ bimodal and unimodal pairs extracted from CodeSearchNet for pre-training, our model exhibits significant
performance improvements across a wide range of code retrieval benchmarks.

Keywords: Code QA Dataset, Code Search, Contrastive Pretraining

1. Introduction

Code Question Answering (Code QA) represents a
pivotal research area in software intelligence. One
popular task formulation is retrieval-based QA (Gu
et al., 2018), in which the primary objective is to
effectively match user queries expressed in natural
language to relevant code snippets from an exist-
ing corpus. The prevailing approach for retrieval-
based Code QA has been the utilization of dual-
encoder-based representation models. The core
idea underlying this approach is to map natural
language queries and code snippets into a shared
representation space, where closely located vec-
tors correspond to semantically similar meanings.

To learn a shared representation space for
text and code, early research efforts adopted
masked language modeling (MLM) objective on
paired text-code dataset to align different modali-
ties (Kanade et al., 2020; Feng et al., 2020), similar
to the monolingual and cross-lingual pre-training
approaches (Devlin et al., 2019; Conneau and Lam-
ple, 2019). Subsequent work discovered the po-
tential of contrastive pre-training, and applied it to
code representation learning by constructing large-
scale paired datasets (Jain et al., 2021; Li et al.,
2022).

Current contrastive code representation learning
methods such as CodeRetriever (Li et al., 2022)
typically rely on curated uni-modal (code-code
pairs) or bi-modal data (text-code pairs). Few work
even uses distinct encoder for text and code (Hey-
man and Cutsem, 2020; Salza et al., 2023). Such
pre-training design emphasizes the concept of
modality distinction, diverging from the goal of es-
tablishing a unified representation space for differ-

Uni-modal

Bi-modal

Mixed-modal

Query Doc
Code

Text

Align

Figure 1: Illustration of different data formats used
for contrastive representation alignment. Color rep-
resents chunk modality. Unimodal data focuses
on code-to-code matching, while bimodal data em-
phasizes cross-modal matching. The mixed-modal
data in ProCQA enables simultaneous learning of
all matching patterns.

ent modalities. In Figure 1, we illustrate different
data formats used for contrastive pre-training and
analyse their chunk-level matching patterns. Uni-
modal data offers code-code matching patterns,
whereas bi-modal data implies code-text matching
patterns. While a combination of both data types
during pre-training can enable models to learn both
matching signals, a more data-efficient approach
to capture all matching patterns is through mixed-
modal data.

Besides, the majority of code embedding mod-
els (Jain et al., 2021; Wang et al., 2021a; Li et al.,
2022) have primarily relied on CodeSearchNet (Hu-
sain et al., 2019) as the main pre-training cor-
pus. While CodeSearchNet is a valuable resource,
its size and data distribution have inherent limita-

13058

Question Segmentation fault while copying a string to the memory allocated array
Description Following is a program I am practicing; int main()

int i = 0; char **grid = (char **) malloc(5*sizeof(int)); for (i = 0 ; i < 5 ; i++) grid[i] =
(char *) malloc(6); strcpy(grid[0], "eabcd"); strcpy(grid[1], "fghij"); strcpy(grid[2], "olkmn");
strcpy(grid[3], "trpqs"); strcpy(grid[4], "xywuv"); /*Segmentation Fault at this line*/ return
0; I am getting a segmentation fault at the line strcpy(grid[4], "xywuv"); . What could
be the reason? I have allocated the array to have 5 strings(rows) of 6 characters
each(columns).

Answer You are allocating the wrong type at line 3 char **grid = (char **) malloc(5*sizeof(int));
Should be char **grid = (char **) malloc(5*sizeof(char*)); This is because you are
declaring string-array. Therefore, the malloc should be char* (string / character pointer)
Also the same if you were trying to declare 2-D integer array. It will be int **grid = (int **)
malloc(5*sizeof(int*));

Table 1: An example sampled from the C programming language subset of ProCQA. Text and code are
interleaved in these QA pairs.

tions that may impact the quality and diversity of
learned code representations. Recent work has
proposed to curate large-scale code datasets from
GitHub (Allal et al., 2023). Yet their efforts mainly
focus on training large-scale generative language
models (LMs). In parallel, some research endeav-
ors have aimed to create code-related question-
answering datasets from diverse sources, as evi-
denced by Huang et al. (2021); Lee et al. (2022).
Nevertheless, most of these datasets remain con-
strained by their scale, rendering them more suit-
able for stand-alone evaluation benchmarks rather
than comprehensive pre-training corpus.

Therefore in this research, we try to bridge
these gaps by proposing ProCQA, a large-scale
community-based programming question answer-
ing dataset mined from StackOverflow. ProCQA
encompasses an extensive collection of approxi-
mately 5 million QA pairs, spanning 11 different
programming languages. This dataset is distin-
guished by its comprehensive language coverage,
the diversity of user queries, and its code-mixing
data format1. It can be used as both an evaluation
benchmark and a pre-training corpus. We provide
strict rule-based filtering and data decontamination
procedure to ensure its quality and fairness. Dif-
ferent types of baseline models are trained and
compared on this dataset to test its suitability as
an evaluation benchmark.

To assess the efficacy of our proposed dataset
as a pre-training corpus, we conducted large-scale
modality-agnostic contrastive pretraining (MACP)
on the code-mixing dataset, without making distinc-
tions between text and code modalities. To demon-
strate whether MACP can learn a better aligned
representation space, we evaluated it on extensive
code retrieval benchmarks, covering supervised,
zero-shot, and out-of-domain scenarios. Experi-
ments reveal that compared to previous pre-trained

1Please refer to Table 1 for an illustrative example.

code language models, MACP achieves substan-
tial improvements on most tasks we considered,
advancing the previous best code retrieval model
CodeRetriever (Li et al., 2022) by 1∼10% points
across different evaluation benchmarks. Compre-
hensive ablation and analysis demonstrates the
effectiveness of our proposed approach.

The contributions of this paper can be summa-
rized as follows:

• We create ProCQA, a large-scale dataset for
programming question answering. ProCQA is
characterized by its practicality, diversity and
mixed-modal data format. We demonstrate
its potential as an evaluation benchmark for
comparing different code language models.

• Based on ProCQA, we present MACP, a
code representation model pre-trained with
modality-agnostic contrastive learning on the
large-scale code-mixing dataset. MACP
demonstrates remarkable performance gains
over prior approaches across a wide range of
code retrieval tasks.

2. Related Work

2.1. Code QA

Code-based question answering is a sub-problem
of question answering. Different from the gener-
ative formulation, retrieval-based code QA aims
to retrieve the most similar code from a large-
scale code corpus, satisfying user requests. To
evaluate the neural code search ability of current
models, CodeSearchNet (Husain et al., 2019) was
constructed by mining large-scale comment-code
pairs from public GitHub repositories. Additionally,
to evaluate the code comprehension ability of lan-
guage models, Liu and Wan (2021) introduced
CodeQA, a free-form code question-answering

13059

dataset. This dataset was derived from existing
code summarization datasets mined from GitHub,
including two widely-used programming languages
Python and Java. CodeQA synthesizes various
types of question-answer pairs from code com-
ments and documentation strings using manually
curated rules, templates, and a range of NLP toolk-
its.

Recent work has been focused on construct-
ing code QA dataset from real-world scenarios.
For example, CoSQA (Huang et al., 2021) mines
real-world user queries from Bing search logs and
utilizes models trained on CodeSearchNet and
humans to label corresponding code. Moreover,
educational programming QA datasets have also
gained attention. CS1QA (Lee et al., 2022) col-
lects student questions and answers from teaching
assistants on an online forum designed for an intro-
ductory Python programming course. This dataset
offers insights into the educational applications of
code-based question answering.

2.2. Code Language Models

Language models pre-trained on large-scale unla-
beled corpora have demonstrated significant po-
tential in code understanding and generation tasks.
Prior works such as CodeBERT (Feng et al., 2020)
employed replaced language modeling on uni-
modal and bi-modal data for pre-training. Graph-
CodeBERT (Guo et al., 2021) advanced this ap-
proach by harnessing data flow encoded in the
Abstract Syntax Tree (AST) of code to enrich code
structural information during pre-training. UniX-
Coder (Guo et al., 2022) unified three pre-training
designs into one architecture and utilized AST
structure and code comment to enhance the cross-
modal alignment. There are also some work on
adapting generative language models for code, as
exemplified by CodeT5 (Wang et al., 2021b) and
PLBART (Ahmad et al., 2021). These models incor-
porate code structure information into the design
of specific pre-training tasks. Contrastive methods
have also been introduced into code pre-training
by several recent works with different approaches
proposed for constructing positive and negative
pairs (Jain et al., 2021; Wang et al., 2021a; Ding
et al., 2022; Bui et al., 2021; Li et al., 2022).

It is worth noting that current code language
models’ pre-training corpus are primarily sourced
from CodeSearchNet, consisting of 2 million code-
text pairs. Limited efforts have been dedicated
to mining large-scale datasets from GitHub (Allal
et al., 2023; Li et al., 2023), but they mainly focus
on training decoder language models rather than
code representation models. An exception is the
work by OpenAI (Neelakantan et al., 2022), but
their models are only available via paid APIs and
training data is not detailed.

3. ProCQA

In this section, we outline the methodologies em-
ployed in the creation of the ProCQA dataset, along
with the filtering strategies applied to ensure data
quality and fairness. Additionally, we present an
analysis of various dataset statistics and define
two tasks utilizing this dataset to evaluate different
baseline models. The source code is available at
https://github.com/jordane95/procqa.

3.1. Data Acquisition

To ensure the diversity and reflect real world user
problems, we crawl our dataset from StackOver-
flow, a question answering community focusing on
solving programming problems. Users can post
their problems on the website and wait for others’
answers. One characteristic of this dataset is that
both the question and answer are code-mixing, i.e.,
text and code are interleaved within these fields.
Such data format is very useful to indoctrinate and
evaluate the model’s matching ability of different
patterns.

We use the public dumps as of 2022/12 for raw
data downloading2. We extract the textual content
consisting of code and texts from XML files. Three
fields (title, question, answer) are kept. HTML tags
are removed and only text content are kept using
BeautifulSoup library.

3.2. Data Cleaning

A critical problem with these QA communities is
that there are many unanswered questions and
wrong answers. To handle this issue, we ap-
ply some rule-based approaches to filter out low-
quality questions and answers.

More specifically, we filter out questions/answers
that are either too short (< 20 characters) or too
long (> 4096 characters). We only keep ques-
tions that have answers marked as accepted by
the questioner since it is a natural annotation signal
indicating the answer is helpful for the user.

3.3. Data Format

Data in ProCQA is formatted as triples illustrated
in Table 1. The question is a concise user request.
It is coupled with a detailed description which ex-
plains the problem in more detail. The answer is
posted by other user and is the one accepted by
the questioner. Note that in all data fields, code
and text are interleaved, which provides a natural
supervision signal for aligning the two modalities.

https://github.com/jordane95/procqa

13060

PL C C++ Java Python Ruby Lisp JavaScript C# Go Rust PHP

Size 204746 418346 831697 1008478 131218 4612 1217095 817970 36011 15514 567357

Table 2: Number of QA pairs for each programming language in ProCQA.

3.4. Data Statistics

We partition the dataset into different program-
ming language subsets according to their tags con-
tained in meta information. We consider the fol-
lowing eleven languages based on their popularity:
Python, Java, JavaScript, Ruby, C, C++, C#, Rust,
PHP, Lisp and Go. Dataset statistics are shown
in Table 2. We split the dataset into train / valid /
test set by a proportion of 80%:10%:10% following
chronological order of posting date.

In addition, we analyse the question and answer
length distribution of our ProCQA dataset in Fig-
ure 2. Most of the QA pairs in ProCQA contain
dozens or hundreds of words, which are much
closer to real user questions.

Figure 2: Question and answer length distribution
in ProCQA (C subset).

3.5. Decontamination

Since ProCQA is crawled from StackOverflow,
it many overlap with some evaluation sets con-
structed from the same source. To avoid data con-
tamination, we perform evaluation data deduplica-
tion for our ProCQA training set.

Specifically, we employ two methods for dedu-
plication. The first one is based on substring
matching. Training example in ProCQA dataset
is dropped if it contains any substring that is part
of the queries in the evaluation set. We use three
evaluation sets to perform deduplication (CoNaLa,
SO-DS and StaQC). After this step, about 0.5% ex-
amples from the Python subset are dropped. Other
subsets are influenced lightly. We also apply fuzzy
deduplication method based on MinHash but no
additional duplicate is found.

3.6. Comparison to previous datasets

To better understand the difference with previous
dataset, we summarize some key factors of our
ProCQA and previous ones in Table 3, including
the number of supported programming languages
(PLs), data format, size and data source.

CodeNN (Iyer et al., 2016) is also a dataset
mined from StackOverflow for code summariza-
tion but contains much smaller amount of training
examples and languages. CodeSearchNet (CSN)
is on pair with ProCQA in terms of languages and
size but drawn from a different data distribution
(GitHub). Its queries are either documentation
strings or comments rather than natural language
questions, limiting its practicality in real scenar-
ios. CoSQA and CS1QA contain some real user
queries collected from Bing logs and classrooms
but only cover Python and are limited in size.

In summary, ProCQA differs from previous work
in the following main aspects:

1. More diverse language distribution at a larger
scale.

2. Long-form questions and answers more
aligned with real-world scenarios.

3.7. Tasks

We define two tasks based on the collected dataset
for pilot exploration, including answer retrieval and
generation. We choose C subset as a test bed for
comparing multiple language models.

Answer Retrieval This task is defined as find-
ing the correct answer from a large-scale answer
corpus. We use answers from all splits of the
dataset to form retrieval corpus. The query is the
concatenation of question and description. We
choose BM25 and some recent neural language
models, such as BERT (Devlin et al., 2019), Code-
BERT (Feng et al., 2020) and UniXCoder (Guo
et al., 2022). Neural LMs are fine-tuned with the
contrastive learning objective (i.e., InfoNCE loss)
on the question answer pairs from the training set.
All models are trained for 3 epochs with the batch
size of 32 and the learning rate of 2e-5. Both ques-
tions and answers are truncated to be maximum
of 256 tokens. We choose MRR@10, Recall@10
and Recall@100 as main evaluation metrics.

Results are demonstrated in Table 4. We ob-
serve that text-only language models such as

2https://archive.org/details/stackexchange

13061

Dataset # of PLs Data Format Size Data Source

CodeNN 2 Title, code ∼187K pairs StackOverflow
CodeSearchNet 6 Comment, code ∼2M pairs GitHub
CodeQA 2 Question, answer, code ∼190K pairs GitHub
CoSQA 1 Query, code ∼20K pairs Web search
CS1QA 1 Chat log, question, answer, type, code ∼9K pairs Classroom

ProCQA 11 Question, description, answer ∼5M pairs StackOverflow

Table 3: Comparison between different code-based datasets.

Model MRR@10 R@10 R@100

BM25 51.7 61.1 73.1
BERT 48.3 62.0 79.7
CodeBERT 53.0 66.8 83.5
UniXCoder 58.4 71.8 86.1

Table 4: Answer retrieval performance of different
language models on the C subset of ProCQA.

BERT are even inferior to unsupervised BM25, in
terms of MRR@10. With code-specific pre-training,
CodeBERT can outperform the strong BM25 base-
line. More recent code language models such as
UniXCoder performs best on this task.

Answer Generation We also consider a genera-
tive task formulation, in which the model is required
to directly generate the answer to the question
without additional reference. Similarly, we bench-
mark several generative language models on this
task. Selected baseline models include T5 (Raf-
fel et al., 2020), CodeT5 (Wang et al., 2021b),
PLBART (Ahmad et al., 2021). Models are trained
in a sequence-to-sequence manner by optimizing
the cross-entropy loss of the answer sequence
given question sequence with the same training
hyperparameters as stated above. During infer-
ence, beam search decoding is used with a beam
size of 5. We use ROUGE (Lin, 2004) as main
evaluation metrics for this task and demonstrate
results in Table 5.

Model ROUGE1 ROUGE2 ROUGEL

T5 14.3 2.6 11.8
CodeT5 17.6 4.8 14.0
PLBART 19.9 5.9 15.3

Table 5: Answer generation results of different
baselines on ProCQA (C subset).

It is found that code language models is better
than text-only models, indicating the effectiveness
of code-specific pre-training. Even the best model
struggles on this task because the answers are rel-
atively long (mostly 100-200 words, see Figure 2).

This indicates that ProCQA is a challenging dataset
for long-form generative QA task. How to improve
the long-form question-answering performance of
language models with limited parameters is also
an interesting direction for future research.

4. Experiments

To assess the quality and utility of our proposed
dataset, we evaluate its benefits to other code
search benchmarks when acting as a pre-training
corpus. We also conduct ablation experiments
to demonstrate the effectiveness of ProCQA over
existing pre-training corpus CSN.

4.1. Settings

Our model basically follows the two-tower archi-
tecture in which vector representations for code
and text are produced by mean pooling over the
last layer hidden representations of the language
models. It is trained via the contrastive objective
using the InfoNCE loss

L = − log
es(q,d)/τ

es(q,d)/τ +
∑

d′∈D−

es(q,d′)/τ
. (1)

where q denotes the question, d denotes the corre-
sponding answer, D− is a set of negative samples,
τ is the temperature. D− is also enlarged with
other examples from the same batch.

The main baselines we compare to are Graph-
CodeBERT (Guo et al., 2021) and CodeRe-
triever (Li et al., 2022). In addition to the text-
code pairs in CSN used by GraphCodeBERT,
CodeRetriever also employs sophisticated rules
and learned models for mining high-quality code-
code and code-text pairs from the raw CSN code
corpus. Instead we use commonly available QA
pairs from ProCQA mined by weak supervision.
We use the training split across all languages to
construct different types of mixed-modal positive
pairs. We apply modality-agnostic contrastive pre-
training on the ProCQA and CSN dataset and com-
pare our model to previous code embedding mod-
els on various retrieval tasks. Our model is denoted
as MACP.

13062

4.2. Implementation Details

For fair comparison, our model is initialized with
GraphCodeBERT, same as CodeRetriever. MACP
is pre-trained with the contrastive objective in Equa-
tion 1 using cosine similarity and τ = 0.01. To
balance low-resource languages, we sample each
data batch from a multi-nominal distribution over
different language subsets

pi =
nα
i∑n

j=1
nα
j

, (2)

with ni equal to the size of subset i and smooth-
ing parameter α = 0.5. We run the contrastive
pre-training for 10k steps with a global batch size
of 6192. In-batch negatives are used and shared
across different GPUs. Each sequence is trun-
cated at a maximum length of 128. The learning
rate is initially warmed up to 2e-4 for the first 10%
steps, followed by a linear decay.

We utilize the same contrastive loss during fine-
tuning on each downstream dataset. Each fine-
tuning experiment only involves one dataset so we
directly sample data after shuffling it. Models are
trained using a peak learning rate of 2e-5 with the
same scheduler as pre-training. The maximum se-
quence length is 512. Batch size is 128 and each
sample is accompanied with 7 randomly sampled
negatives. Training epochs is 3. Other hyperparam-
eters are same as pre-training. We only consider
in-batch negatives for contrastive learning so we
compare models under this setting.

We conduct all experiments on two NVIDIA A100
GPUs with 40G memory. We use DeepSpeed,
gradient checkpointing and mixed precision (FP16)
encoding to reduce memory cost. The pre-training
process takes about 18 hours. Fine-tuning on all
datasets is finished in one day.

4.3. Evaluation Benchmarks

To provide an extensive evaluation of the general-
ization ability of our pre-trained models, we select
a large variety of code retrieval tasks from different
domains under different settings.

We first evaluate on the CodeSearchNet bench-
mark (Husain et al., 2019), which is widely used
for evaluating the text-code search ability of code
retrieval models. One drawback of CodeSearch-
Net is the queries are not aligned to real user
questions. So, we also evaluate on some more
challenging datasets, Adv Test (Lu et al., 2021),
CoSQA (Huang et al., 2021), CoNaLa (Yin et al.,
2018), SO-DS (Heyman and Cutsem, 2020),
StaQC (Yao et al., 2018). The last three evalu-
ation datasets follow the setting of Heyman and
Cutsem (2020), where during inference both text
description and code snippet are used for matching.
The main evaluation metric is MRR.

Then, code-code search results on POJ-
104 (Mou et al., 2016) is also reported to eval-
uate the intra-modal retrieval ability. In this dataset,
Python program solutions of the same problem
is regarded as positive pairs. The objective is to
retrieve relevant code snippets which answer the
same problem. To investigate the cross-lingual
code retrieval ability, we use CodeNet (Puri et al.,
2021) as an evaluation benchmark, which is also
a problem-solution dataset similar to POJ-104 but
covers more languages. On CodeNet, we con-
sider the zero-shot retrieval of three programming
languages (Ruby, Python and Java) following Guo
et al. (2022), where code is pre-processed by re-
moving comments and replacing all separators with
whitespace. Performance is evaluated by MAP.

Finally, to test whether our model can generalize
to out-of-domain languages, we choose two text-
code search datasets with languages unseen dur-
ing pre-training. Smart Contracts (SC) (Yang et al.,
2021) contains Solidity programming language and
Spider (Yu et al., 2018) consists of SQL-query pairs.
We use the dataset split released by Chai et al.
(2022). Models are evaluated by Recall@{1,5,10}
and MRR@1000. The statistics of downstream
evaluation benchmarks are illustrated in Table 6.

Dataset Lang Train Valid Test

CSN Ruby 24.9K 1.4K 1.3K
CSN JS 58K 3.9K 3.3K
CSN Go 167K 7.3K 8.1K
CSN Python 252K 13.9K 14.9K
CSN Java 165K 5.2K 10.9K
CSN PHP 241K 13.0K 14.0K
Adv Python 28.0K 9.6K 19.2K
CoSQA Python 19K 0.5K 0.5K
CoNaLa Python 2.8K - 0.8K
SO-DS Python 14.2K 0.9K 1.1K
StaQC Python 20.4K 2.6K 2.7K
POJ104 Python 32K 8K 12K
CodeNet Ruby - - 11.7K
CodeNet Python - - 15.6K
CodeNet Java - - 23.5K
SC Solidity 57K 4.1K 1K
Spider SQL 14K 2.1K 1K

Table 6: Statistics of downstream evaluation
datasets.

4.4. Results

In this section, we report and discuss the perfor-
mance of MACP on the evaluation benchmarks
introduced in the previous section, spanning both
supervised and zero-shot settings. In the super-
vised setting, MACP is directly fine-tuned on full
training set and the last checkpoint is evaluated on

13063

Method Ruby Javascript Go Python Java PHP Overall

ContraCode (Jain et al., 2021) - 30.6 - - - - -
SyncoBERT (Wang et al., 2021a) 72.2 67.7 91.3 72.4 72.3 67.8 74.0
CodeBERT (Feng et al., 2020) 67.9 62.0 88.2 67.2 67.6 62.8 69.3
GraphCodeBERT (Guo et al., 2021) 70.3 64.4 89.7 69.2 69.1 64.9 71.3
UniXcoder (Guo et al., 2022) 74.0 68.4 91.5 72.0 72.6 67.6 74.4
CodeRetriever (Li et al., 2022) 75.3 69.5 91.6 73.3 74.0 68.2 75.3
MACP 77.8 72.5 92.4 76.1 75.7 70.1 77.4

Table 7: MRR@1k on six programming language test sets of the CodeSearchNet.

Method Adv CoSQA CoNaLa SO-DS StaQC Overall

SyncoBERT (Wang et al., 2021a) 38.1 - - - - -
CodeBERT (Feng et al., 2020) 27.2 64.7 20.9 23.1 23.4 31.9
GraphCodeBERT (Guo et al., 2021) 35.2 67.5 23.5 25.3 23.8 35.1
UniXcoder (Guo et al., 2022) 41.3 70.1 - - - -
CodeRetriever (Li et al., 2022) 43.0 70.6 29.6 27.1 25.5 39.0
MACP 39.7 72.0 61.0 48.8 23.3 49.0

Table 8: Text-code search performance (MRR@1k) on datasets that are closer to the real scenario.

the test set. In the zero-shot setting, it is directly
evaluated on the test set.

Text-Code Search We first present evaluation
results on six programming language subsets of
CodeSearchNet in Table 7. MACP trained with the
newly proposed dataset outperforms previous best
model CodeRetriever on all language subsets, by
an average of 2.1 points.

Next, we look at results on several challeng-
ing benchmarks, all collected from real-world user
queries instead of docstrings. As shown in Ta-
ble 8, our model significantly outperforms prior
state-of-the-art models by up to 10 points on aver-
age. We attribute the improvement to real-world
user queries from ProCQA.

Code-Code Search After evaluating the cross-
modal search ability of our embedding model, we
zoom into the intra-modal retrieval performance by
evaluating on a code clone detection benchmark,
POJ-104. Results are illustrated in Table 9. Our
model outperforms previous best baseline CodeRe-
triever by +1.38 points.

Zero-Shot Cross-Lingual Code Search We list
the cross-lingual code retrieval performance of our
model MACP and other baselines from Guo et al.
(2022) in Table 10. UniXCoder has significantly bet-
ter zero-shot code retrieval performance, owing to
its contrastive objective during pre-training. MACP
consistently outperforms previous baselines by a
large margin, setting new state-of-the-art perfor-
mance on this task.

Method MAP

RoBERTa (Liu et al., 2019) 76.67
CodeBERT (Feng et al., 2020) 82.67
GraphCodeBERT (Guo et al., 2021) 85.16
SynCoBERT (Wang et al., 2021a) 88.24
DISCO (Ding et al., 2022) 82.77
Corder (Bui et al., 2021) 84.10
CodeRetriever (Li et al., 2022) 88.85
MACP 90.23

Table 9: Performance of Python code-to-code re-
trieval task on POJ-104.

Cross-Domain Code Search In Table 11, we
compare different models’ performance on Solid-
ity and SQL, two languages unseen during pre-
training. Previous best model MAML (Chai et al.,
2022) applied model-agnostic meta learning on
CodeBERT (Feng et al., 2020) using Java and
Python subsets from CSN for pre-training. In addi-
tion, we also report the performance of GraphCode-
BERT using our codebase as another baseline for
comparison. Our model significantly improves the
cross-domain code search performance on unseen
languages. One possible reason is that the diver-
sity of language coverage in ProCQA equips the
model with better language adaptation ability.

4.5. Analysis

Impact of pretraining data distribution We first
investigate the effect of different pre-training cor-
pus by doing a series of controlled experiments
where only the pre-training data distribution is

13064

Method Ruby Python Java Overall
Ruby Python Java Ruby Python Java Ruby Python Java

CodeBERT 13.55 3.18 0.71 3.12 14.39 0.96 0.55 0.42 7.62 4.94
GraphCodeBERT 17.01 9.29 6.38 5.01 19.34 6.92 1.77 3.50 13.31 9.17
PLBART 18.60 10.76 1.90 8.27 19.55 1.98 1.47 1.27 10.41 8.25
CodeT5 18.22 10.02 1.81 8.74 17.83 1.58 1.13 0.81 10.18 7.81
UniXcoder 29.05 26.36 15.16 23.96 30.15 15.07 13.61 14.53 16.12 20.45
MACP 44.74 43.11 31.26 40.59 45.77 29.75 32.8 33.75 30.74 36.95

Table 10: MAP score (%) of zero-shot code-to-code search task on CodeNet.

Method Solidity SQL

R@1 R@5 R@10 MRR R@1 R@5 R@10 MRR

CodeBERT (Feng et al., 2020) 53.2 77.9 84.8 64.4 67.5 92.0 96.0 78.2
MAML (Chai et al., 2022) 65.8 82.9 87.9 73.4 74.6 95.2 97.2 83.7
GraphCodeBERT (Guo et al., 2021) 72.9 85.5 89.3 78.5 78.5 94.5 96.6 85.5
MACP 75.2 87.3 90.6 80.7 85.4 96.0 97.4 90.3

Table 11: Results of cross-domain code retrieval on programming languages unseen during pretraining.

changed. We run two additional experiments by
using the CSN and ProCQA dataset individually
for pre-training. Due to space limitation, we re-
port downstream fine-tuned retrieval performance
on CodeSearchNet in Figure 3. Results on other
evaluation benchmarks follow the same trends.

Despite CSN belongs to in-domain data for
this evaluation benchmark, it still underperforms
ProCQA when being used as a pre-training corpus.
Combining two datasets gives better results. This
showcases the effectiveness of ProCQA dataset
being used as a mixed-modal corpus for retrieval-
oriented contrastive pre-training.

PH
P

Jav
aS

cri
pt Jav

a
Pyt

ho
n

Ru
by Go Average0

50

100

M
RR

@
1k

CSN ProCQA Both

Figure 3: Ablation of the pre-training corpus. Re-
sults compared on test sets of CodeSearchNet.

Effect of modality-agnostic data We ablate on
the choice of modality-agnostic contrastive learn-
ing by comparing to another setting which we ex-
plicitly distinguish text and code in data design.
Due to the high difficulty of parsing incomplete
code snippets in ProCQA, we conduct this ablation
on the CSN pre-training corpus where code are
well formed and can be parsed by existing tools. Bi-
modal setting removes all comments in the code
while mixed-modal setting keeps them. We list
results in Table 12. The evaluation set Adv Test

only requires code-text matching, yet training with
mixed-modal data formats still has benefits.

Setting Adv Test

bi-modal 38.8
mixed-modal 39.1

Table 12: Effect of the data format used in
CodeSearchNet corpus pre-training. We report
MRR@1k on Adv Test set.

Quantifying the effect of data contamination
To avoid data contamination and ensure fair-
ness, we performed de-duplication for the ProCQA
dataset with respect to the relevant evaluation
benchmarks from the same source, including
CoNaLa, SO-DS and StaQC. In Table 13, we pro-
vide a quantitative analysis on the proportion of
contaminated data for each evaluation set and the
performance using raw and filtered version of the
ProCQA dataset for pre-training. Although a large-
proportion of the evaluation set is included in the
raw pre-training data, removing them raises a lim-
ited degradation of model performance, as they
only make up a small portion of the large-scale
pre-training data.

Dataset Proportion Unfiltered Filtered

CoNaLa 83.7% 62.9 61.0
SO-DS 48.4% 49.8 48.8
StaQC 31.4% 23.6 23.3

Table 13: Analysis on the influence of data contam-
ination on three evaluation datasets.

13065

5. Conclusion

In this work we introduce ProCQA, a large-scale
community-based programming question answer-
ing dataset mined from StackOverflow with strict
filtering strategies for quality and fairness control.
ProCQA is featured by its practicality, diversity and
code-mixing data format. Furthermore, through
modality-agnostic contrastive pre-training on inter-
leaved code and text data, our new dataset yields
a language model that has a better aligned repre-
sentation space between code and text, achieving
state-of-the-art performance on a large spectrum
of code retrieval tasks. In future work, it would
be interesting to explore the benefit of ProCQA to
other generative code QA tasks.

6. Acknowledgements

This work was supported by the National Natural
Science Foundation of China (No.61977003) and
the State Key Laboratory of Complex & Critical
Software Environment (CCSE-2024ZX-16).

7. Bibliographical References

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi
Ray, and Kai-Wei Chang. 2021. Unified pre-
training for program understanding and genera-
tion. In Proceedings of the 2021 Conference of
the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2655–2668.

Loubna Ben Allal, Raymond Li, Denis Ko-
cetkov, Chenghao Mou, Christopher Akiki,
Carlos Muñoz Ferrandis, Niklas Muennighoff,
Mayank Mishra, Alex Gu, Manan Dey, Lo-
gesh Kumar Umapathi, Carolyn Jane Ander-
son, Yangtian Zi, Joel Lamy-Poirier, Hailey
Schoelkopf, Sergey Troshin, Dmitry Abulkhanov,
Manuel Romero, Michael Lappert, Francesco De
Toni, Bernardo García del Río, Qian Liu, Shamik
Bose, Urvashi Bhattacharyya, Terry Yue Zhuo,
Ian Yu, Paulo Villegas, Marco Zocca, Sourab
Mangrulkar, David Lansky, Huu Nguyen, Danish
Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau,
Yacine Jernite, Sean Hughes, Daniel Fried, Arjun
Guha, Harm de Vries, and Leandro von Werra.
2023. Santacoder: Don’t reach for the stars!
CoRR, abs/2301.03988.

Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang.
2021. Self-supervised contrastive learning for
code retrieval and summarization via semantic-
preserving transformations. In Proceedings of

the 44th International ACM SIGIR Conference
on Research and Development in Information
Retrieval, pages 511–521.

Yitian Chai, Hongyu Zhang, Beijun Shen, and Xi-
aodong Gu. 2022. Cross-domain deep code
search with meta learning. In Proceedings of
the 44th IEEE/ACM International Conference on
Software Engineering, pages 487–498.

Alexis Conneau and Guillaume Lample. 2019.
Cross-lingual language model pretraining. In
Proceedings of the 2019 Annual Conference on
Neural Information Processing Systems, pages
7057–7067.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 4171–4186.

Yangruibo Ding, Luca Buratti, Saurabh Pujar,
Alessandro Morari, Baishakhi Ray, and Saikat
Chakraborty. 2022. Towards learning (dis)-
similarity of source code from program contrasts.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics, pages
6300–6312.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020.
CodeBERT: A pre-trained model for program-
ming and natural languages. In Findings of
the Association for Computational Linguistics:
EMNLP 2020, pages 1536–1547.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim.
2018. Deep code search. In Proceedings of
the 40th International Conference on Software
Engineering, pages 933–944.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. UniXcoder: Unified
cross-modal pre-training for code representation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics, pages
7212–7225.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng,
Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tu-
fano, Shao Kun Deng, Colin B. Clement, Dawn
Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2021. GraphCodeBERT: Pre-
training code representations with data flow. In
Proceedings of the 9th International Conference
on Learning Representations.

13066

Geert Heyman and Tom Van Cutsem. 2020. Neural
code search revisited: Enhancing code snippet
retrieval through natural language intent. CoRR,
abs/2008.12193.

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong,
Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan.
2021. CoSQA: 20, 000+ web queries for code
search and question answering. In Proceedings
of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language
Processing, pages 5690–5700.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit,
Miltiadis Allamanis, and Marc Brockschmidt.
2019. CodeSearchNet challenge: Evaluating
the state of semantic code search. CoRR,
abs/1909.09436.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung,
and Luke Zettlemoyer. 2016. Summarizing
source code using a neural attention model. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, pages
2073–2083.

Paras Jain, Ajay Jain, Tianjun Zhang, Pieter
Abbeel, Joseph Gonzalez, and Ion Stoica. 2021.
Contrastive code representation learning. In Pro-
ceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
5954–5971.

Aditya Kanade, Petros Maniatis, Gogul Balakrish-
nan, and Kensen Shi. 2020. Learning and evalu-
ating contextual embedding of source code. In
Proceedings of the 37th International Confer-
ence on Machine Learning, pages 5110–5121.

Changyoon Lee, Yeon Seonwoo, and Alice Oh.
2022. CS1QA: A dataset for assisting code-
based question answering in an introductory pro-
gramming course. In Proceedings of the 2022
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, pages 2026–
2040.

Raymond Li, Loubna Ben Allal, Yangtian Zi,
Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li,
Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene,
Mishig Davaadorj, Joel Lamy-Poirier, João Mon-
teiro, Oleh Shliazhko, Nicolas Gontier, Nicholas
Meade, Armel Zebaze, Ming-Ho Yee, Logesh Ku-
mar Umapathi, Jian Zhu, Benjamin Lipkin, Muh-
tasham Oblokulov, Zhiruo Wang, Rudra Murthy
V, Jason Stillerman, Siva Sankalp Patel, Dmitry
Abulkhanov, Marco Zocca, Manan Dey, Zhihan

Zhang, Nour Moustafa-Fahmy, Urvashi Bhat-
tacharyya, Wenhao Yu, Swayam Singh, Sasha
Luccioni, Paulo Villegas, Maxim Kunakov, Fe-
dor Zhdanov, Manuel Romero, Tony Lee, Nadav
Timor, Jennifer Ding, Claire Schlesinger, Hailey
Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor,
Siva Reddy, Daniel Fried, Dzmitry Bahdanau,
Yacine Jernite, Carlos Muñoz Ferrandis, Sean
Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. 2023. Star-
Coder: May the source be with you! CoRR,
abs/2305.06161.

Xiaonan Li, Yeyun Gong, Yelong Shen, Xipeng
Qiu, Hang Zhang, Bolun Yao, Weizhen Qi, Daxin
Jiang, Weizhu Chen, and Nan Duan. 2022.
CodeRetriever: A large scale contrastive pre-
training method for code search. In Proceedings
of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 2898–
2910.

Chin-Yew Lin. 2004. ROUGE: A package for au-
tomatic evaluation of summaries. In Proceed-
ings of ACL Workshop on Text Summarization
Branches Out, pages 74–81.

Chenxiao Liu and Xiaojun Wan. 2021. CodeQA: A
question answering dataset for source code com-
prehension. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pages
2618–2632.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized BERT pre-
training approach. CoRR, abs/1907.11692.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang,
Alexey Svyatkovskiy, Ambrosio Blanco, Colin B.
Clement, Dawn Drain, Daxin Jiang, Duyu Tang,
Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng,
Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE:
A machine learning benchmark dataset for
code understanding and generation. CoRR,
abs/2102.04664.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin.
2016. Convolutional neural networks over tree
structures for programming language processing.
In Proceedings of the 30th AAAI Conference on
Artificial Intelligence, pages 1287–1293.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-
ford, Jesse Michael Han, Jerry Tworek, Qiming

13067

Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hal-
lacy, Johannes Heidecke, Pranav Shyam, Boris
Power, Tyna Eloundou Nekoul, Girish Sastry,
Gretchen Krueger, David Schnurr, Felipe Pet-
roski Such, Kenny Hsu, Madeleine Thompson,
Tabarak Khan, Toki Sherbakov, Joanne Jang,
Peter Welinder, and Lilian Weng. 2022. Text
and code embeddings by contrastive pre-training.
CoRR, abs/2201.10005.

Ruchir Puri, David S. Kung, Geert Janssen, Wei
Zhang, Giacomo Domeniconi, Vladimir Zolo-
tov, Julian Dolby, Jie Chen, Mihir R. Choudhury,
Lindsey Decker, Veronika Thost, Luca Buratti,
Saurabh Pujar, Shyam Ramji, Ulrich Finkler, Su-
san Malaika, and Frederick Reiss. 2021. Co-
deNet: A large-scale AI for code dataset for
learning a diversity of coding tasks. In Proceed-
ings of the 35th Annual Conference on Neu-
ral Information Processing Systems Track on
Datasets and Benchmarks.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Ex-
ploring the limits of transfer learning with a uni-
fied text-to-text transformer. Journal of Machine
Learning Research, 21:140:1–140:67.

Pasquale Salza, Christoph Schwizer, Jian Gu, and
Harald C. Gall. 2023. On the effectiveness of
transfer learning for code search. IEEE Trans-
actions on Software Engineering, 49(4):1804–
1822.

Xin Wang, Yasheng Wang, Fei Mi, Pingyi Zhou,
Yao Wan, Xiao Liu, Li Li, Hao Wu, Jin Liu, and
Xin Jiang. 2021a. SynCoBERT: Syntax-guided
multi-modal contrastive pre-training for code rep-
resentation. CoRR, abs/2108.04556.

Yue Wang, Weishi Wang, Shafiq R. Joty, and
Steven C. H. Hoi. 2021b. CodeT5: Identifier-
aware unified pre-trained encoder-decoder mod-
els for code understanding and generation. In
Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing,
pages 8696–8708.

Zhen Yang, Jacky Keung, Xiao Yu, Xiaodong Gu,
Zhengyuan Wei, Xiaoxue Ma, and Miao Zhang.
2021. A multi-modal transformer-based code
summarization approach for smart contracts. In
Proceedings of the 29th IEEE/ACM International
Conference on Program Comprehension, pages
1–12.

Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and
Huan Sun. 2018. StaQC: A systematically mined
question-code dataset from stack overflow. In
Proceedings of the 2018 World Wide Web Con-
ference, pages 1693–1703.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bog-
dan Vasilescu, and Graham Neubig. 2018.
Learning to mine aligned code and natural lan-
guage pairs from stack overflow. In Proceedings
of the 15th International Conference on Mining
Software Repositories, pages 476–486.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and
Dragomir R. Radev. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-
domain semantic parsing and Text-to-SQL task.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 3911–3921.

	Introduction
	Related Work
	Code QA
	Code Language Models

	ProCQA
	Data Acquisition
	Data Cleaning
	Data Format
	Data Statistics
	Decontamination
	Comparison to previous datasets
	Tasks

	Experiments
	Settings
	Implementation Details
	Evaluation Benchmarks
	Results
	Analysis

	Conclusion
	Acknowledgements
	Bibliographical References

