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Abstract
Structured pruning is an effective technique for compressing pre-trained language models (PLMs), reducing model
size and improving inference speed for efficient deployment. However, most of existing pruning algorithms require
retraining, leading to additional computational overhead. While some retraining-free approaches have been proposed
for classification tasks, they still require a fully fine-tuned model for the task, and may cause catastrophic performance
degradation on generative tasks. To address these challenges, we propose P-pruning (pre-pruning), an innovative
task-specific compression framework. P-pruning prunes redundant modules of PLMs before fine-tuning, reducing the
costs associated with fine-tuning. We also introduce a pruning algorithm for this framework, which includes two
techniques: (i) module clustering, which clusters the outputs of all heads and neurons based on the task input; and
(ii) centroid selection, which identifies the most salient element in each cluster and prunes the others. We apply our
method to BERT and GPT-2 and evaluate its effectiveness on GLUE, SQuAD, WikiText-2, WikiText-103, and PTB
datasets. Experimental results demonstrate that our approach achieves higher performance in both classification
and generative tasks, while also reducing the time required for fine-tuning. Our code is publically released at
https://github.com/applewpj/P-pruning.
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1. Introduction

In recent years, pre-trained language models
(PLMs) have attained significant achievement on
various downstream tasks (Frankle and Carbin,
2018; Zhou et al., 2023). However, despite the
substantial development, the deployment of PLMs
leads to high parameter counts and significant com-
putational overhead, which greatly limits the ap-
plications in practice. To tackle this challenge, a
variety of task-specific compression approaches
have emerged to reduce the model size and accel-
erate the inference process (Gupta and Agrawal,
2022). Structured pruning is one of the most effec-
tive methodologies among various compression
approaches (Xia et al., 2022; Tao et al., 2023),
especially for the principal counterpart of PLMs,
transformers (Vaswani et al., 2017), which is be-
coming commonly used in many domains including
computer vision (Touvron et al., 2021) and speech
recognition (Baevski et al., 2020; Hsu et al., 2021).

While most of the existing works for task-specific
model compression on pruning transformers of
PLMs substantially reduce the model size and in-
ference latency (Lagunas et al., 2021; Xia et al.,
2022), these approaches are still restricted when
employed in practice as they require retraining,
which introduces extra computational overhead and
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additional engineering efforts such as hyperparam-
eter search and training code rewriting.

For this reason, Kwon et al. (2022) and Nova
et al. (2023) proposed a pruning framework for
the fine-tuned model, which avoids expensive re-
training and retains the comparable performance
on classification tasks. However, although such
works avoid additional retraining and therefore re-
duce the pruning time, there are still two problems.
(i) Firstly, considering the time costs required for
a pruned task-specific model is composed of fine-
tuning and pruning, such methods still require a fully
fine-tuned model to prune, which does not bring
any reduction in time consumption for fine-tuning.
(ii) Furthermore, they only conduct experiments for
encoder-based models (e.g. BERT (Devlin et al.,
2018)) on sequence classification and question-
answering tasks, in which the results are easier
to reconstruct compared to decoder-based models
(e.g. GPT-2 (Radford et al., 2019)) and generative
tasks. Our extended experiments also demonstrate
that such works may exhibit poor performance on
generative tasks.

To address the mentioned issues caused by tra-
ditional retraining-free pruning methods, this paper
proposes P-pruning (Pre-pruning), a novel frame-
work for compressing task-specific models. P-
pruning prunes redundant modules before fine-
tuning for the downstream task, reducing the over-
head of fine-tuning, especially at high compres-
sion rates. Despite compression, P-pruning re-

https://github.com/applewpj/P-pruning
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Method Re-training free Efficient pruning Efficient tuning Generative tasks

DynaBERT (Hou et al., 2020) % % % N/A
EBERT (Liu et al., 2021) % % % N/A

Mask-Tuning (Kwon et al., 2022) ! ! % %

KCM (Nova et al., 2023) ! ! % %

Ours ! ! ! !

Table 1: Comparison between various structured pruning methods for PLMs with respect to different
aspects. % and! represent whether the method had the specific feature or not. N/A means there have
not been extensive experiments to prove the methods are applicable.

tains comparable performance on generative tasks.
The main challenge of P-pruning is identifying the
salient modules for a specific task. To tackle this,
we propose Dual-CP (Dual Clustering Pruning for
heads and neurons), an efficient and retraining-free
unsupervised pruning algorithm. Dual-CP consists
of two procedures: module clustering, which clus-
ters the modules (e.g. attention heads) of the pre-
trained model, and centroid selection, which retains
the salient element of each cluster and prunes the
others. The key difference between this approach
and task-agnostic model compression is that the
informative sub-network of the pre-trained model is
derived from the dataset of the specific task, mak-
ing it adaptive for different tasks. It is also noted
that P-pruning can be combined with any other
unsupervised task-specific compression methods.
Table 1 summarizes the comparison between ex-
isting representative structured pruning methods
and our proposed approach for various main fea-
tures focused on model compression. Our method
achieves all the listed features, making it highly ef-
fective for compressing large pre-trained models
for a specific task.

In summary, our contributions are three-fold:
• Framework We propose P-pruning, a novel

task-specific compression framework, which
can be combined with any unsupervised com-
pression methods. Its goal is to prune redun-
dant modules for the specific task before fine-
tuning, resulting in significant time savings dur-
ing the fine-tuning process.

• Algorithm Within the P-pruning frame-
work, we propose Dual-CP, an efficient
and retraining-free algorithm to tackle the
challenge of P-pruning: identifying the salient
sub-network in a given pre-trained model and
task. Specifically, our Dual-CP involves two
steps: (i) module clustering, which clusters the
outputs of attention heads and neurons based
on the task input, and (ii) centroid selection,
which identifies the most important element
to represent the entire cluster and prunes the
others.

• Performance Our evaluation results on clas-
sification tasks, such as GLUE and SQuAD

benchmarks, demonstrate lower performance
degradation and significantly reduced fine-
tuning time compared to traditional retraining-
free pruning methods. Additionally, we empiri-
cally show that our method achieves more sta-
ble and satisfactory performance for language
modeling tasks on WikiText-2, WikiText-103,
and PTB datasets.

2. Related Works

2.1. Compression for PLMs
In recent years, multiple compression approaches
have been proposed to reduce the memory footprint
and accelerate the inference process. They are
broadly categorized with different aspects as: (i)
quantization (Zafrir et al., 2019; Shen et al., 2020;
Frantar et al., 2022), (ii) low-rank approximation
(Cahyawijaya, 2021; Hsu et al., 2022; Yu and Wu,
2023), (iii) efficient architecture design (Wang et al.,
2020; Sun et al., 2020; Lan et al., 2019; Kitaev et al.,
2020), (iv) knowledge distillation (Sun et al., 2019;
Sanh et al., 2019; Jiao et al., 2019) and (v) pruning
(Sanh et al., 2020; Kurtic et al., 2022). All of the
above methods are compatible to achieve a higher
compression rate as they address different kinds
of redundancy. In this paper, we focus on pruning
especially structured pruning, because structured
pruning is friendly to hardware acceleration (Neill,
2020) and is able to compress the model without
retraining.

2.2. Structured Pruning for Transformers
Transformer (Devlin et al., 2018) is a principal com-
ponent of PLMs and contributes to the majority
of model parameters and computation overhead.
Therefore, in this paper we chose it as the target
for pruning. Existing structured pruning algorithms
can be divided into two groups: retraining-based
(Hou et al., 2020; Liu et al., 2021; Wang et al., 2019)
and retraining-free approaches (Kwon et al., 2022;
Nova et al., 2023). Earlier retraining-based meth-
ods generate highly sparse but accurate models.
However, they require careful retraining to ensure
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Figure 1: Framework overview of the proposed method. Left: the compression pipeline of P-pruning,
which prunes the pre-trained model for efficient fine-tuning. Middle: the procedures of module clustering
for attention heads and neurons respectively, in which we conduct dimension mapping before head
clustering. Right: centroid selection that keeps the heads and neurons that contribute most and prune
others.

the reconstruction of the output and maintain perfor-
mance, which leads to a tenfold increase in training
time (Xia et al., 2022; Lagunas et al., 2021) and
introduces additional computational overhead and
engineering efforts (e.g. hyperparameter search).
By contrast, retraining-free algorithms address this
problem by directly pruning the fine-tuned model
without any retraining.

2.3. Retraining-free Pruning Methods
(Kwon et al., 2022) first utilized the Fisher informa-
tion to prune the elements and regain performance
through Mask-Tuning. However, this approach still
necessitates the use of task labels to conduct the
pruning process, which could pose challenges in
scenarios where labeled data is unavailable. In re-
sponse to this issue, (Nova et al., 2023) introduced
KCM, an unsupervised pruning metric designed for
retraining-free pruning. However, these algorithms
still require a fully fine-tuned model to identify and
remove redundant modules. It is worth noting that
the fine-tuned model itself is more redundant and
easier to compress (Sajjad et al., 2022), making this
process somewhat wasteful in terms of fine-tuning
for the modules that will eventually be pruned.

To prune the needless modules before fine-
tuning, Sajjad et al. (2023) conducts experiments
to show that a number of layers can be pruned with-
out retraining prior to fine-tuning for tasks, without
experiencing significant performance degradation.
However, this pruning technique only operates at
the layer level, which may not adequately meet
computational constraints. Additionally, it does not
provide guidance on determining the optimal num-
ber of layers to prune before fine-tuning while still
maintaining an acceptable level of performance
degradation. In this paper, we implement pruning
in a more fine-grained manner, offering guidance

on identifying the redundant heads and neurons
specific to tasks.

3. Methodology

3.1. Preliminaries

Transformer Encoder Our method is both appli-
cable of encoder- and decoder-based PLMs, but
as most existing efficient structured pruning ap-
proaches focus on encoder-based models (e.g.
BERT) which is a stack of transformer (Vaswani
et al., 2017) encoder blocks, we only introduce the
encoder architecture which shares a similar struc-
ture with the decoder. A transformer encoder block
consists of a multi-head attention (MHA) layer fol-
lowed by a point-wise feed-forward network (FFN).

For a given input X ∈ RT×d, where T and d
represent the sequence length and the embed-
ding dimension respectively, the output of the
MHA layer and FFN layer can be formulated as
LayerNorm(X + Sub(X)), where Sub(X) is the
sublayer function either to be MHA(X) or FFN(X).
To be specific, we define HA ≜ Attn(X), where
Attn(X) are the hidden features calculated by the
query, key, value matrices. MHA(X) with H atten-
tion heads is calculated as

MHA(X) = HAWA + bA =
H∑
i=1

HA[i]WA[i] + bA (1)

where bA ∈ Rd is a bias. In addition, HA[i] ∈
RT×dh and WA[i] ∈ Rdh×d are the hidden fea-
tures and output weight matrix for i-th head with
dh = d/H respectively. Similarly, we define HF ≜
σ(WX+b), where σ(.) denotes the activation func-
tion, typically GELU (Hendrycks and Gimpel, 2016)
in BERT, W ∈ Rd×N and b ∈ RN are the input
weight and bias of FFN respectively. FFN(X) with
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Algorithm 1 Dual-CP.
Input: Pre-trained modelM, FLOPs constraint C, a task dataset D, constraint ratio λ and step δ.
Output: Mask variables mA and mH .
1: Collect randomly sampled hidden inputs HA

(l),H
F
(l) for each layer (l).

2: Initialize CA and CF to satisfy CF = λCA and C = CA + CF
3: T F , T A = MC(HF , HA) ▷ Apply module clustering, see Algorithm 2.
4: for clustering tree of heads and neurons do
5: Initialize t as 0.
6: repeat
7: t← t+ δ ▷ Determine the threshold to cluster elements.
8: Derive KF

(l) or KA
(l) clusters with t for T F or T A.

9: until The FLOPs constraint CA or CF is satisfied.
10: end for
11: Initialize mH and mA as 0.
12: for (l) in layers ofM do
13: Select the elements with maximum average activations in each cluster.
14: Set the corresponding mask variable (e.g. mF

(l)[i] for i-th neuron) to be 1, while others remain as 0.
15: end for

N intermediate neurons is obtained by

FFN(X) = HFWF + bF =
N∑
j=1

HF [j]WF [j] + bF (2)

where HF [j] ∈ RT×1, WF [j] ∈ R1×d are the acti-
vations and the output matrix of j-th neuron with
bias bF ∈ Rd.

Problem Definition Given a PLMM with inher-
ent computational complexity I and constraint C (in
which we utilize floating point operations (FLOPs)
to serve as the computational complexity metric),
the pruning task is to find the most informative sub-
network S which satisfies FLOPs(S) < C to retain
the performance after fine-tuning to specific tasks,
in which C/I ranges from 0 to 1. To formalize this,
we introduce two masks mA ∈ RH and mF ∈ RN

for the outputs of attention heads and FFN neurons
respectively, and the pruned MHA and FFN layers
of S are calculated as

MHA(X;mA) =

H∑
i=1

mA[i]HA[i]WA[i] + bA

FFN(X;mF ) =

N∑
j=1

mF [j]HF [j]WF [j] + bF ,

(3)

where mA[i],mF [j] ∈ {0, 1}. Originally, the mask
variables are initialized to 1, which makes the out-
put of S equal toM. After pruning, the heads or
neurons whose mask values remain as 1 are con-
sidered to be salient and reserved, while others are
pruned. It is noticed that the mask variables are
multiplied with the output matrices (e.g. mF ◦WF )
after pruning, where ◦ denotes the Hardmard prod-
uct. Therefore, they do not bring extra parameters
and FLOPs.

3.2. Framework Overview
Compared to traditional task-specific compression,
we start pruning from a pre-trained model instead
of a fully fine-tuned model, where the latter is
more redundant and easier for compression (Saj-
jad et al., 2022) but requires full fine-tuning before
such lightweight operation. Therefore, we propose
P-pruning to combine efficient fine-tuning with effi-
cient compression, which is shown in the left part
of Figure 1.

Existing pruning approaches (Kwon et al., 2022;
Nova et al., 2023) require a fine-tuned model with a
prediction head for the downstream task. With the
added prediction head, (Kwon et al., 2022) uses
gradients from the labeled dataset Dl to find the
most important heads and neurons. However, this
approach can not be applied for pre-trained models
without a prediction head. In contrast, Our method
prunes using the unlabeled dataset D. Unlike KCM
(Nova et al., 2023), which only prunes FFN neurons,
our method prunes both attention heads and FFN
neurons together for better compression.

Given a pre-trained model, FLOPs constraint,
and sampled dataset for a downstream task, the
main challenge of structured pruning before fine-
tuning is to identify and remove redundant modules
while preserving the key ones. To tackle this prob-
lem, we propose Dual-CP as shown in Algorithm 1,
which consists of two procedures: (i) module clus-
tering to group similar activations from attention
heads and FFN neurons, and (ii) centroid selec-
tion to choose the most important element in each
cluster and prune the rest.

3.3. Module Clustering
For a sampled dataset D with s tokens for a spe-
cific downstream task, we first conduct the forward
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Algorithm 2 Module Clustering (MC).
Input: Hidden inputs HF and HA.
Output: Clustering trees T F and T A.
1: for (l) in layers ofM do
2: for each two neurons i and j do
3: CF

(l)[i, j] = |sim(HF
(l)[i],H

F
(l)[j])|

4: end for
5: for each two heads i and j do
6: for each two dimensions m and n do
7: Cmap

(l),i,j [m,n] = |sim(HA
(l)[i,m],HA

(l)[j, n])|
8: end for
9: CA

(l)[i, j] =
1
H

∑
Map(Cmap

(l),i,j)

10: end for
11: DF

(l) = J− |CF
(l)|

12: DA
(l) = J−CA

(l)

13: Apply agglomerative hierarchical clustering
to DA

(l) and DF
(l) to obtain the T F and T A.

14: end for

pass for the pre-trained language model M with
L transformer blocks, LH attention heads and LN
FFN neurons, and collect the hidden activations
for each head and neuron as Equations (1) and
(2). To reduce the computaion costs, we only ran-
domly sample T tokens to apply clustering, that is,
HA

(l) ∈ RT×d and HF
(l) ∈ RT×d for l-th layer.

As the pre-trained model is stacked by an em-
bedding layer and a number of transformer blocks,
in which the embedding layer is a look-up opera-
tion, and hence does not bring extra FLOPs, the
total FLOPs are only derived by MHA and FFN
layers, denoted as IA, CA and IF , CF . C is formu-
lated as I = IA + IF and C = CA + CF . As we
prune attention heads and FFN neurons simultane-
ously, which has different sensitivity to re-training
free pruning (which is observed in the experimental
results of (Kwon et al., 2022)), we assign different
FLOPs constraint with them respectively and apply
λ to balance the pruned FLOPs of MHA and FFN
layers, which satisfies

IF − CF = λ(IA − CA). (4)
Afterwards, we cluster neurons and attention heads
respectively, which is summarized in Algorithm 2.

Neuron Clustering Clustering is applied be-
tween FFN neurons or attention heads for each
layer separately, which is illustrated in the middle
and right part of Figure 1. To cluster the similar FFN
neurons, for layer (l), we first calculate the absolu-
tized cosine similarity of the activations HF

(l)[i] and
HF

(l)[j] between each two neurons i and j, which
is formulated as

CF
(l)[i, j] = |sim(HF

(l)[i],H
F
(l)[j])|, (5)

where i, j ∈ {1, ..., df}, and thereby we obtain the
similarity matrix CF

(l) ∈ Rdf×df . Each element in

the similarity matrix ranges from 0 to 1, and the
closer the element value is to 1, the more similar the
corresponding two neurons are, which represents
that they encode highly correlated information and
thus are redundant.

To evaluate the most correlated neuron groups,
we convert the similarity matrix into a distance ma-
trix DF

(l) by
DF

(l) = J− |CF
(l)|, (6)

where J denotes an all-1 matrix. As we take the
absolutized value of each element in CF

(l), we avoid
the possibility of a negative distance value.

After that, we use agglomerative hierarchical
clustering to cluster the distance matrix DF

(l) of each
layer. We apply average linkage to minimize the
average distance between data points in a pair of
clusters. The maximum distance between neurons
in the same cluster is controlled by a threshold t
ranging from 0 to 1. A high threshold results in few
but large clusters, while a low threshold creates nu-
merous small clusters. We keep only one neuron
for each cluster and remove redundant ones. The
value of t is automatically set to satisfy the FLOPs
constraint CF . It starts at 0 and increases linearly
up to 1 with a step δ until the remaining neurons
in L layers meet the requirement. So far, we ob-
tain KF

(l) clusters for the l-th layer, with cluster ki
containing neurons where i ∈ {1, ...,KF

(l)}.

Head Clustering For the attention architecture,
instead of pruning one neuron each time, we prune
a whole attention head, which brings a larger granu-
larity of pruning. Different from clustering FFN neu-
rons where each neuron has only one dimension,
an attention head contains dh dimensions. Thus,
to measure the correlation of each two heads, we
first map dimensions between them by calculating
the cosine similarity of the internal dimension as

Cmap
(l),i,j [m,n] = |sim(HA

(l)[i,m],HA
(l)[j, n])|, (7)

which indicates the similarity of m-th dimension
of i-th head and n-th dimension of j-th head, and
i, j ∈ {1, ...,H}, m,n ∈ {1, ..., dh} respectively. For
each two heads, we first map the dimensions with
the highest correlation as a pair, and then map the
others in the same manner.

After dimension mapping, the similarity values
of mapped dimensions are averaged and serve as
the correlation CA

(l)[i, j] of i-th and j-th attention
heads, which is formulated as

CA
(l)[i, j] =

1

H

∑
Map(Cmap

(l),i,j), (8)

where Map(.) is a mapping function to map the
head dimensions in descending order of similarity
based on Cmap

(l),i,j , and yields a RH similarity vector
for heads i and j.
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Figure 2: Accuracy of our pruning framework applied to BERTBASE on GLUE and SQuAD benchmarks,
against other retraining-free methods, Mask-Tuning and KCM with different FLOPs constraints ranging
from 90% to 20% (i.e., 10%~80% FLOPs are reduced). The black dashed line indicates the performance
of BERTBASE. Our method outperforms other competitors in almost all settings.

The obtained cosine similarity matrix CA
(l) ∈

RH×H is also converted to a distance matrix DA
(l)

in a similar manner with Equation (6) as

DA
(l) = J−CA

(l). (9)

The subsequent clustering operations are mostly
similar to the ones for FFN neurons as described
above and obtain KA

(l) clusters for each layer. The
only difference is that attention heads clustering is
supposed to satisfy the attention FLOPs constraint
CA instead of CF . It is noted that different layers
share the same threshold t for pruning heads or
neurons respectively, which therefore brings un-
equal sparsity for each layer.

3.4. Centroid Selection

As mentioned earlier, we derive clusters KA
(l) and

KF
(l) for the attention heads and FFN neurons of

the l-th layer, respectively. Each cluster contains ki
elements, where i ∈ {1, ...,KA

(l) or i ∈ {1, ...,KF
(l)}.

The challenge is to determine the centroid of each
cluster that represents the entire cluster and prune
the other elements. Our approach is to select the
element with the highest average absolute activa-
tions as the centroid, as larger-scale elements have
a greater impact on the result. We also have at-
tempted to select the cluster center as the centroid,
which has the lowest average distance to other el-
ements in the cluster, but this did not result in a
significant performance improvement.

4. Experiments

Setup We implement our framework with Py-
Torch1 using the HuggingFace Transformers li-
brary2 and download the weights of the pre-trained
models in Transformers. For clustering, we use the
Scipy library3. We evaluate the effectiveness of
our method for BERTBASE (Devlin et al., 2018) and
GPT-2 (Radford et al., 2019), which are encoder-
based and decoder-based PLMs respectively.

Baselines We compare the performance of our
algorithm with both retraining-based structured
pruning methods, such as DynaBERT (Hou et al.,
2020) and EBERT (Liu et al., 2021), and other
retraining-free approaches, including Mask-Tuning
(Kwon et al., 2022) and KCM (Nova et al., 2023).
Both Mask-Tuning and KCM are post-pruning meth-
ods that require a fully fine-tuned model for prun-
ing. The difference between them is that Mask-
Tuning requires labels of the task dataset, while it
is not necessary for KCM. Since there is no KCM
implementation that is publicly available, we imple-
mented it ourselves.

Datasets For BERTBASE, we conduct experi-
ments on GLUE (Wang et al., 2018), SQuAD1.1

(Rajpurkar et al., 2016), and SQuAD2.0 (Rajpurkar
et al., 2018) benchmarks under a wide range of

1https://github.com/pytorch
2https://github.com/huggingface/

transformers
3https://github.com/scipy/scipy

https://github.com/pytorch
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/scipy/scipy
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Figure 3: Performance of our method applied to GPT-2 on WikiText-2, WikiText-103 and PTB datasets
against Mask-Tuning and KCM with different FLOPs constraints. The black dashed line indicates the
performance of GPT-2. The blue and grey dashed lines represent a catastrophic performance degradation
out-of-range, so we scale it to 100.

FLOPs constraints, which range from 0.9 to 0.1 with
a step 0.1. Among the GLUE tasks, we select MNLI,
QQP, QNLI, SST-2, STS-B, and MRPC tasks as the
result of their stable performance. For GPT-2, we
evaluate the performance after compression on the
language modeling task with WikiText-2, WIkiText-
103 (Merity et al., 2016), and PTB (Mikolov and
Zweig, 2012) datasets. These datasets vary in size
and contents. It worth noting that we reported the
Spearman correlation for the STS-B task, accuracy
for the other GLUE tasks, and perplexity for the
language modeling task.

Hyperparameters For our proposed method, we
randomly sample 3K raw data from the training
set of the target task and set T as 200 to conduct
module clustering. We set λ = 5.0 as the FFN mod-
ules account for more parameters and computation
overhead, and δ = 0.001 to obtain a more accurate
threshold to apply clustering. When fine-tuning
pruned BERT for the GLUE benchmark, we follow
the setting of the BERT paper (Devlin et al., 2018),
while for SQuAD datasets, the batch size is fixed to
12, and other settings keep the settings for GLUE.
The settings of GPT-2 for language modeling task
are fine-tuning 10, 8, 20 epochs with batch size 32
and learning rate 1e-4, 5e-4, 1e-4 on WikiText-2,
WikiText-103, and PTB datasets respectively. For
fine-tuning, we evaluate and save the best check-
point at the end of each epoch. The results reported
for Mask-Tuning and KCM are averaged across 10
runs with different random seeds.

4.1. Results on Classification Tasks
We first compare the accuracy drop of compressed
BERTBASE generated by our approach on classifi-
cation tasks against prior retraining-free structured
pruning methods in Table 2 as previous works do.
As we vary the FLOPs constraint from 90% to 20%,
i.e. reducing 10% to 80% of the original FLOPs, it
is clear that our method (red line) outperforms other
competitors for the majority of tasks and FLOPs
constraints, demonstrating the superiority of our
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Figure 4: Comparison of time consumption to ob-
tain a compressed fine-tuned model for MNLI task
under 60% FLOPs constraint, which is divided into
pruning time (left) and fine-tuning time (right).

algorithm. This distinction is particularly notable
when the FLOPs constraint is below 30% for all
tasks. In such cases, many heads and neurons
(especially salient ones) are pruned to reconstruct
the output for Mask-Tuning and KCM, resulting in
significant performance degradation.

4.2. Results on Generative Tasks
Figure 3 compares the accuracy of language mod-
eling tasks for GPT-2 compressed by Mask-Tuning,
KCM, and our method. To the best of our knowl-
edge, previous methods have not conducted exper-
iments on generative tasks without retraining. Gen-
erative tasks are more sensitive to model changes,
making reconstruction of the output harder com-
pared to classification tasks. It shows that our
method outperforms all competitors, especially with
a strict FLOPs constraint of less than 80%. This
demonstrates the applicability of our method to both
encoder-based and decoder-based models, which
is crucial as generative models have become in-
creasingly popular in recent years.

4.3. Time Consumption for Pruning &
Fine-tuning

Figure 4 demonstrates the time costs to obtain a
compressed model fine-tuned on MNLI task be-
tween previous retraining-based, -free, and our
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Figure 5: Performance of P-pruning derived by KCM and Dual-CP (Ours) on MRPC, STS-B, MNLI, and
QQP tasks. ‘Random’ indicates randomly pruning attention heads and neurons, and ‘Worst’ denotes the
condition with the most redundancy. .

Method MNLI QQP QNLI SST-2 STS-B MRPC SQuAD1.1 SQuAD2.0

BERTBASE 84.53 91.00 91.41 93.12 88.59 86.27 88.48 76.82
Random 81.52 90.24 88.49 90.83 85.82 77.45 84.79 72.18
+MC 83.42 +1.90 90.51 +0.27 89.75 +1.26 91.74 +0.91 86.70 +0.88 81.86 +4.41 85.37 +0.58 70.01 -2.17

+CS 83.13 +1.61 90.99 +0.75 89.22 +0.77 92.32 +1.49 88.12 +2.30 86.03 +8.58 86.70 +1.91 73.51 +1.33

Table 2: Performance improvements by applying the module clustering (MC) and centroid selection (CS)
of Dual-CP respectively under 60% FLOPs constraint.

approaches under 60% FLOPs constraint with a
GeForce RTX 3090 GPU. We divide this process
into two procedures: fine-tuning and pruning, and
record the time costs of both stages respectively.

On one hand, our method (shown in the left
subfigure in Figure 4) achieves comparable per-
formance to traditional retraining-based algorithms
like EBERT and DynaBERT, but with significantly
less time and computation overhead. Additionally,
our method is as efficient as Mask-Tuning and KCM
in conducting pruning, taking only several minutes,
while achieving higher accuracy than them. In sum-
mary, our algorithm strikes the best balance be-
tween accuracy and pruning costs.

However, despite similar pruning costs compared
to other retraining-free methods, our method is
much more efficient when fine-tuning for the down-
stream task. It achieves a speedup of 1.8× and
reduces FLOPs by 40%. It should be mentioned
that this acceleration can be further improved by
changing the checkpointing strategy, such as only
saving the model after training is completed.

Above findings also reveals that, compared to
other retraining-free structured pruning approaches,
our method is particularly useful for a large com-
pression rate especially generative tasks, which
generates a more stable and accurate model more
efficiently than any other retraining-free algorithms.

4.4. Ablation Studies
In this paper we have proposed two main contri-
butions: (i) P-pruning, a novel compression frame-
work, which utilizes the task-specific data to prune
before fine-tuning and allows for cost reduction in
fine-tuning; and (ii) Dual-CP, an effective pruning

algorithm for identifying the important modules with-
out relying on labels.

Is the pruning framework necessary? To evalu-
ate the effectiveness of the pruning framework, we
first perform an ablation study by replacing our Dual-
CP with KCM and comparing their performance on
various tasks. We choose KCM instead of Mask-
Tuning which exhibits better performance shown
in previous experiments as Figure 2, because the
nature of our proposed paradigm cannot leverage
the labels as described in section 3.2, and KCM is
the only one retraining-free method with no need
for labels. As Figure 5 shows, among all the tasks,
our method outperforms KCM even if applying P-
pruning at the same time, which demonstrates the
superiority of our method.

To evaluate the redundancy of the pruned mod-
ules in our method, we perform a ‘Worst’ condition,
in which case we preserve all the similar heads and
neurons in a large-size cluster and prune other clus-
ters in Section 3.3 to keep redundancy. In contrast,
we additionally perform a ‘Random’ condition which
randomly prunes heads and neurons. As Figure 5
elaborates, the ‘Worst’ condition shows the lowest
accuracy among all tasks even compared to ran-
dom pruning, which yields unstable performance
under different FLOPs constraints. This inferior per-
formance also proves that the pruned similar heads
and neurons are indeed redundant, and the superi-
ority of our approach is not rooted in the fine-tuning
process after pruning, but in the criteria we choose
to prune.
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Figure 6: The proportion of shared heads and neu-
rons across pruned models for different tasks.

How important are the procedures in Dual-CP?
We also perform another ablation experiment under
60% FLOPs constraint to evaluate the validity of
the procedures in Dual-CP, e.g. module clustering
(MC) and centroid selection (CS). As Table 2 shows,
+MC means only applying clustering to the heads
and neurons but randomly selecting centroids, and
+CS is the same as the results of ’Ours’ in the above
experiments. We take the performance derived by
random pruning as the benchmark. It is observed
that both module clustering and centroid selection
contribute to more accurate salient module selec-
tion and higher accuracy, especially for the MRPC
and STS-B task.

Is the Pruned Model Task-specific? The last
question is whether is it really necessary to use
the task datasets to conduct clustering, and how
distinct are the pruned models derived by different
task datasets. Therefore, we compare the ratio
of shared attention heads and neurons between
the compressed models derived from various tasks
as elaborated in Figure 6. It is obvious that the
pruned models for different tasks exhibit diversity,
especially for neurons, which demonstrates that our
method is indeed task-specific. It is also noticed
that the model derived for SQuAD 1.1 and SQuAD
2.0 have the highest similarity as the result of the
same task and partly shared dataset.

5. Conclusion

In this work, we propose P-pruning, a novel com-
pression framework that task-specifically prunes
the pre-trained language model before fine-tuning,
and therefore reduces the fine-tuning costs. Fur-
thermore, we propose a pruning algorithm to con-
duct P-pruning, which consists of (i) module cluster-
ing that clusters similar attention heads and interme-
diate neurons according to the activations derived
by the task dataset, and (ii) centroid selection that
pick the heads and neurons with the maximum av-
eraged magnitude of activations in each cluster and
prune others in the same cluster. The experimental
results demonstrate that our method achieves the

highest accuracy for both BERT and GPT-2 on clas-
sification and generative tasks. Furthermore, our
method shows the best trade-off between accuracy
and pruning time, and is also demonstrated to be
the most efficient for fine-tuning.

6. Limitations & Future Work

Although this study brings significant time reduc-
tion for retraining-free pruning while maintaining
satisfactory performance, it still has three impor-
tant potential limitations.

1) Firstly, the time consumption of Dual-CP may
increase significantly as the pre-trained model
size increases. The computational overhead
of Dual-CP is mainly determined by module
clustering, in which the cosine similarity is cal-
culated for each two neurons or heads. There-
fore, the time cost is highly dependent on the
number of internal dimensions, and may be
inefficient for large language models, and we
hope to fix it in future work.

2) Secondly, the module clustering may be inef-
ficient for long sequence lengths. The simi-
larity calculation is conducted for the hidden
inputs, which will be fairly low universally as the
sampled sequence length extends, therefore
unable to utilize more calibration instances to
guarantee the validity of pruning.

3) Finally, the instances of the calibration dataset
are randomly sampled from the task dataset,
which may miss informative sentences. How-
ever, as our method is data-driven, a more
well-designed data selection method should
be proposed to screen out the most informative
sentences or tokens.
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