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Abstract
Large language models (LLMs) have been applied to a wide range of data-to-text generation tasks, including tables,
graphs, and time-series numerical data-to-text settings. While research on generating prompts for structured data
such as tables and graphs is gaining momentum, in-depth investigations into prompting for time-series numerical
data are lacking. Therefore, this study explores various input representations, including sequences of tokens
and structured formats such as HTML, LaTeX, and Python-style codes. In our experiments, we focus on the
task of Market Comment Generation, which involves taking a numerical sequence of stock prices as input and
generating a corresponding market comment. Contrary to our expectations, the results show that prompts resembling
programming languages yield better outcomes, whereas those similar to natural languages and longer formats,
such as HTML and LaTeX, are less effective. Our findings offer insights into creating effective prompts for tasks that
generate text from numerical sequences.

Keywords: Generation, Data-to-text, Large language model

1. Introduction

Large language models (LLMs) have demonstrated
remarkable performance in various text-to-text nat-
ural language generation tasks, such as text sum-
marization (Wang et al., 2023b; Zhang et al., 2023;
Pham et al., 2023), machine translation (Wang
et al., 2023a; Karpinska and Iyyer, 2023; Vilar
et al., 2023; Agrawal et al., 2023), and dialogue
systems (Li et al., 2023; Jin et al., 2023). Although
LLMs have also been applied to data-to-text gen-
eration tasks, their application has been limited to
tasks where the input data are structured and their
components are represented as words, such as
tables (Saha et al., 2023; Zhao et al., 2023) and
structured data (Jiang et al., 2023). However, the
question of how to effectively use LLMs for text gen-
eration from numerical data remains unanswered.
This paper addresses this question through a case
study on few-shot market comment generation from
stock prices (Murakami et al., 2017; Aoki et al.,
2018; Hamazono et al., 2021). In this task, the
stock price is provided as a numerical sequence,
and the goal is to generate a market commentary
at a specific point in time. Figure 1 illustrates an
example of the market comment generation.

The key challenge in this study is to explore effec-
tive ways to represent these numerical sequences
as prompts for LLMs, because their characteristics
differ significantly from the text used to pretrain the
models. We hypothesize that better performance
could be achieved by creating prompts with charac-
teristics similar to those used in the pretraining of
LLMs. To test this hypothesis, we compare various
prompt designs with features that are both similar

Market CommentTime
Nikkei 225 begins to rebound, opening at 17,193 yen, 
up 263 yen.09:00(1)

Nikkei 225 rebounded, closing of the morning 
session at 17,243 yen, an increase of 312 yen.11:30(2)

Tokyo Stock Exchange, 2:00 p.m., up more than 500 
yen, buying continues in a wide range of stocks.14:18(3)

Nikkei 225 rebounded for the first time in 3 days, 
closing at 17,388 yen, up 457 yen.15:00(4)

(1) (2)

(3)
(4)

Morning Session

Afternoon Session

Figure 1: Example of market comment generation.
We represent the time-series numerical data using
a line graph. The objective of this task is to gener-
ate comments on the stock price movement at a
specific time.

to and different from the texts used for pretraining.
Specifically, we explore four categories of prompt

designs for numerical sequences: 1) directly pro-
viding a sequence of numbers; 2) treating the in-
put numerical sequence as a structured table and
linearizing it; 3) representing the input sequence
as programming code (e.g., Python List, Python
Dictionary, HTML, and LaTeX formats), which is a
common strategy in code generation research; and
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4) using templates to transform the input sequence
into natural language.

Contrary to our expectations, our experiments
revealed that prompts using expressions closer to
programming languages performed better, whereas
those closer to natural languages performed worse.
In addition, longer prompts, such as HTML and La-
TeX formats, were found to be less effective. These
findings suggest that converting numerical data into
prompts that closely resemble the format used dur-
ing pretraining can lead to improved performance.

The main contributions of this study are three-
fold: 1) we present the performance of zero-shot
and few-shot approaches for generating market
commentary; 2) we compare various prompting
strategies; and 3) we provide insights into the effec-
tiveness of different prompt designs for numerical
data.

2. Related Work

Existing data-to-text generation settings can be
categorized based on the input and output types.
The input types include tables (Puduppully et al.,
2019; Lebret et al., 2016), graphs (Bai et al., 2022;
Konstas et al., 2017), RDF triples (Gardent et al.,
2017), and time-series numerical sequence (Mu-
rakami et al., 2017; Chang et al., 2022; Ishigaki
et al., 2021; Kantharaj et al., 2022). From the out-
put types, existing studies generate e.g., bibliogra-
phies (Lebret et al., 2016), summaries of sport-
ing events (Puduppully et al., 2019), and commen-
taries (Ishigaki et al., 2021; Zhang et al., 2022;
Chang et al., 2022). Despite the large amount of
time-series numerical data in the real world, many
existing settings deal with tabular and graphical
data owing to public benchmark datasets such as
WebNLG, E2E, and RotoWire. Our study aims to
accelerate the research on time-series numerical
data.

Various tasks have been proposed as time-series
numerical-data-to-text settings, such as commen-
tary generation from user gameplay (Ishigaki et al.,
2021), explaining a drone’s movement from sen-
sor data (Chang et al., 2022) and explaining price
changes in a market (Murakami et al., 2017; Hama-
zono et al., 2021; Aoki et al., 2018).

Two primary model architectures prevail in data-
to-text settings: the encoder-decoder and the
decoder-only. A conventional approach is fine-
tuning pretrained encoder-decoder models, for ex-
ample, BART (Lewis et al., 2020) and T5 (Raffel
et al., 2020). Recently, interest has shifted to zero-
shot or few-shot generation using decoder-only
models such as GPTs (Brown et al., 2020). Sev-
eral prompting methods have been proposed for
the table-to-text and graph-to-text settings (Axels-
son and Skantze, 2023; Lorandi and Belz, 2023);

however, none have been proposed for the time-
series numerical-data-to-text setting.

Time-series numerical data can be converted
into tables by aligning numerical values and times-
tamps. In this case, the linearization method pro-
posed in the existing table-to-text research can be
applicable. In addition, expressions in program-
ming languages such as Python have been used
in research on automatic code generation. In this
study, we propose using time-series numerical se-
quences as such representations.

3. Task

This section describes the task settings. Figure 1
presents an example of an input and its correspond-
ing output market comments. We use two time-
series numerical sequences derived from the Nikkei
Stock Average (Nikkei225): 1) a long-term series
that records daily closing prices over the last seven
days, and 2) a short-term series that captures daily
price fluctuations at five min intervals from market
opening to closing. The system generates a market
comment on the target timestamp based on these
two inputs.

4. Methods

This section compares the prompting methods. We
assume that each number in sequences can be
aligned to a timestamp. In the example shown in
Table 4, a value 9988.05 yen in an input time-series
numerical sequence can be aligned to, for example,
the timestamp of 15:00, at which the value was
tracked.

Table 3 lists the prompt templates we use for zero-
and few-shot generations. In practice, we replace
[INPUT FORMAT(short-term)] and [INPUT
FORMAT(long-term)] with the respective input
formats in Tables 1 and 2. This prompt con-
tains two placeholders, i.e., [INPUT FORMAT]
(short-term) and [INPUT FORMAT] (long-
term), which are replaced by one of the nine
prompts listed in Tables 1 and 2. These prompts
are divided into four categories: 1) direct prompts;
2) converting the sequence into a table and then lin-
earizing it; 3) converting the sequence into expres-
sions used for computer programs; and 4) filling a
template that produces human-like language.

4.1. Direct Prompt (Baseline)

This method simply combines adjacent numerical
values with a space to represent a time-series
numerical sequence as a sequence of space-
separated numerical values.
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Direct ...9988.05 9982.06 9978.11 9972.66 9967.11, 9961.37 ...
Column Time:15:00 14:55 14:50 14:45 14:40 14:35 ...

Nikkei225:9988.05 9982.06 9978.11 9972.66 9967.11, 9961.37 ...
Row Time Nikkei225\n15:00 9988.05\n14:55 9982.06\n14:50 9978.11\n14:45 9972.66\n14:40

9967.11\n14:35 9961.37 ...

Python List Time = [..., "15:00", "14:55", "14:50", "14:45", "14:40", "14:35", ...]
Nikkei225 = [..., 9988.05, 9982.06, 9978.11, 9972.66, 9967.11, 9961.37, ...]

Python List (nested) Nikkei225 = [..., [15:00, 9988.05], [14:55, 9982.06], [14:50, 9978.11], 14:45, 9972.66],
[14:40,9967.11], [14:35,9961.37], ...]

Python Dictionary Nikkei225 = {..., "15:00":9988.05, "14:55":9982.06, "14:50":9978.11, "14:45":9972.66,
"14:40":9967.11, "14:35":9961.37, ...}

HTML Table <table><tr><th>Time</th><th>Nikkei225</th></tr>...(omitted)<tr><td>15:00</td><td>99
88.05</td></tr><tr><td>14:55</td><td>9982.06</td></tr><tr><td>14:50</td><td>9978.1
1</td></tr><tr><td>14:45</td><td>9972.66</td></tr><tr><td>14:40</td><td>9967.11</t
d></tr><tr><td>14:35</td><td>9961.37</td></tr>...</table>

LaTeX Table \begin{table}[t] \begin{tabular} & \hline Timestamp & Nikkei225 \\\hline \hline 15:00 &
9988.05 \\\hline 14:55 & 9982.06 \\\hline 14:50 & 9978.11 \\\hline 14:45 & 9972.66 \\\hline
14:40 & 9967.11 \\\hline 14:35 & 9961.37 \\\hline ... \end{tabular} \end{table}

Text (English) Nikkei225 as of 15:00 is 9982.06 yen.\nNikkei225 stock price as of 15:00 is 9988.05
yen.\nNikkei225 stock price as of 14:55 is 9982.06 yen.\nNikkei225 stock price as of 14:50
is 9978.11 yen.\nNikkei225 stock price as of 14:45 is 9972.66 yen.\nNikkei225 stock price
as of 14:40 is 9967.11 yen.\nNikkei225 stock price as of 14:35 is 9961.37 yen....(omitted)

Text (Japanese) Nikkei225 as of 15:00 is 9982.06円.\n15:00時点のNikkei225は9988.05円.\n14:55時
点 のNikkei225は9982.06円.\n14:50時 点 のNikkei225は9978.11円.\n14:45時 点

のNikkei225は9972.66円.\n14:40時 点 のNikkei225は9967.11円.\n14:35時 点

のNikkei225は9961.37円....(omitted)

Table 1: Examples of [INPUT FORMAT (short-term)]. The actual prompts are written in Japanese
except for Text (Japanese).

4.2. Linearized Table
A direct prompt does not use the information about
the alignment between a value and its timestamp.
Thus, we promptly included richer information by
adding more information about the alignments. We
convert a time-series numerical sequence into a
table as shown in Table 4. Each value in the input
sequence is aligned with the timestamp at which
the market price is recorded. The converted table
has two rows: the first row contains a sequence
of timestamps, and the second row represents a
sequence of market prices. Each row has the head-
ings “Time” and the name of the market index, i.e.,
“Nikkei225”, respectively.

Next, we apply linearization inspired by existing
table-to-text studies. In this category, we compare
two linearization methods: Column and Row as
explained below:
Column This method extracts the heading and val-

ues for each column and concatenates them
by adding spaces. This process is performed
for two columns, and the two token sequences
are combined by placing a space to obtain the
final column.

Row As with the Column method, a sequence of
space-delimited tokens is obtained for each

column, and the two series are joined by a
breakline symbol (“\n”). This includes the in-
formation that the two token sequences are
generated from different columns.

4.3. Programming Language-like
Prompts

We compare the idea of adopting the representation
methods used in programming languages, such as
Python List and Dictionary. LLMs are also pre-
trained on source code extracted from repositories
such as GitHub. The inclusion of source-code in
a prompt is common, especially in source code
generation tasks, in which high performance in both
understanding and generation has been reported.
Therefore, it is beneficial to convert an input time-
series numerical sequence into a form similar to
that of a programming language.
Python List This method first creates two python-

like lists named “Time” and “Nikkei225”. The
former list contains the timestamps as string
values, e.g., ["15:00", "14:55", "14:40", ...
"14:35"]. The latter list contains the numer-
ical stock prices as floating values [9988.05,
9982.06, ..., 9961.37]. Finally, these two lists
are concatenated by a space.
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Direct 9988.05 9982.06 9978.11 9972.66 9967.11, 9961.37 9960.20
Column Date: 7DaysAgo 6DaysAgo 5DaysAgo 4DaysAgo 3DaysAgo 2DaysAgo 1DayAgo

Nikkei225: 9988.05 9982.06 9978.11 9972.66 9967.11, 9961.37 9960.20
Row Date Nikkei225\n7DaysAgo 9988.05\n6DaysAgo 9982.06\n5DaysAgo 9978.11\n4DaysAgo

9972.66\n3DaysAgo 9967.11\n2DaysAgo 9961.37 \n1DayAgo

Python List Time = ["7DaysAgo", "6DaysAgo", "5DaysAgo", "4DaysAgo", "3DaysAgo", "2DaysAgo",
"1DayAgo"]
Nikkei225 = [9988.05, 9982.06, 9978.11, 9972.66, 9967.11, 9961.37, 9960.20]

Python List (nested) Nikkei225 = [["7DaysAgo", 9988.05], ["6DaysAgo" 9982.06], ["5DaysAgo", 9978.11],
["4DaysAgo", 9972.66], ["3DaysAgo",9967.11], ["2DaysAgo",9961.37], ...]

Python Dictionary Nikkei225 = {"7DaysAgo":9988.05, "6DaysAgo":9982.06, "5DaysAgo":9978.11,
"4DaysAgo":9972.66, "3DaysAgo":9967.11, "2DaysAgo":9961.37, ... }

HTML <table><tr><th>Date</th><th>Nikkei225</th></tr><tr><td>7DaysAgo</td><td>9988.05
</td></tr><tr><td>6DaysAgo</td><td>9982.06</td></tr><tr><td>5DaysAgo</td><td>99
78.11</td></tr><tr><td>4DaysAgo</td><td>9972.66</td></tr><tr><td>3DaysAgo</td><t
d>9967.11</td></tr><tr><td>2DaysAgo</td><td>9961.37</td>...</tr></table>

LaTeX \begin{table}[t] \begin{tabular} & \hline Timestamp & Nikkei225 \\\hline \hline 7DaysAgo &
9988.05 \\\hline 6DaysAgo & 9982.06 \\\hline 5DaysAgo & 9978.11 \\\hline 4DaysAgo &
9972.66 \\\hline 3DaysAgo & 9967.11 \\\hline 2DaysAgo & 9961.37 \\\hline ... \end{tabular}
\end{table}

Text (English) Nikkei225 as of 7 days ago was 9982.06 yen.\nNikkei225 closing stock price as of 6
days ago was 9988.05 yen.\nNikkei225 closing stock price as of 5 days ago was 9982.06
yen.\nNikkei225 closing stock price as of 4 days ago was 9978.11 yen.\nNikkei225 closing
stock price as of 3 days ago was 9972.66 yen.\nNikkei225 closing stock price as of 2 days
ago was 9967.11 yen.\nNikkei225 closing stock price as of yesterday was 9961.37 yen. ...

Text (Japanese) 7日 前 のNikkei225終 値 は9982.06円.\n6日 前 のNikkei225終 値 は9988.05円.\n5日 前
のNikkei225終値は9982.06円.\n4日前のNikkei225終値は9978.11.\n3日前のNikkei225終
値 は9972.66円.\n2日 前 のNikkei225終 値 は9967.11円.\n2日 前 のNikkei225終 値

は9961.37円... ...

Table 2: Examples of [INPUT FORMAT (long-term)]. The actual prompts are written in Japanese
except for Text (English).

Output the market comment at the current
time in the form of a <comment>market com-
ment</comment>.
###
Input:
[INPUT FORMAT (short-term)]
[INPUT FORMAT (long-term)]
Output:
Nikkei225 closes at large, rebounding yen strength
pushes mainstay stocks higher
###
Input:
[INPUT FORMAT (short-term)]
[INPUT FORMAT (long-term)]
Output:

Table 3: The template we use for the few-shot set-
ting.

Python List (nested) This prompting method first
creates a python-like list with two elements for
each timestamp and price pair, e.g., [15:00,
9988.05] means that the price is 9988.05 at
15:00. This method iteratively adds the created

Timestamp Nikkei225
15:00 9988.05
14:55 9982.06
14:50 9978.11
14:45 9972.66
14:40 9967.11
14:35 9961.37

Table 4: Example of a table converted from a nu-
merical sequence of market prices.

list into another python list Nikkei225, as listed
in Table 1.

Python Dictionary This method converts a nu-
merical sequence into a Python Dictionary for-
mat with key-value pairs, where each key rep-
resents the timestamp and each value corre-
sponds to a stock price e.g., {"15:00": 9988.05,
"14:55": 9982.06, ...}.

HTML As with the Column method, HTML
method assumes that the time-series numeri-
cal sequence is represented by a two-row table.
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0-shot 5-shot 10-shot
BLEU METEOR BERTScore BLEU METEOR BERTScore BLEU METEOR BERTScore

Direct 0.01 0.48 60.30 8.26 25.22 73.50 9.39 26.55 73.96

Column 0.38 14.06 65.33 8.30 24.99 73.35 9.49 26.00 73.65
Row 0.42 8.86 64.83 9.16 26.33 73.76 10.49 27.88 74.31

Python List 0.36 16.16 65.01 8.32 25.32 73.54 9.59 26.51 73.87
Python List (nested) 0.40 8.94 65.77 9.15 26.77 74.01 9.86 27.42 74.15
Python Dictionary 0.44 9.60 65.40 9.17 26.42 73.96 10.41 28.25 74.56
HTML Table 0.35 12.26 63.93 8.30 26.10 73.92 8.45 26.44 74.08
LaTeX Table 0.44 15.11 67.59 8.36 26.10 73.76 9.53 27.56 74.02

Text (English) 0.30 15.66 60.13 8.49 25.92 73.97 9.10 26.95 74.52
Text (Japanese 0.03 0.95 55.35 8.51 26.55 74.00 9.26 27.60 74.21

Table 5: Comparison of methods in terms of BLEU, METEOR, and BERTScore.

BLEU METEOR BERTScore

EncDec 11.41 30.90 75.94

Direct 9.39 26.55 73.96

Column 9.49 26.00 73.65
Row 10.49 27.88 74.31

Python List 9.59 26.51 73.87
Python List (nested) 9.86 27.42 74.15
Python Dictionary 10.41 28.25 74.56
HTML Table 8.45 26.44 74.08
LaTeX Table 9.53 27.56 74.02

Text (English) 9.10 26.95 74.52
Text (Japanese 9.26 27.60 74.21

Table 6: Comparison of prompts using 10-shot
and EncDec in terms of BLEU, METEOR, and
BERTScore.

This method represents a table as an HTML
code, as shown in Table 1.

LaTeX As another format for representing a table,
we also compare the Latex format.

4.4. Language Template-based Prompt
LLMs are trained mainly on natural language text on
the Web. We hypothesize that prompts resembling
natural language work well. Thus, we propose
a template-based method for converting a time-
series numerical sequence into a natural language-
like-prompt. Specifically, we use two templates:
Text (English) and Text (Japanese), as
explained below:

Text (Japanese) This setup uses the template
“AAA時点での日経平均はBBB。 ”, which
means “Nikkei225 as of AAA is BBB yen”. In
this template, AAA refers to the timestamp and
BBB is the corresponding market price. For
each time-price pair, we obtain a sentence by
filling the slots. All obtained sentences are
finally combined by a breakline symbol (“\n”).

Text (English) For many released LLMs, a large
portion of the training data for pretraining is in
English. Thus, we also compare the English
version of the prompt, i.e., “Nikkei225 as of
AAA is BBB yen”.

5. Experiments

Here, we describe our experiments; dataset, com-
parison methods, and evaluations.

5.1. Dataset
We use the dataset in Murakami et al. (2017); Aoki
et al. (2018); Hamazono et al. (2021). The dataset
contains 18,489 pairs of time-series numerical se-
quences and market comments. The time-series
numerical sequences are obtained from IBISquare1.
Stock price data are collected from December 2010
to September 2016. The comments are provided
by Nikkei Quick News2. We split this dataset into
training, validation, and testing sets, comprising
15,035, 1,759, and 1,695 data points, respectively.
For this study, we define “short-term sequence” as
the sequence of stockvalues recorded every five
minutes and “long-term sequence” as the closing
prices for the stock over the last seven days. The
Nikkei market operates in two sessions: 1) a morn-
ing session from 9:00 to 11:30, and 2) an afternoon
session from 12:30 to 15:00. Consequently, the
short-term sequence comprised a maximum of 62
prices per day, whereas the long-term sequence
comprises seven days.

5.2. Compared Methods
We compare our zero- and few-shot models with
an existing fine-tuned encoder-decoder model (Mu-
rakami et al., 2017).

Existing Encoder-decoder Model (EncDec)

We use an extended implementation of an existing
model by Murakami et al. (2017). The original im-
plementation directly encodes long- and short-term
time-series numerical sequences using multilayer
perceptrons (MLPs), and then, the encoded vectors

1http://www.ibi-square.jp/index.html
2"We have released the source code for pre-

processing at https://github.com/aistairc/
market-reporter.

http://www.ibi-square.jp/index.html
https://github.com/aistairc/market-reporter
https://github.com/aistairc/market-reporter
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are fed into an LSTM-based encoder-decoder. Our
extended implementation uses a pretrained BART 3

for the encoder-decoder, which has been used
more frequently in recent data-to-text settings. Our
implementation uses multilayer perceptrons (MLPs)
to convert both short-term and long-term input vec-
tors into fixed-size vectors of size 768. This size
is selected because the embedding layer of the
BART is 768. Finally, BART then receives the two
vectors and outputs the comments. This model is
fine-tuned on the abovementioned dataset to mini-
mize the cross-entropy loss.

Proposed Zero- and Few-shot Models

We use an instruct-tuned GPT (Brown et al., 2020)4.
In the zero-shot setting, the prompt shown in Ta-
ble 3 is used as is. In the few-shot setting, we
append a reference comment to the prompt after
Output: in the prompt. We compare up to 10 shots
in our experiments. We set the maximum num-
ber to 10 owing to the length limits of the GPT.
In preliminary experiments, we found that the per-
formance varied significantly depending on the in-
stances used for the shots. Therefore, we randomly
select the instances for shots, repeat the experi-
ments 10 times, and report the averaged scores.

5.3. Automatic and Human Evaluations
In this subsection, we describe the evaluation.

5.3.1. Metrics for Automatic Evaluation

For the scores, we adopt the commonly used BLEU
and F1-score from the BERTScore. BLEU has
been employed in many existing studies; however,
further evaluation is required because it considers
only surface words. Therefore, BERTScore, which
uses neural network embedding to capture seman-
tic similarities, is employed.

Such automatic evaluation metrics only capture
the similarity between automatically generated and
reference comments but do not capture the correct-
ness of the generated text.

5.3.2. Evaluation by Human Judges

Therefore, we also evaluate the generated com-
ments by human judges. For each comparison
method, we present 30 comments of time-series nu-
merical data to a human evaluator, who is a native
Japanese speaker, and ask the evaluator to evalu-
ate whether the output text is consistent or incon-
sistent with the reference. The evaluator can also
refer to the short-term and long-term sequences, if

3https://huggingface.co/stockmark/
bart-base-japanese-news

4In particular, we use gpt-3.5-turbo in OpenAI’s API.

needed. We report the number of consistent and
inconsistent results for each method.

6. Results and Discussions

The results are presented in the following section.

6.1. Automatic Evaluation
Figure 2 shows the changes in BLEU scores with
the number of shots. The detailed scores of BLEU,
METEOR, and BERTScore are shown in Table 6.
Overall, the scores generally increase with the num-
ber of shots, except for the HTML prompt, as shown
in the bottom-left graph in Figure 2. All methods
on the zero-shot setting achieve very low scores
in terms of BLEU, METEOR, and BERTScore, im-
plying that the multitasking capability of the LLM is
not sufficient for the market comment generation.
Direct prompt does not work well for this task,
and all other prompts outperform it.

A further look at the scores for prompts other
than the Direct prompt yielded three find-
ings: 1) Python Dictionary, Python List
(nested), and Row work better than the other
prompts, 2) Text unexpectedly works worse; and
3) among programming language-based prompts,
HTML performs the worst. Each finding is explained
in detail below.

Finding 1: Python Dictionary, Python
List (nested), and Row perform better
Table 6 lists the BLEU, METEOR, and BERTScores
for each prompt in all categories. Owing to the
space limitation, we show the values obtained
in the setting of 0, 5, and 10 shots. Overall,
we observe that there are three best-performing
models among all models: Python Dictionary,
Python List (nested), and Row. These best-
performing prompts share common characteristics:
1) they have similar characteristics to the data used
for pretraining, and 2) the timestamps and market
prices are written closely to each other in a prompt.
Python codes are also used for the pretraining of
the LLMs, thus, better results may be reasonable.
Row also achieves better results because this ap-
proach is used for dataset creation for pretraining
to linearize HTML tables on the web.

Furthermore, the timestamps and market prices
are written closely to each other, for exam-
ple, [15:00, 9988.05] in the Python List
(nested) and 15:00":9988.05 in the Python
Dictionary. Other programming language-like
prompts, such as Python List, HTML, and
LaTeX, with lower performance write the times-
tamps and the market prices far away from each
other. One possible reason for this is that GPT

https://huggingface.co/stockmark/bart-base-japanese-news
https://huggingface.co/stockmark/bart-base-japanese-news
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Figure 2: BLEU scores of different prompts on different numbers of shots.
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was able to accurately capture the correspondence
between the prices and a time.

Finding 2: Text unexpectedly performs
worse
We hypothesized that Text (English) and
Text (Japanese) would perform better; how-
ever, Table 3 reveals that these methods per-
form worse than the best-performing programming
language-like prompts, that is, Python Dictio-
nary and Python List (nested). Specifi-
cally, the performances of Text (English), rep-

resented by a red line, are lower than those of other
prompts, that is, Row and Python Dictionary,
which are defined by orange and green lines, re-
spectively, except for 7-shot setting for the Row
prompt.

One possible reason for this lower performance
is that the template generates repetition of the same
expression. For example, the English template gen-
erates “Nikkei225 as of 15:00 is 9982.06 yen” and
repeatedly generates similar expressions. Such
text is unnatural and may not be included in the
web texts used for pretraining.

Interestingly, the bottom left graph in Table 2
shows that Text (English) performs better
than Text (Japanese) although the task is to
generate a comment in Japanese. A possible rea-
son could be that English texts are used more fre-
quently during pretraining.

Finding 3: Among programming
language-based prompts, HTML and
LaTeX perform worse

The bottom left graph in Figure 2 shows each
model’s BLEU scores in the program language-
like prompts category. Among the prompts in this
category, HTML and LaTeX perform worse than
other prompts. In particular, the performance of
HTML has not improved after 5-shot and has al-
ready converged, whereas the performances of the
other prompts are still improving.



13197

Reference 日経平均、続伸前引けは421円高の１万6349円
(The Nikkei 225 extended its gains, closing up 421 yen at 16,349 at the midday break)

EncDec 東証前引け、反落米株安や円安一服で利益確定売りも
(Tokyo stocks fall at midday close, retreating on Wall Street declines and a pause in yen
weakening, with profit-taking also in play.)

Direct 日経平均、反落前引けは80円安の１万6349円
(The Nikkei 225 reversed course, falling 80 yen to close at 16,349 at the midday break.)

Column 日経平均、反落前引けは421円安の１万6349円
(The Nikkei 225 reversed course, falling 421 yen to close at 16,349 at the midday break.)

Row 日経平均、反発前引けは421円高の１万6349円
(The Nikkei 225 rebounded, closing up 421 yen at 16,349 at the midday break.)

Python List 日経平均、反落前引けは421円安の１万6349円
(The Nikkei 225 reversed course, falling 421 yen to close at 16,349 at the midday break.)

Python List (nested) 日経平均、大幅続落前引けは421円安の１万6349円
(The Nikkei 225 continued to drop sharply, falling 421 yen to close at 16,349 at the midday
break.)

Python Dictionary 日経平均、反落前引けは421円安の１万6349円
(The Nikkei 225 reversed course, falling 421 yen to close at 16,349 at the midday break.)

HTML 日経平均、続伸前引けは421円高の１万6349円
(The Nikkei 225 extended its gains, closing up 421 yen at 16,349 at the midday break.)

LaTeX 日経平均、続伸前引けは200円超の１万6349円
(The Nikkei 225 extended its gains, closing up 200 yen at 16,349 at the midday break.)

Text (English) 日経平均、反落前引けは121円安の１万6349円
(The Nikkei 225 reversed course, falling 121 yen to close at 16,349 at the midday break.)

Text (Japanese) 日経平均、反落前引けは421円安の１万6349円
(The Nikkei 225 reversed course, falling 421 yen to close at 16,349 at the midday break.)

Table 7: Comparison of text output by each method, with ’movement terms’ highlighted in red in the table.

# Consistent # Inconsistent

EncDec 7 23
Direct 8 22
Row 14 16
Python Dictionary 12 18
Text (English) 12 18

Table 8: Results of human evaluation on EncDec,
Direct, Row, Python Dictionary, and Text English.

According to the statistics provided by GitHub5,
one of the pretraining sources, the proportion of
HTML formatted files is less than 0.1%. One pos-
sible reason may be the small percentage of data
used for the pretraining. Furthermore, the HTML
prompt is inherently longer than the others, which
makes reasoning using by the GPT difficult.

6.2. Evaluation by Human Judges
We conducted human evaluations of the encoder-
decoder method and the method with the high-
est BLEU score for each category: Direct, Row,
Python Dictionary, and Text (English).

Table 8 presents the results of the human evalu-
ation. Across all methods, we discovered that the
evaluator judges the generated comments more

5https://madnight.github.io/githut

frequently than comments consistent with the ref-
erence comments. This includes many cases in
which the reference mentions that the stock price
is rising, but the generated comment states that it
is falling, or vice versa. Table 7 shows the output of
each method. In this table, the ‘movement term’, re-
ferring to the stock price movement such as ‘rising’
or ‘falling’, is highlighted in red.

Interestingly, although the fine-tuned encoder-
decoder method achieved high scores in the au-
tomatic evaluation, it received lower ratings in the
human evaluation. By contrast, the prompt-based
method yielded comments that were more consis-
tent with the reference comments. We hypothe-
size that this discrepancy arises because the fine-
tuned comments are stylistically similar to the ref-
erences but do not accurately capture numerical
movements. In contrast, the prompt-based method
excels in understanding numerical trends but is
limited in covering all text styles, given its reliance
on at most ten examples as shots. To verify this
hypothesis, a separate evaluation focusing on the
accuracy of references to text style and numerical
movements is necessary, which indicates a poten-
tial direction for future research.

https://madnight.github.io/githut
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7. Conclusion

In this study, we address the use of LLMs for text
generation from numerical sequences through the
generation of market comments. We approached
the problem by converting numerical sequences
into ten different formats across four categories,
and conducted experiments to compare these meth-
ods with the existing encoder-decoder approach
based on BART. Our results indicated that prompts
based on programming languages yielded strong
performance, whereas textual prompts and those
based on HTML and LaTeX tables, were less effec-
tive. Furthermore, a human evaluation assessing
the consistency with reference revealed that the
prompt-based methods outperformed the encoder-
decoder method. This highlights the potential of
prompt-based approaches to generate market com-
ment and similar data-to-text tasks.

Although our research focused on market com-
ments as a representative task with numerical se-
quence inputs, many other tasks share comparable
characteristics. In future work, it will be valuable to
conduct experiments on datasets with other types
of numerical sequence inputs to further validate
and extend our findings.
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