@inproceedings{espinoza-etal-2024-pse,
title = "{PSE} v1.0: The First Open Access Corpus of Public Service Encounters",
author = "Espinoza, Ingrid and
Frenzel, Steffen and
Friedrich, Laurin and
Siskou, Wassiliki and
Eckhard, Steffen and
Hautli-Janisz, Annette",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1165",
pages = "13315--13320",
abstract = "Face-to-face interactions between representatives of the state and citizens are a key intercept in public service delivery, for instance when providing social benefits to vulnerable groups. Despite the relevance of these encounters for the individual, but also for society at large, there is a significant research gap in the systematic empirical study of the communication taking place. This is mainly due to the high institutional and data protection barriers for collecting data in a very sensitive and private setting in which citizens request support from the state. In this paper, we describe the procedure of compiling the first open access dataset of transcribed recordings of so-called Public Service Encounters in Germany, i.e., meetings between state officials and citizens in which there is direct communication in order to allocate state services. This dataset sets a new research directive in the social sciences, because it allows the community to open up the black box of direct state-citizen interaction. With data of this kind it becomes possible to directly and systematically investigate bias, bureaucratic discrimination and other power-driven dynamics in the actual communication and ideally propose guidelines as to alleviate these issues.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="espinoza-etal-2024-pse">
<titleInfo>
<title>PSE v1.0: The First Open Access Corpus of Public Service Encounters</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ingrid</namePart>
<namePart type="family">Espinoza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steffen</namePart>
<namePart type="family">Frenzel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurin</namePart>
<namePart type="family">Friedrich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wassiliki</namePart>
<namePart type="family">Siskou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steffen</namePart>
<namePart type="family">Eckhard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annette</namePart>
<namePart type="family">Hautli-Janisz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Face-to-face interactions between representatives of the state and citizens are a key intercept in public service delivery, for instance when providing social benefits to vulnerable groups. Despite the relevance of these encounters for the individual, but also for society at large, there is a significant research gap in the systematic empirical study of the communication taking place. This is mainly due to the high institutional and data protection barriers for collecting data in a very sensitive and private setting in which citizens request support from the state. In this paper, we describe the procedure of compiling the first open access dataset of transcribed recordings of so-called Public Service Encounters in Germany, i.e., meetings between state officials and citizens in which there is direct communication in order to allocate state services. This dataset sets a new research directive in the social sciences, because it allows the community to open up the black box of direct state-citizen interaction. With data of this kind it becomes possible to directly and systematically investigate bias, bureaucratic discrimination and other power-driven dynamics in the actual communication and ideally propose guidelines as to alleviate these issues.</abstract>
<identifier type="citekey">espinoza-etal-2024-pse</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1165</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>13315</start>
<end>13320</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PSE v1.0: The First Open Access Corpus of Public Service Encounters
%A Espinoza, Ingrid
%A Frenzel, Steffen
%A Friedrich, Laurin
%A Siskou, Wassiliki
%A Eckhard, Steffen
%A Hautli-Janisz, Annette
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F espinoza-etal-2024-pse
%X Face-to-face interactions between representatives of the state and citizens are a key intercept in public service delivery, for instance when providing social benefits to vulnerable groups. Despite the relevance of these encounters for the individual, but also for society at large, there is a significant research gap in the systematic empirical study of the communication taking place. This is mainly due to the high institutional and data protection barriers for collecting data in a very sensitive and private setting in which citizens request support from the state. In this paper, we describe the procedure of compiling the first open access dataset of transcribed recordings of so-called Public Service Encounters in Germany, i.e., meetings between state officials and citizens in which there is direct communication in order to allocate state services. This dataset sets a new research directive in the social sciences, because it allows the community to open up the black box of direct state-citizen interaction. With data of this kind it becomes possible to directly and systematically investigate bias, bureaucratic discrimination and other power-driven dynamics in the actual communication and ideally propose guidelines as to alleviate these issues.
%U https://aclanthology.org/2024.lrec-main.1165
%P 13315-13320
Markdown (Informal)
[PSE v1.0: The First Open Access Corpus of Public Service Encounters](https://aclanthology.org/2024.lrec-main.1165) (Espinoza et al., LREC-COLING 2024)
ACL
- Ingrid Espinoza, Steffen Frenzel, Laurin Friedrich, Wassiliki Siskou, Steffen Eckhard, and Annette Hautli-Janisz. 2024. PSE v1.0: The First Open Access Corpus of Public Service Encounters. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 13315–13320, Torino, Italia. ELRA and ICCL.