@inproceedings{zhou-etal-2024-psentscore,
title = "{PS}ent{S}core: Evaluating Sentiment Polarity in Dialogue Summarization",
author = "Zhou, Yongxin and
Ringeval, Fabien and
Portet, Fran{\c{c}}ois",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1163/",
pages = "13290--13302",
abstract = "Automatic dialogue summarization is a well-established task with the goal of distilling the most crucial information from human conversations into concise textual summaries. However, most existing research has predominantly focused on summarizing factual information, neglecting the affective content, which can hold valuable insights for analyzing, monitoring, or facilitating human interactions. In this paper, we introduce and assess a set of measures PSentScore, aimed at quantifying the preservation of affective content in dialogue summaries. Our findings indicate that state-of-the-art summarization models do not preserve well the affective content within their summaries. Moreover, we demonstrate that a careful selection of the training set for dialogue samples can lead to improved preservation of affective content in the generated summaries, albeit with a minor reduction in content-related metrics."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhou-etal-2024-psentscore">
<titleInfo>
<title>PSentScore: Evaluating Sentiment Polarity in Dialogue Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yongxin</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabien</namePart>
<namePart type="family">Ringeval</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Portet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic dialogue summarization is a well-established task with the goal of distilling the most crucial information from human conversations into concise textual summaries. However, most existing research has predominantly focused on summarizing factual information, neglecting the affective content, which can hold valuable insights for analyzing, monitoring, or facilitating human interactions. In this paper, we introduce and assess a set of measures PSentScore, aimed at quantifying the preservation of affective content in dialogue summaries. Our findings indicate that state-of-the-art summarization models do not preserve well the affective content within their summaries. Moreover, we demonstrate that a careful selection of the training set for dialogue samples can lead to improved preservation of affective content in the generated summaries, albeit with a minor reduction in content-related metrics.</abstract>
<identifier type="citekey">zhou-etal-2024-psentscore</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1163/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>13290</start>
<end>13302</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PSentScore: Evaluating Sentiment Polarity in Dialogue Summarization
%A Zhou, Yongxin
%A Ringeval, Fabien
%A Portet, François
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F zhou-etal-2024-psentscore
%X Automatic dialogue summarization is a well-established task with the goal of distilling the most crucial information from human conversations into concise textual summaries. However, most existing research has predominantly focused on summarizing factual information, neglecting the affective content, which can hold valuable insights for analyzing, monitoring, or facilitating human interactions. In this paper, we introduce and assess a set of measures PSentScore, aimed at quantifying the preservation of affective content in dialogue summaries. Our findings indicate that state-of-the-art summarization models do not preserve well the affective content within their summaries. Moreover, we demonstrate that a careful selection of the training set for dialogue samples can lead to improved preservation of affective content in the generated summaries, albeit with a minor reduction in content-related metrics.
%U https://aclanthology.org/2024.lrec-main.1163/
%P 13290-13302
Markdown (Informal)
[PSentScore: Evaluating Sentiment Polarity in Dialogue Summarization](https://aclanthology.org/2024.lrec-main.1163/) (Zhou et al., LREC-COLING 2024)
ACL