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Abstract
Chain-of-Thought prompting has improved reasoning capability of large language models (LLM). However, it
still is challenging to guarantee the effectiveness and stability for questions requiring complicated reasoning.
Recently, Plan-and-Solve prompting enhances the reasoning capability for complex questions by planning the
solution steps firstly and then solving them step by step, but it suffers the difficulty to represent and execute
the problem-solving logic of complex questions. To deal with these challenges, in this work, we propose a
novel Plan-and-Solve prompting method based on Question Decomposition Meaning Representation (QDMR).
Specifically, this method first allows the LLM to generate a QDMR graph to represent the problem-solving logic,
which is a directed acyclic graph composed of sub-questions. Then, the LLM generates a specific solving
process based on the QDMR graph. When solving each sub-question, it can locate the preceding sub-questions
and their answers according to the QDMR graph, and then utilize this information for solution. Compared
with existing Plan-and-Solve prompting techniques, our method can not only represent the problem-solving
logic of complicated questions more accurately with the aid of QDMR graph, but also deliver the dependence
information accurately for different solution steps according to the QDMR graph. In addition, with the supervised
fine-tuning on the Allen Institute dataset, the decomposing capability of LLM for complicated questions can be
considerably enhanced. Extensive experiments show that our method has achieve a great significance in arithmetic
reasoning and commonsense reasoning task by comparing the classical Chain-of-Thought prompting and Plan-and-
Solve prompting techniques, and the improvements achieved are even greater for problems with more reasoning steps.

Keywords: Question Decomposition Meaning Representation, Planning-and-Solving Prompting, Complex
Reasoning

1. Introduction

Prompting techniques (Brown et al., 2020; Min et al.,
2022; Dong et al., 2023) enable generative large
language models to solve given problems by emu-
lating provided examples. These techniques per-
form well on many tasks, such as sentiment recogni-
tion and topic classification (Wei et al., 2022a). But,
they may fall short on tasks requiring reasoning,
such as logical reasoning, mathematical calcula-
tions, and commonsense reasoning (Rae et al.,
2022). Along this line, Chain-of-Thought (CoT)
prompting utilizes detailed thought chains that de-
scribe the problem-solving process to inspire the
large language model to solve questions step by
step. However, generative language models have
a low sensitivity to historical information generated
earlier in the solving process (Touvron et al., 2023;
Anil et al., 2023; Bubeck et al., 2023), which hin-
ders accurate execution of long-span reasoning
processes for complex reasoning questions with

* These authors contributed to the work equllly and
should be regarded as co-first authors.

‡ Corresponding authors.

Figure 1: An example of Question Decomposition
Meaning Representation(QDMR) Graph. Node#i
represents the ith sub-question after decomposing
the original question.

multiple reasoning steps, and the reasoning effect
and stability will be dimininshed. (Fu et al., 2023;
Yao et al., 2023b; Press et al., 2023)

Recently, Plan-and-Solve prompting has at-
tracted wide attention, which plans the solution
steps for a given question at first, and then solves it
step-by-step, while the guiding role of solving plans
significantly improves the reasoning ability and sta-
bility of complex problems. But, it has the defect
of not being able to accurately represent and ex-
ecute the problem-solving logic. Besides, during
the problem-solving phase, every step undertaken
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Figure 2: A diagram showcasing different approaches for problem-solving using LLMs. Each rectangular
box symbolizes a thought, while the green ellipse represents corresponding problem-solving procedure
related to thought. This coherent language sequence acts as an intermediate step in problem-solving
process.

fully capitalizes on the information returned from
all preceding steps without distinguishing the sig-
nificance levels of various information. However,
statistical analysis results from Figure 3 indicate
that a substantial proportion of the problems have
a graphical reasoning structure. This underscores
the limitation of solely employing a chain-based res-
olution approach in precisely modeling the intricate
logic inherent to numerous problems.

In this work, we propose a novel Plan-and-Solve
prompting method, based on Question Decompo-
sition Meaning Representation (QDMR) (Wolfson
et al., 2020). With the help of structured QDMR
Graph, our model can represent and execute graph-
ical problem-solving logic, as shown in Figure 1.
This method consists of two explicit generative
stages illustrated in Figure 2(d). In detail, the first
phase allows large language model to generate
a QDMR graph for given question, which is a di-
rected acyclic graph describing the precise topolog-
ical dependencies among different sub-questions.
Compared with the linear solution plan of existing
Plan-and-Solve prompting techniques, it could ac-
curately describe complex problem-solving logic.
In the second phase, the large language model
generates solving process based on the QDMR
graph. When solving each sub-question, the model
can refer QDMR graph to make use of preceding
sub-questions and their answers. Compared to the
sequential solution plan of existing Plan-and-Solve
prompting techniques, our approach can generate
the answer to current sub-question based on a
more precise context. Intuitively, by first generat-
ing a precise QDMR graph and then following its
topological order for solving, our method simulates

Figure 3: The proportion of chain-type and graph-
type reasoning data in arithmetic and common-
sense datasets, as illustrated in Section 4.1

an intelligent agent’s operation in a prompt-driven
manner, enabling the language model to plan and
solve complex questions without multiple invoca-
tions. This strategy endows our method with the
complex reasoning capability of intelligent agents,
while also retaining the simplicity and effectiveness
of the prompting techniques. Additionally, through
instruction tuning, it is feasible to produce more
precise QDMR graph, consequently enhancing the
final reasoning accuracy.

We compare the performance of our methods
with existing ones on complex reasoning tasks, i.e.,
arithmetic reasoning and commonsense reason-
ing. Experiments show that under the contextual
learning setting, our method achieves a significant
performance boost compared with Plan-and-Solve
prompting and classic Chain-of-Thought prompting,
especially for questions with more reasoning steps.
Moreover, under the supervised fine-tuning setup,
the quality of the generated QDMR graph greatly
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Figure 4: QDMR based Plan-and-Solve prompting
solving a complex reasoning problem in two stages:
(1) generate the QDMR graph for given question,
which decompose the question into sub-question
diagram; (2) query the language model to solve the
sub-questions in topological order based on the
QDMR graph. When solving each sub-question,
only information from its preceding sub-questions
is used. See detailed process of the following two
stages in Figure 5 and Figure 6.

improved, and our method showed even more sig-
nificant improvements against existing prompting
techniques, pointing towards directions for future
enhancements.

2. Background

Large language models (Touvron et al., 2023; Anil
et al., 2023; Ouyang et al., 2022) have instruction-
following capability through prompting learning.
Considering that our approach is indeed an im-
proved version of the Plan-and-Solve prompting
technique, we introduce the technical background
first, including Input-output prompting (Min et al.,
2022; Dong et al., 2023; Penedo et al., 2023),
Chain-of-Thought prompting (Wei et al., 2022b; Ko-
jima et al., 2022; Zhang et al., 2023c), and Plan-
and-Solve prompting (Wang et al., 2023b; Zhou
et al., 2023; Jiang et al., 2023) techniques.

Input-output prompting: As shown in Figure
2(a), Input-Output prompting directly turns a prob-
lem input x into output y with large language model.

Chain-of-Thought prompting: For tasks that re-
quire multi-step reasoning, Input-output prompting
techniques are less effective. As shown in Figure
2(b), Chain-of-Thought prompting uses "thought
chain" as prompting information. It reflects the
step-by-step solution process, thus prompting the
language model to gradually generate fine-grained
solution and ultimately generate the answer.

Plan-and-Solve prompting: When the complex-
ity of task increases, the enhancement attributed
to Chain-of-Thought prompting methodology is pro-
gressively attenuated. As shown in Figure 2(c),
Plan-and-Solve Prompting first generates a coarse-
grained task plan, followed by a fine-grained solving
process, which achieves better effect and stability
than Chain-of-Thought prompting.

With above prompting strategies, extensive re-
search enhances model’s reasoning capability
though improving prompting technique, e.g., tech-

niques for selecting or generating better prompting
examples (Zhang et al., 2022; Shum et al., 2023;
Ho et al., 2023; Kim et al., 2023), voting fusion or
selection of reasoning answers (Wang et al., 2023d;
Yoran et al., 2023; Wang et al., 2023c; Jain et al.,
2023; Huang et al., 2022a), task decomposition
based on planning mechanisms (Ahn et al., 2022;
Lin et al., 2023; Lynch et al., 2023; Brohan et al.,
2023; Liang et al., 2023), introducing dynamic ex-
ploratory and trial-and-error mechanisms during
reasoning process (Yao et al., 2023b; Ruan et al.,
2023; Chen et al., 2023) and so on. Our method
can be used in combination with all the above tech-
niques to achieve better results, a detailed discus-
sion of which is beyond the scope of this context.

3. Methodology

3.1. Overall Architecture
In this work, we propose a novel Plan-and-Solve
prompting method based on Question Decompo-
sition Meaning Representation (QDMR). Figure 4
illustrates overall architecture which consists of two
phases, within this framework, the large language
model sequentially generates symbolic sequences
that align with the two delineated phases. In Sec-
tion 3.3, we elaborate initial phase to generate
QDMR graph for given question. Subsequently,
in Section 3.4, we describe the second phase to
solve problems based on the QDMR graph.

3.2. Question Decomposition Meaning
Representation

The Question Decomposition Meaning Representa-
tion graph as introduced by (Wolfson et al., 2020),
is meticulously constructed to cater to a specific
query, thereby mirroring the intricate logical pro-
gression inherent in the problem-solving continuum.
This graph, denoted as G, embodies the structure
of a directed acyclic graph. Within its framework,
nodes epitomize individual sub-questions, whereas
the edges elucidate the inter-dependencies and af-
filiations among these constituent sub-questions.
Suppose within the graph G, two directed edges
i → k and j → k are present. This suggests that
the resolution of qk depends on addressing sub-
questions qi and qj . Specifically, the solution for
sub-question qk mandates the incorporation of con-
tent and responses derived from sub-questions qi
and qj . By formulating the pertinent QDMR graph
prior to addressing the question, it facilitates the
provision of more accurate guidance cues during
the problem-solving phase, thereby enhancing the
accuracy and efficacy of the reasoning process.

Figure 1 furnishes a visualization of the QDMR
graph. Within this depiction, the intricate question
Q: "Can voice actors for Goofy and Bugs Bunny
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Figure 5: Example of generating QDMR graph through contextual learning with (a) QDMR graph generation
Prompting with detailed instructions and (b) model’s output, which is a serialized representation of the
QDMR graph corresponding to given question and (c) graphical representation of the QDMR graph.

each acquire one stripe from the American flag?" is
deconstructed into five intermediary sub-questions.
Leveraging broad knowledge, determinations can
be drawn for the sub-questions q1, q2, q4 linked to
Node#1, Node#2, and Node#4. Upon addressing
Node#1 and Node#2, we circumscribe the solution
space of Node#3 to the pertinent context, specif-
ically, in response to the query: "How many indi-
viduals have served as the voice for both Goofy
and Bugs Bunny?". Ultimately, integrating the con-
tent information and answers from both Node#3
and Node#4, we can refine the solution space for
Node#5, posing sub-question: "Does the count of
stripes on the American flag exceed or equate to the
total number of individuals who have lent their voice
to characters such as Goofy and Bugs Bunny?’".
Adhering rigorously to the topological sequencing
of the QDMR graph, we execute the designated
solution methodology, culminating in the derivation
of the answer to the primordial question.

3.3. QDMR Generation
A context-aware learning methodology is employed
to guide the language model in the creation of a
QDMR graph tailored to intricate question. The
QDMR graph serves to illuminate the intricate
topological interconnections inherent among sub-
questions, a stark contrast to language model’s
inherent limitation of producing merely linear sym-
bolic sequences. It is imperative to identify a
method to encapsulate the QDMR graph using char-
acter sequences, derived from language models.
To this end, we have engineered a serialized rep-
resentation technique for the QDMR graph, opti-
mized for active recognition and generation by the
language model via contextual learning. Succinctly,
each sub-question is allotted a distinct node identi-
fier, with explicit delineation of its dependent parent

nodes.
Figure 5 presents the serialized representation

schema of the QDMR graph, offering an exam-
ple on the methodology employed in the genera-
tion of QDMR graph via in-context learning. Con-
cretely, all sub-questions is systematically arranged
in topological succession. Sub-questions devoid
of antecedent nodes present an empty list of par-
ent nodes. In contrast, those associated with par-
ent nodes display a non-vacant list, incorporating
the specific node identifiers that correlate with pre-
ceding sub-questions. Due to the adoption of a
clearly defined symbolic notation, our model is
poised to seamlessly execute automatic transitions
between the QDMR graph and its serialized embod-
iment. Explicitly, through the utilization of prompt-
based learning methodologies, model is incited to
yield a QDMR graph pertinent to the presented
question. We curated several pairs encompassing
<Question, QDMR graph> as prompting exam-
ples. These prompting examples, augmented by
essential directive information, act as founda-
tional prompts. Upon integrating them with the
original question, they are input into the language
model. This, in turn, produces a serialized delin-
eation of the QDMR graph tailored to the complex
query requiring decomposition.

3.4. QDMR-based Answer Generation
Utilizing contextual learning, the overarching goal
is to guide the language model in solving ques-
tion based on the QDMR graph. The predomi-
nant challenge lies in capacitating the language
model to adeptly harness the problem-solving ratio-
nale encapsulated by the QDMR graph. Through-
out the leftward-to-rightward recursive generation
paradigm, the model iteratively produces subse-
quent symbols, predicated upon both the intro-
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Figure 6: Example of generating answer based on the QDMR graph through contextual learning with
(a) QDMR-based answer generation Prompting with detailed instructions and (b) model’s output, which
includes the topological solution of QDMR graph as well as the answer to the original question and (c) the
execution order of sub-question solving based on the QDMR graph.

duced symbols and those previously formulated.
As elucidated by prior scholars (Anil et al., 2023;
Bubeck et al., 2023), the most contemporaneously
produced information exerts paramount influence
on the determination to yield the subsequent sym-
bol. Consequently, meticulous orchestration of the
content of the solving process is pivotal. This en-
sures that the content generation sequence impec-
cably aligns with the topological order delineated
within the QDMR graph, thereby aspiring to emu-
late the structured problem-solving rationale within
the serialized output progression.

Figure 6 shows the QDMR-based Answer Gener-
ation schema, it presents the process of generating
answers based on the QDMR graph. Specifically,
the constituent sub-questions undergo resolution
in a methodical topological sequence. When ad-
dressing each constituent sub-question, one ini-
tially revisits both the parent node of the current sub-
question and its pertinent answer. Subsequently,
the solution for the current sub-question is formu-
lated. This methodology ensures that the resolu-
tion process of every sub-question is intricately an-
chored to its most germane historical data, thereby
obviating potential perturbations from extraneous
information during the current sub-question’s res-
olution. Specifically, employing the technique of
prompt-based learning, inspire model’s capability
in performing inference and problem-solving. We
constructed several pairs encompassing <QDMR
graph, Answer> as prompting examples. These

prompting examples, augmented by essential di-
rective information, act as foundational prompts.
Upon integrating them with a QDMR graph of orig-
inal question, they are input into the language
model. This, in turn, generates corresponding
QDMR-based answer for original question.

3.5. Supervised Finetuning

The approach and data we employ for the QDMR
graph and QDMR-based answer representation
is highly standardized. Leveraging the existing
data (Wolfson et al., 2020; Geva et al., 2021) and
high-performance large language model (Touvron
et al., 2023; Anil et al., 2023; Bubeck et al., 2023;
Du et al., 2022), it is feasible to automatically con-
struct large-scale, high-quality training datasets.
Though fine-tuning the large language model in the
Supervised Fine-Tuning (SFT) manner, enabling it
to generate more precise QDMR graph and corre-
sponding problem-solving workflows.

For the fine-tuning task associated with genera-
tion of the QDMR graph, training data have been de-
rived from the Break dataset (Wolfson et al., 2020).
For the fine-tuning task of generating QDMR-based
answer, we use GPT4 (Bubeck et al., 2023) to gen-
erate multiple inference paths and take the infer-
ence path with the correct final answer as train
sample. Section 4.1 provides specific detail infor-
mation.
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Model Prompt Dataset AverageAQuA Gsm8k MultiArith SingleEq Musique HotpotQA
text-
davinci-
002

Cot 0.3743 0.5838 0.9212 0.8571 0.6783 0.8123 0.7045
PS 0.4185 0.6587 0.9567 0.8970 0.6854 0.8331 0.7416
Ours 0.4181 0.6737 0.9474 0.9148 0.7005 0.8475 0.7503

text-
davinci-
003

Cot 0.3426 0.7079 0.9434 0.9288 0.6916 0.8519 0.7444
PS 0.4002 0.7164 0.9506 0.9403 0.7073 0.8874 0.7670
Ours 0.4194 0.7520 0.9510 0.9591 0.7351 0.8853 0.7837

GPT3.5-
Turbo

Cot 0.4672 0.8312 0.9677 0.9611 0.6132 0.8586 0.7832
PS 0.4440 0.8385 0.9821 0.9795 0.6467 0.8706 0.7936
Ours 0.4688 0.8613 0.9735 0.9826 0.6683 0.8997 0.8090

Table 1: Within the experimental setting of in-context learning, accuracy comparison between our method,
Chain-of-Thought prompting(Cot) and Plan-and-Solve prompting(PS) on multiple reasoning datasets. The
best results are boldfaced.

4. Experiments

4.1. Datasets and Baselines

Datasets of multi-step reasoning tasks i.e., Arith-
metic Reasoning as well as Commonsense Rea-
soning, are included in our experiments. To verify
the effectiveness of our method on various gen-
erative language models, We experiment on six
datasets spanning arithmetic reasoning and com-
monsense reasoning with five LLMs: text-davinci-
002, text-davinci-003, Gpt3.5-Turbo, Llama2-7B,
and Chatglm2-6B through in-context learning and
instruction tuning. Arithmetic Reasoning: (1) the
AQuA (Ling et al., 2017) dataset of algebraic prob-
lems with answers comprised of multiple natural
language rationales. (2) the Gsm8k (Cobbe et al.,
2021) dataset of high quality grade school math
problems with question that can be solved in 2-
8 steps. (3) the MultiArith (Roy and Roth, 2015)
dataset of mathematical problems that necessitates
numerous inference steps for resolution. (4) the Sin-
gleEq (Koncel-Kedziorski et al., 2015) dataset of al-
gebraic problems calls for the solution of equations.
Commonsense Reasoning: (1) the musique
dataset (Trivedi et al., 2022) of commonsense prob-
lems with 2-4 hops, constructed by composing ex-
isting single-hop Wikipedia seed problems. (2) the
HotpotQA (Wolfson et al., 2020) dataset of com-
monsense questions based on Wikipedia that re-
quires reasoning using multiple supporting prob-
lems.

Additionally, in order to enhance the capability to
generate question decomposition meaning repre-
sentation graph for given question, we developed a
<Question,QDMR graph> dataset based on exist-
ing BREAK dataset (Wolfson et al., 2020). BREAK
dataset is released by the Allen Institute, includes
natural language questions and human-annotated
question decomposition meaning representations,
with a total of 83,978 examples. All questions with
QDMR that can be graphed as well as 10% of ran-
domly selected questions with chain QDMR are
kept, resulting in a total of 30,000 training samples.

Additionally, to improve the ability of answers gen-
erated based on the QDMR graph, training data
int the format of <QDMR graph, Answer> is au-
tomatically constructed using the dataset Strate-
gyQA (Geva et al., 2021), which is a commonsense
Q&A dataset that includes relevant background
knowledge required for problem-solving. Employ-
ing the capabilities of GPT-4 (Bubeck et al., 2023),
we generate a myriad of potential QDMR-based
responses for the posed inquiry. Subsequent eval-
uations, predicated on criteria such as the verac-
ity, fluidity, and brevity of the generated narratives,
guide our selection, resulting in the endorsement
of the QDMR-based answer with the highest merit.
In the stage of QDMR-based answer generation,
there are 2290 training samples produced, with
data evaluation accuracy reaching an impressive
98%. For the training data produced above, we car-
ried out instruction tuning on several open-source
models, including Llama2-7B, Chatglm2-6B.

4.2. Main Results

Our approach is an improvement on the Plan-and-
Solve prompting (Wang et al., 2023b) and Chain-of-
Thought prompting (Wei et al., 2022b). Therefore,
we first conducted a comprehensive comparison
with these two prompting techniques. Table 1 re-
ports comparison of accuracy in our method
with the two prompting techniques on the arith-
metic reasoning and commonsense reasoning
task in the paradigm of context learning, a sig-
nificant improvement was observed on most
datasets across all baseline models. Relative to
the Chain-of-Thought prompting technique, an av-
erage performance increase between 2.59% and
4.58% is documented across all datasets. Con-
versely, when benchmarked against the Plan-and-
Solve prompting technique, the performance es-
calates on average from 0.87% to 1.66% over
several datasets except MultiArith and HotpotQA
dataset. By meticulously analyzing a subset of Mul-
tiArith dataset, the exception could be due to most
reasoning trajectories within MultiArith dataset ex-
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Model Prompt Dataset AverageAQuA Gsm8k MultiArith SingleEq Musique HotpotQA

Llama2-
7B

ICL-Cot 0.2638 0.2669 0.6876 0.6561 0.3598 0.4111 0.4409
ICL-PS 0.2874 0.2775 0.7109 0.6501 0.3950 0.3921 0.4522

ICL-Ours 0.2969
(38%)

0.2861
(44%)

0.7325
(86%)

0.6782
(74%)

0.3988
(64%)

0.4370
(58%) 0.4716

SFT-Ours 0.3110
(42%)

0.3035
(50%)

0.7378
(90%)

0.7003
(90%)

0.4146
(84%)

0.4554
(76%) 0.4871

Chatglm2-
6B

ICL-Cot 0.2717 0.2835 0.7002 0.6765 0.3789 0.3699 0.4468
ICL-PS 0.3150 0.3078 0.6942 0.6802 0.3907 0.3780 0.4610

ICL-Ours 0.3254
(36%)

0.3269
(40%)

0.7230
(74%)

0.7037
(66%)

0.4017
(60%)

0.4140
(56%) 0.4825

SFT-Ours 0.3465
(48%)

0.3362
(56%)

0.7391
(82%)

0.7285
(78%)

0.4337
(72%)

0.4378
(74%) 0.5036

Table 2: Comparison of surpervised fine-tuning and in-context learning in producing QDMR graph and
related effects on the final reasoning results. The best results are boldfaced. Tip: The first line in ICT-Ours
and SFT-Ours represents the Accuracy, the second line in ICT-Ours and SFT-Ours represents quality
evaluation of the QDMR graph generated under the current settings.

hibit a linear fashion. Concerning text-davinci-003
model and HotpotQA dataset, the effectiveness of
our approach commensurates with Plan-and-Solve
prompting technique. This could plausibly be at-
tributed to limitations in the model arising from the
quality of the QDMR graph. In the concluding seg-
ment of this subsection, we delve into whether the
quality of QDMR graph exerts a tangible impact on
the final reasoning results.

Figure 7: Accuracy (%) of our method compared
with chain of thought and plan-and solve prompting
, broken down by the number of reasoning steps
required in the expected solution.

To further elucidate the advantages of our ap-
proach vs Plan-and-Solve prompting (Wang et al.,
2023b) and Chain-of-Thought prompting (Wei et al.,
2022b), we evaluated the comparative effects on
questions varying reasoning complexities. Given

the quintessential nature of GPT3.5-Turbo model,
we have elected to employ it as our benchmark
model. To gauge the difficulty of the reasoning,
simply counted the number of inference steps for
resolution. Figure 7 illustrates the comparative per-
formance of our method with these two prompting
techniques on problems varying numbers of reason-
ing steps. For questions necessitating more than
seven reasoning steps, our methodology registered
a performance augmentation of 9.8% compared
to Chain-of-Thought prompting and advanced by
7.16% relative to Plan-and-Solve prompting on the
arithmetic reasoning dataset Gsm8k. In the context
of the commonsense reasoning dataset HotpotQA,
our technique surpassed Chain-of-Thought prompt-
ing and Plan-and-Solve prompting by 13.68% and
6.77%, respectively. Such findings accentuate the
validity of our method on intricate reasoning prob-
lems. Moreover, as the number of reasoning
steps increases, the lead of our method over
previous methods gradually expands.

Finally, to ascertain whether the quality of the
question decomposition meaning representation
graph exerts an influence on the ultimate reason-
ing outcomes, we undertook experiments on two
models: Llama2-7B and Chatglm2-6B, employing
instruction tuning. During the fine-tuning process, a
multi-task learning approach was adopted. Assist-
ing the model in learning question decomposition,
the initial task was to fine-tune the QDMR graph
generation. The second task was to optimize the
answer generation, helping the model to learn ques-
tion solving. In the process of problem-solving, per-
tinent background knowledge has been integrated
to mitigate the impact of factual mistake, facilitating
a more precise comparative analysis. Table 2 lists
the experimental results. Fine-tuning the model
can significantly improve the quality of the gener-
ated QDMR graph(SFT-Ours) compared to gener-
ating QDMR graph through in-context learning(ICL-
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Dataset Question QDMR Graph Generated Through In-context Learning QDMR Graph Generated Through Supervised Fine-tuning

Musique
What is the occupation of the father
of the actor that plays Will Graham
on teh series ’Hannibal’?

Node#1: Who is the father of the actor that plays #4?;Parent:{#4}
Node#2: #1 is the occupation of whom?;Parent:{#1}
Node#3: Who plays #4?;Parent:{#4}

Node#1: who plays will graham on hannibal?; Parent:{}
Node#2: #1 >>father?; Parent:{#1}
Node#3: What job did #2 have?; Parent:{#2}

Gsm8k

In a dance class of 20 students, 20%
enrolled in contemporary dance, 25%
of the remaining enrolled in jazz dance,
and the rest enrolled in hip-hop dance.
What percentage of the entire students
enrolled in hip-hop dance?

Node#1: How many students enrolled in hip-hop dance?;Parent:{}
Node#2: How many students enrolled in contemporary dance?;Parent:{}
Node#3: How many students enrolled in jazz dance?;Parent:{}
Node#4: What percentage of the entire students enrolled in hip-hop dance?;
Parent:{#1,#2,#3}

Node#1: How many students are enrolled in contemporary dance?;Parent:{}
Node#2: How many students are left after contemporary dance?;Parent:{#1}
Node#3: How many students are enrolled in jazz dance?;Parent:{#2}
Node#4: How many students enrolled in hip-hop dance?;Parent: {#2,#3}
Node#5: What percentage of the entire students are enrolled in hip-hop dance?;Parent:{#4}

Table 3: Examples of QDMR Graph produced by Llama2-7B Model in In-context Learning and Supervised
Fine-tuning Settings.

Ours), with an increasing from 4% to 20% across
all datasets applied to different models, ultimately
leading to an average performance augmentation
of 5.15% compared to in-context Learning mode of
Cot prompting(ICL-Cot) and 3.88% in contrast to in-
context Learning mode of Plan-and-Solve prompt-
ing(ICL-PS), while in-context Learning mode of
Our method(ICL-Ours) only surpassed ICL-Cot
and ICL-PS by 3.32% and 2.04% on average, re-
spectively. These experimental results conducting
across a multitude of models and datasets consis-
tently elucidate that the quality of the generated
QDMR graph profoundly influences the gener-
ation of the ultimate answers. Through case
analysis, it has been observed that incremental en-
hancements in the quality of the graph consistently
lead to rectificating solving of samples with com-
plex reasoning structures. As illustrated in Figure 3,
a substantial proportion of the problems exhibit a
non-linear reasoning structure. Consequently, by
continually enhancing the quality of the QDMR
graph, one can more accurately represent the
underlying problem-solving logic, leading to
improvements in the overall reasoning perfor-
mance. Such findings illuminate a potential direc-
tion for future research.

4.3. Quality Analysis of QDMR Graph

To assess the quality of the generated QDMR
graph, we have implemented a structured approach.
Our analysis begins with applying prompt learning
methodology, as illustrated in Figure 8. This pro-
cedure incorporates GPT4 (Bubeck et al., 2023)
to thoroughly evaluate the graph, focusing on at-
tributes such as its completeness, effectiveness,
clarity, and redundancy. Subsequently, the graph is
assigned to one of several predefined labels: "Ex-
cellent", "Good", "Fair", "Poor", and "Very Poor".
The subsequent phase of our evaluation strategy
entails the selection of random samples from each
category of the initially labeled data. A secondary
round of manual quality assessment is then con-
ducted, which includes the re-labeling process.

The experimental analysis presented in Sec-
tion 4.2 illustrates a positive correlation between
the progressive improvement of the QDMR graph’s

Figure 8: Prompt Learning Method for Quality As-
sessment of QDMR Graph.

quality and the consequent enhancement of the
solution’s efficacy. This observation emphatically
underscores the critical importance of augmenting
graph quality to bolster question-solving capabili-
ties. We aim to enhance the quality of generated
graph by employing various methods such as im-
proving the expression of graph logical structure
and supervised fine-tuning adjustments.

Table 3 presents the results of decomposing spe-
cific queries via Llama2-7B model. In the in-context
learning setting, this model shows limited capabil-
ity in breaking down the sub-problems contained
within the MuSique dataset. In contrast, when ap-
plied to the Gsm8k dataset, the model adeptly iden-
tifies sub-problems but struggles to arrange them
in a coherent sequence that aligns with the logical
progression needed for effective resolution. Ideally,
the sequence for tackling these problems should
be Node#2 -> Node#3 -> Node#1 -> Node#4. How-
ever, our observations indicate that supervised
fine-tuning significantly improves the quality of the
QDMR graph, ensuring an accurate depiction of
the sub-problems’ interconnections and reflecting
the necessary logical flow for problem resolution.
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5. Related work

The approach is affiliated with Planning-based rea-
soning techniques. Planning techniques are em-
ployed to generate a decision sequence from an
initial state to a target state, allowing for the res-
olution of complex tasks (Ahn et al., 2022; Singh
et al., 2023; Huang et al., 2022b; Lin et al., 2023;
Lynch et al., 2023). Adopting planning techniques
based on language model to decompose complex
tasks into specific instructions, and directing robots
or other intelligent agents to perform navigation
or other intricate operations (Wang et al., 2023b;
Zhou et al., 2023; Jiang et al., 2023; Radhakrishnan
et al., 2023; Zhang et al., 2023a). Apply planning
techniques to facilitate reasoning, they initially out-
line a solving strategy for a complex problem and
subsequently guide the ensuing reasoning com-
putational process based on this. Our work inno-
vates substantially upon the foundational works
mentioned by introducing a QDMR graph that re-
flects problem-solving logic, precisely character-
izing the topological relationship between distinct
sub-questions. This graph unveils the comprehen-
sive solution approach. Following the order de-
picted by this graph, specific reasoning processes
are accurately executed.

The operational process of our method is simi-
lar to agent-based reasoning techniques. Agent-
based techniques realize complex task solving by
constantly generating and executing new actions
through dynamic interactions between the agent
and its environment (Yao et al., 2023b; Wang et al.,
2023e; Zhang et al., 2023b; Chen et al., 2023). At
the same time, it driven by large language model
to resolve complex reasoning question, enhancing
reasoning capability through decomposition of sub-
questions and multiple iterative interactions. The
intrinsic distinction between our method and agent-
based approach lies in our employment of context
learning strategy to simulate the dynamic reason-
ing process of the agent. On the one hand, we
retain the advantages of agent techniques, decom-
posing complex questions into precise topological
structures, and then progressively solving problems
based on decomposition. On the other hand, we
circumvent the drawbacks of agent techniques by
simulating the agent’s reasoning process through
a left-to-right recursive generation process, as op-
posed to invoking language model multiple times.

Beyond the two works mentioned above, there ex-
ists some improvement work that have introduced
non-linear strategies based on classic Chain-of-
Thought prompting, but these cannot be strictly
categorized as planning or agent-based works. For
instance, (Yao et al., 2023a) proposed Tree-of-
Thought, which considers different reasoning paths
and evaluates the effect of each step, with the

highest-scoring path serving as the reasoning an-
swer. (Wang et al., 2023a) introduced Algorithm
of Thoughts Prompting, explores the question solv-
ing space and devises strategies from an algorith-
mic perspective, which can alleviate the shortcom-
ings of high query and computational costs in the
Tree-of-Thought prompting. (Besta et al., 2023)
proposed Graph-of-Thought Prompting, treating
the information generated by the large language
model as thought units and continuously gener-
ating, combining, and eliminating these units to
form a complex thought network with a graph struc-
ture. However,even if these methods have indeed
transcended the linear pattern of classic chain-
of-thought prompting, exhibiting mechanisms like
branching, backtracking, and error correction dur-
ing the solution generation process, they have not
effectively modeled and leveraged the intricate de-
pendencies between the sub-questions, and they
consume significant computational resources.

6. Conclusion

Building on the Plan-and-Solve prompting tech-
nique (Wei et al., 2022a), we propose an improved
method based on the Question Decomposition
Meaning Representation(QDMR) (Wolfson et al.,
2020). This method uses the QDMR graph as
a plan, reflecting the complex dependencies be-
tween sub-questions, and then guides the answer
generation process, ensuring that solving each
sub-question can be located to its preceding sub-
questions and corresponding answers based on
the QDMR graph. As the experiments demonstrate
that our approach can achieve significant improve-
ments over existing Plan-and-Solve prompting tech-
nique on multiple baseline models and datasets. It
suggests that our method can leverage the QDMR
graph to more accurately express the logic of com-
plex question solving, and can provide dependency
information accurately for district solution steps
based on the QDMR graph. In the future, we will
continue to explore how to automatically generate
QDMR graph for new question and generate an-
swer based on the graph, as well as further improve
the quality of QDMR graph generation and follow-
ing answer generation. We also plan to extend this
method to a wider range of complex tasks.
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