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Abstract
Large Language Models (LLMs) have achieved impressive performance across various reasoning tasks. However,
even state-of-the-art LLMs such as ChatGPT are prone to logical errors during their reasoning processes. Existing
solutions, such as deploying task-specific verifiers or voting over multiple reasoning paths, either require extensive
human annotations or fail in scenarios with inconsistent responses. To address these challenges, we introduce
RankPrompt, a new prompting method that enables LLMs to self-rank their responses without additional resources.
RankPrompt breaks down the ranking problem into a series of comparisons among diverse responses, leveraging
the inherent capabilities of LLMs to generate chains of comparison as contextual exemplars. Our experiments
across 11 arithmetic and commonsense reasoning tasks show that RankPrompt significantly enhances the
reasoning performance of ChatGPT and GPT-4, with improvements of up to 13%. Moreover, RankPrompt excels
in LLM-based automatic evaluations for open-ended tasks, aligning with human judgments 74% of the time in
the AlpacaEval dataset. It also exhibits robustness to variations in response order and consistency. Collec-
tively, our results validate RankPrompt as an effective method for eliciting high-quality feedback from language models.
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1. Introduction

Reasoning ability is a fundamental aspect of hu-
man intelligence, crucial for tasks such as mathe-
matical problem-solving (Koncel-Kedziorski et al.,
2016; Ling et al., 2017) and questions-answering
(Talmor et al., 2019; Geva et al., 2021). Recent
advancements show that Large Language Models
(LLMs) (Brown et al., 2020; Thoppilan et al., 2022;
Chowdhery et al., 2023; Ouyang et al., 2022) can
demonstrate remarkable reasoning abilities when
guided by Chain-of-Thought (CoT) prompting (Wei
et al., 2022b; Kojima et al., 2022). This technique
provides LLMs with prompts, such as “Let’s think
step by step”, to facilitate the generation of a se-
quence of intermediate steps before arriving at the
final result. CoT prompting has yielded impressive
performance across a variety of tasks, including
arithmetic, commonsense, and symbolic reasoning
(Wei et al., 2022a; Zhang et al., 2023; Suzgun et al.,
2023; Zhou et al., 2023a).

Despite their success, LLMs often make logi-
cal mistakes during the reasoning process (Kojima
et al., 2022; Turpin et al., 2023; Lightman et al.,
2023). As shown in Table 1, when solving algebra
problems, a language model may provide wrong

*Work done while the author was interning at Alibaba.
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Question: Bob spends $27000 distributed between 3
schools to buy books. He can buy 100 books for $500.
How many books can he buy per school?
Answer 1: Bob spends a total of $27000 on books.
Each book costs $500. Therefore, he can buy $27000
/ $500 = 54 books in total. Since he is distributing
the books between 3 schools, he can buy 54 / 3 = 18
books per school. ✘

Answer 2: Bob can buy 27000 / 500 = 54 sets of
100 books. So, Bob can buy 54 x 100 = 5400 books.
Therefore, he can buy 5400 / 3 = 1800 books per
school. Answer: 1800. ✔

Answer 3: Bob can buy 100 books for $500, so the
cost of one book is $500 / 100 = $5. Bob spends
$27000, so he can buy 27000 / 5 = 5400 books. There-
fore, Bob can buy 5400 books per school. ✘

Table 1: An example from GSM8K (Cobbe et al.,
2021). Answer 2 is correct, while others make
invalid inferences or miss steps in their reasoning
process (marked in red). In this case, there is no
major answer among all candidates.

inferences or omit pivotal steps, leading to incor-
rect final results. One potential solution is to use
task-specific verifiers to validate each step (Cobbe
et al., 2021; Li et al., 2023; Lightman et al., 2023).
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However, it requires substantial labeled data for
training, which is costly and time-consuming. An
alternative is to sample a variety of reasoning paths
and aggregate the results via majority voting (Wang
et al., 2023d; Fu et al., 2023b). This method can
alleviate the impact of individual errors and lead
to more accurate predictions (Huang and Chang,
2023; Huang et al., 2022). Nevertheless, this ag-
gregate voting strategy ignores intermediate steps,
lacks interpretability, and struggles with inconsis-
tent answers, as illustrated in Table 1. Therefore,
it is crucial to develop a robust, interpretable tech-
nique that can effectively distinguish among multi-
ple reasoning paths, thereby augmenting the rea-
soning capabilities of LLMs.

In response to these challenges, we intro-
duce RankPrompt, a novel prompting method for
LLM-based reasoning. Unlike previous methods,
RankPrompt generates diverse reasoning paths
and instructs LLMs to select the optimal one. As
illustrated in Figure 1, RankPrompt diverges from
the well-established Direct Scoring method (Zheng
et al., 2023), which assesses candidates individu-
ally. Instead, our approach directs LLMs to perform
a comparative evaluation of candidates through
two essential components: step-aware comparison
instructions and comparison exemplars. The for-
mer decomposes the ranking problem into a series
of comparisons, using instructions such as “Let’s
compare the answers step by step”. The latter
component, comparison exemplars, leverages the
few-shot learning capabilities of LLMs to improve
ranking performance further. In contrast to previ-
ous methods requiring manual design of exemplars
(Wei et al., 2022b; Wang et al., 2023d), our ap-
proach tasks LLMs with generating multiple chains
of comparisons and selecting the chains yielding
correct ranking results as exemplars. These ex-
emplars guide LLMs to systematically compare dif-
ferent paths, thereby reducing the requirement for
labeled data and minimizing human intervention.

We evaluate RankPrompt across various arith-
metic, commonsense, and symbolic reasoning
benchmarks using ChatGPT. Empirical results
demonstrate that RankPrompt consistently outper-
forms CoT prompting, achieving an improvement
of up to 13% on the AQUA-RAT (Ling et al., 2017)
data. On more challenging tasks from BIG-Bench-
Hard (Suzgun et al., 2023), RankPrompt boosts the
performance of GPT-4 (OpenAI, 2023a), with gains
ranging from 5.2% to 9.2%. While our primary fo-
cus is on reasoning tasks, RankPrompt also excels
in assessing open-ended generation. Specifically,
it sets a new standard for LLM-based automatic
evaluation by achieving a 74% agreement rate with
human judgment on the AlpacaEval set. Remark-
ably, these impressive results can be obtained us-
ing a single exemplar, which underscores the effi-

cacy of RankPrompt. Our analysis demonstrates
that RankPrompt is robust to the order of candidate
answers. Overall, our findings highlight the impor-
tance of considering intermediate steps in ranking
tasks and establish RankPrompt as a promising
approach for improving LLM-based reasoning.

2. Related Work

There is a surge in research interest in the field of
LLMs due to their exceptional performance across
a wide array of tasks (Brown et al., 2020; Thoppi-
lan et al., 2022; Chowdhery et al., 2023; Hoffmann
et al., 2022; OpenAI, 2023b). A key aspect of LLMs
is their emergent abilities when provided with appro-
priate context (Wei et al., 2022a; OpenAI, 2023b;
Zhao et al., 2023), leading to their potential use
in reasoning and automatic evaluation. Here, we
briefly discuss related work in the two fields.

LLMs as Reasoners. Reasoning with Language
Models (LLMs) has become a popular research
topic. One promising methodology is Chain-of-
Thought (CoT) prompting, which encourages LLMs
to generate a chain of reasoning steps (called a rea-
soning path) before delivering a final answer. This
approach has been shown to improve the perfor-
mance of LLMs across various tasks. CoT prompt-
ing optimization generally falls into two categories.
The first focuses on enhancing the quality of indi-
vidual reasoning paths through prompt engineering.
For example, Kojima et al. (2022) find that specific
trigger words can significantly improve the zero-
shot reasoning performance of LLMs. Meanwhile,
Fu et al. (2023b) demonstrate that incorporating
complex exemplars into prompts can notably en-
hance the few-shot reasoning capabilities of LLMs.
However, these methods often necessitate care-
ful design and manipulation of prompts. The sec-
ond category involves generating multiple reason-
ing paths and applying specific strategies to se-
lect the most effective one. For example, Wang
et al. (2023d) use majority voting to select the final
results, while Li et al. (2023) and Lightman et al.
(2023) train step-aware verifiers to validate reason-
ing steps. Nonetheless, these methods also face
challenges. Majority voting lacks interpretability
and is prone to inconsistent final answers, while
training verifiers requires a significant amount of
labeled data. Our method addresses these limita-
tions while complementing existing strategies for
improving the quality of individual reasoning paths.

LLMs as Evaluators. Recent studies have ex-
plored the potential of LLMs in evaluating and refin-
ing their outputs. For instance, Liu et al. (2023) and
Wang et al. (2023b) utilize LLMs to assess the qual-
ity of text generation tasks such as summarization
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You are provided with a question and a series of potential responses.
Your assignment involves a systematic, step-by-step comparison
...

Q: Could Brooke Shields succeed at University of Pennsylvania?
A1: Brooke Shields is a renowned actress and model...
...
A5: Brooke Shields was accepted to Princeton University and...
Both A1 and A2 are largely speculative and do not provide concrete
evidence to support their claims. A4 is also speculative and does not
provide a definitive answer...
Based on this comparison, the best response is A3.

Q: Could a silverfish reach the top of the Empire State Building?
A1: Silverfish are small insects that can climb walls and surfaces...
....
A5: The Empire State Building is approximately 1,454 feet tall...
Let's compare the answers step by step.

All responses are relevant to the question, as they all discuss the
possibility of a silverfish reaching the top of the Empire State Building.
A2, A3, and A5 provide thorough explanations of why a silverfish...
However, ...
Based on this comparison, the best response is A5.

LLM

Comparison Exemplar

Test Input For Ranking

Comparison Instruction

Please act as an impartial judge and evaluate the quality of the
response provided by an AI assistant to the user question displayed
below. Your evaluation should consider factors such as the
helpfulness, relevance, accuracy, depth, creativity, and level of detail
of the response. Begin your evaluation by providing a short
explanation. Be as objective as possible.
After providing your explanation, you must rate the responses on a
scale of 1 to 10 by strictly following this format: ”[rating]", for
example: ” Rating: [5]".

Q: Could a silverfish reach the top of the Empire State Building?
A1: Silverfish are small insects that can climb walls and surfaces...

LLM

Test Input For Scoring

Scoring Instruction

A1: The response is partially correct... Rating: [6]
A2: The response is correct and relevant to the question... Rating: [7]
A3: This response is theoretical and considers the... Rating: [8]
A4: This response is accurate and relevant but... Rating: [6]
A5: The AI correctly identifies that... Rating: [6]

Best response: A3

(a) Direct Scoring (b) RankPrompt

Figure 1: An overview of Direct Scoring (Zheng et al., 2023) (left) and RankPrompt (right). Direct Scoring
independently assigns scores to each candidate, whereas RankPrompt ranks candidates through a
systematic, step-by-step comparative evaluation. We present the detailed instructions for comparison in
Table 2 and describe the construction of comparison exemplars in Section 3.2.2.

and machine translation. Similarly, Madaan et al.
(2023) use LLMs to iteratively refine outputs for
more complex tasks, such as acronym generation
and code optimization. Dubois et al. (2023) and
Zheng et al. (2023) show that, when equipped with
carefully designed prompts, GPT-4 exhibits a high
correlation with human preferences in judging the
quality of open-ended text generation. It is estab-
lished that LLM-based evaluators are cost-effective
and efficient alternatives to crowd annotators (Fu
et al., 2023a; Liu et al., 2023; Dubois et al., 2023;
Zheng et al., 2023). However, the challenge lies
in designing effective prompts to elicit the ranking
ability of LLMs, often requiring significant human ef-
fort and extensive interactions with LLMs (Liu et al.,
2023; Wang et al., 2023c,b). In this paper, we ex-
tend this line of research by developing a method
that leverages LLMs to automatically generate ex-
emplars for ranking, significantly reducing the need
for human intervention. Our study also contributes
to understanding how LLMs can be effectively uti-
lized for reasoning and automatic evaluation tasks.

3. Method

This section introduces RankPrompt, a two-stage
prompting framework for reasoning tasks. In the
first stage, we generate multiple diverse reasoning
paths, each potentially leading to a unique outcome.
Our focus primarily lies in the second stage, where

we re-rank these reasoning paths by comparing
their steps and selecting the optimal one as the
final answer.

3.1. Candidate Generation

The generation and aggregation of multiple reason-
ing paths have been proven to boost the perfor-
mance of reasoning models (Wang et al., 2023d;
Fu et al., 2023b). This process is similar to ensem-
ble learning, a well-established machine learning
method that combines the outputs of multiple mod-
els to improve overall accuracy and robustness
against individual errors (Dietterich, 2000).

Given a question q, we generate n reasoning
paths p = (p1, p2, . . . , pn), each potentially leading
to a different final answer. We use few-shot CoT
prompting (Wei et al., 2022b; Wang et al., 2023d) to
generate these reasoning paths and apply temper-
ature sampling (Ficler and Goldberg, 2017; Fan
et al., 2018) to encourage diversity among the
generated paths. Each reasoning path pi (where
i ∈ 1, . . . , n) corresponds to a set of final answers
r = (r1, r2, . . . , rn). We refer to the pairs (pi, ri),
where each reasoning path pi corresponds to a final
answer ri, as the candidates for question q. Hence,
the candidate generation process results in a set of
candidates Cq = {(p1, r1), (p2, r2), . . . , (pn, rn)} for
each question q. We then use the candidate set Cq

as the input for the subsequent ranking process.
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[Comparison Instruction]
You are provided with a question and a series of
potential responses.
Your assignment involves a systematic, step-by-
step comparison of the reasoning paths embed-
ded within each response.
This entails a thorough evaluation of each step’s
correctness and logical consistency.
After completing this all-encompassing assess-
ment, rank the responses in accordance with the
soundness of their respective reasoning paths.
Finally, select the best response and present it
on a separate line as the optimal solution.
[Comparison Example]
{Comparison Exemplars}
[Question]
{Question}
[Candidate Answers]
{Candidates}
[Comparison]
Let’s compare the answers step by step.

Table 2: The ranking template of RankPrompt. It
instructs LLMs to compare candidate answers step
by step and output in a specific format (marked in
red).

3.2. Candidate Ranking

3.2.1. Comparative Evaluation of Reasoning
Steps

A common approach to candidate ranking is to
evaluate each candidate individually (Zheng et al.,
2023; Wang et al., 2023c), a strategy we refer to as
Direct Scoring (Figure 1(a)). However, such an
approach often fails to account for the relative qual-
ity of different reasoning paths. For instance, LLMs
such as ChatGPT often assign identical scores to
candidates with similar reasoning steps, regard-
less of their differing outcomes (Dubois et al., 2023;
Zheng et al., 2023).

To address this limitation, we introduce a com-
parative evaluation method, which concatenates all
candidate reasoning paths with the original ques-
tion to form the ranking input. This input is then
processed by a ranking model, such as ChatGPT,
guided by a step-aware comparison instruction. As
presented in Table 2, the comparison instruction
directs the model to execute a sequential compari-
son process before giving the conclusion. It also
clarifies the required output format.

However, relying solely on comparison instruc-
tions, which we refer to as Zero Ranking, does not
fully leverage the in-context learning capabilities of
LLMs (Brown et al., 2020; Wei et al., 2022b). The
Zero Ranking method can sometimes lead to irrele-
vant outputs, failure to adhere to the desired output

Algorithm 1 Creation of Comparison Exemplars
Require: Labeled data set D = {(q1, a1), . . . , (qk, ak)},

where qi is a question and ai is the correct answer,
empty exemplar set E

Ensure: Comparison exemplar set E = (e1, . . . , ek)
1: procedure CreateExemplars(D)
2: for each data point (qj , aj) in D do
3: Generate a diverse candidate set Cqj for qj
4: Initialize ej as an empty exemplar
5: while ej has not been created for qj do
6: Generate a comparison chain cj using

Zero Ranking with (qj , Cqj )
7: if cj meets selection criteria then
8: Append ej = (qj , Cqj , cj) to E
9: break

10: return E

format, or only a partial consideration of candidates
(Sun et al., 2023; Qin et al., 2023b). To address
these issues, we enhance the ranking capabilities
of LLMs by incorporating comparison exemplars,
as shown in Figure 1(b).

3.2.2. Construction of Comparison
Exemplars

To fully exploit the in-context learning capabilities
of Language Model Machines (LLMs), we enhance
the instructions with high-quality examples. How-
ever, creating such examples can be a challenging
and time-consuming task (Lu et al., 2022; Liu et al.,
2022; Fu et al., 2023b). To address this issue, we
propose an automatic method for generating com-
parison examples, as shown in Algorithm 1.

Algorithm 1 initiates by iterating through a labeled
dataset D, creating a candidate set Cqj for every
question qj . It then continuously produces compar-
ison chains using Zero Ranking until it identifies a
chain that meets the selection criteria. Echoing the
approach of Zelikman et al. (2022), we select the
comparison chain that accurately leads to the an-
swer aj . This chosen chain, along with the question
and its candidate set, forms an exemplar ej , which
is subsequently added to the exemplar collection
E. This procedure is repeated for each question
until a suitable chain is found. Compared to previ-
ous methods, our approach requires only a minimal
amount of labeled data for each task. In Section 5,
we delve into the effects of exemplar selection on
the efficacy of the ranking process.

4. Experiment

4.1. Experimental Setups

Models. We evaluate our method using state-
of-the-art LLMs, including gpt-3.5-turbo and
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Method Arithmetic Commonsense Symbolic Avg.
AQUA GSM8K SVAMP ASDiv StrategyQA CSQA ARC LastLetter

CoT Prompting 58.51 75.89 80.10 87.07 72.88 74.12 85.26 74.40 76.03
Majority Voting 62.60 81.27 83.80 88.36 74.06 77.48 87.31 76.40 78.91
Direct Scoring 63.39 80.14 82.60 88.69 73.14 78.36 87.20 76.60 78.77
Zero Ranking 67.72 79.98 83.30 89.36 74.55 78.21 87.57 74.80 79.44
RankPrompt 71.65 82.43 84.30 90.12 76.07 79.20 87.42 77.60 81.10
Oracle 79.53 91.05 91.40 94.18 85.37 85.26 92.83 86.40 88.25

Table 3: Comparisons of the accuracy on 8 reasoning tasks with gpt-3.5-turbo. CoT Prompting uses
greedy decoding (temp=0), while other methods sample 5 candidates (temp=0.7). The best performance
for each task under the same settings is shown in bold.

gpt-4, via the OpenAI API1. Additionally, we test a
variant of ChatGPT, gpt-3.5-turbo-16k, which
supports an input length of up to 16K, to analyze
the impact of varying numbers of exemplars and
candidates. Our experimental evaluations were
carried out between August 1, 2023, and October
1, 2023.

Tasks and Datasets. We conduct experiments
with gpt-3.5-turbo across 8 widely-used rea-
soning tasks, spanning arithmetic, commonsense,
and symbolic reasoning. For arithmetic reason-
ing, we use 4 math word problem datasets: AQUA-
RAT (Ling et al., 2017), ASDiv (Miao et al., 2020),
GSM8K (Cobbe et al., 2021), and SVAMP (Patel
et al., 2021). For commonsense reasoning, which
requires multi-step problem-solving, we utilize ARC
Challenge (Clark et al., 2018), CommonsenseQA
(Talmor et al., 2019), and StrategyQA (Geva et al.,
2021). We evaluate symbolic reasoning with the
Last Letter Concatenation task (Wei et al., 2022b).
Given the high API cost2, we reserve gpt-4 for
3 challenging reasoning tasks from BIG-Bench-
Hard (Suzgun et al., 2023): Causal Judge, Log-
ical Deduction Seven Objects, and Formal Falla-
cies. Following Wang et al. (2023d), we report
the accuracy on the test set for all tasks except
CommonsenseQA, where we use the validation set.
Additionally, we test RankPrompt on AlpacaEval
(Dubois et al., 2023), a benchmark for measuring
LLM-based automatic evaluation of open-ended
generation. The benchmark comprises 805 instruc-
tions, each with a pair of responses and 4 human
preferences. We compare different methods us-
ing gpt-4 and report the level of agreement with
human preferences.

Candidate Generation Setups. For a fair com-
parison, we employ the same prompts created by

1https://platform.openai.com/docs/
api-reference

2https://openai.com/pricing

Wei et al. (2022b) and Suzgun et al. (2023) for can-
didate generation. We use a temperature of 0.7
to generate 5 reasoning paths as candidates. We
restrict our selection to 5 candidates, as increasing
this number yields only marginal performance im-
provements. Additionally, adding more candidates
would increase the API costs due to context expan-
sion. In Section 5.2, we thoroughly analyze the
impact of candidate numbers on the results.

Ranking Setups. We leverage language models
to rank their outputs. For each task, a task-specific
comparison exemplar is generated using the same
model utilized for candidate generation. These
exemplars systematically evaluate 5 unique candi-
date responses, ultimately guiding models to the
correct answer. Following this, we integrate these
exemplars into the ranking template, as detailed in
Table 2. Despite the diverse nature of tasks, we
maintain a uniform application of comparison in-
structions and task-specific exemplars, introducing
minor modifications to the output format depending
on the task type. We restrict our use of compar-
ison exemplars to a single one, as our findings
suggest that increasing the number of exemplars
has a negligible effect on improving performance
but significantly extends the input, often exceeding
the maximum length limit of OpenAI models. In
Section 5, we conduct a comprehensive examina-
tion of how various facets of comparison exemplars
influence the final performance.

Baselines. We compare our methods with 4
baseline methods: CoT Prompting (Wei et al.,
2022b), Majority Voting (Wang et al., 2023d), Direct
Scoring (Zheng et al., 2023), and Zero Ranking.
Majority Voting selects the answer that appears
most frequently. At the same time, Direct Scor-
ing uses the prompt template proposed by Zheng
et al. (2023) to evaluate candidates independently,
soliciting Large Language Models (LLMs) to rank
candidates on a scale from 1 to 10. Zero Ranking,

https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/api-reference
https://openai.com/pricing
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Method Logical
Deduction

Causal
Judge

Formal
Fallacies

CoT Prompting 57.60 69.52 76.80
Majority Voting 62.40 72.19 82.40
Direct Scoring 61.20 71.12 81.60
Zero Ranking 63.70 72.51 83.20
RankPrompt 66.80 74.73 84.40
Oracle 90.00 79.14 92.40

Table 4: Test accuracy on 3 challenging BBH tasks
using gpt-4 over 5 candidates.

the final baseline, employs the comparison instruc-
tion shown in Table 2, but excludes the comparison
exemplars.

4.2. Main Results
Table 3 summarizes the experimental results on
8 reasoning tasks using gpt-3.5-turbo. The
CoT Prompting method stands out as it employs
greedy decoding at a temperature of 0, while other
methods sample 5 candidates at a temperature
of 0.7. We also report the oracle results, which
represent the upper bounds of re-ranking, identified
by selecting the optimal response from all possible
candidates.

The results demonstrate that both the voting
and ranking methods considerably outperform CoT
Prompting. Majority Voting and Direct Scoring show
similar performance (averaging 78.91 and 78.77,
respectively), slightly falling behind Zero Ranking
(which averages 79.44). Notably, RankPrompt
emerges as the best-performing method, achieving
the highest scores in all categories except for ARC,
where all methods demonstrate comparable per-
formance. We also find that RankPrompt is more
effective for challenging tasks such as AQuA-RAT,
GSM8K, and CSQA. In particular, it significantly sur-
passes other methods on the AQuA-RAT dataset,
achieving a 13% improvement over CoT Prompt-
ing. These findings highlight the importance of
incorporating comparison exemplars in the rank-
ing process. Additionally, the Oracle results signal
considerable potential for future enhancements in
ranking methods.

4.3. Results on More Challenging Tasks
To further probe the performance on complex tasks,
we test various methods on 3 challenging BIG-
Bench Hard (BBH) tasks using gpt-4. We ap-
ply the prompt templates created by Suzgun et al.
(2023) for the CoT Prompting baseline and gener-
ate candidates with identical settings as described
in Section 4.2.

Table 4 shows the experimental results. We

Method Human Agreement Price
Inter-Human 65.70 $241.50
Direct Scoring 64.48 $11.19
AlpacaFarm 67.22 $12.35
Alpaca Evaluator 70.13 $14.23
Zero Ranking 71.67 $16.74
RankPrompt 74.33 $19.18

Table 5: Human agreements and cost on the test
set of AlpacaEval using gpt-4. Inter-Human de-
notes the average results of human annotators.

1 2 3 4
Candidate Answer Consistency

40
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Figure 2: RankPrompt performs much better than
majority voting when the candidate answers are
inconsistent. The results are obtained on AQuA-
RAT over 5 candidates using gpt-3.5-turbo.

observe that Majority Voting beats Direct Scor-
ing, yet falls short when compared to Zero Rank-
ing. RankPrompt emerges as superior over all
other methods, achieving performance improve-
ments ranging from 5.2% to 9.2% compared to CoT
Prompting. These results validate that RankPrompt
is highly effective for complex reasoning tasks.

4.4. Results on Inconsistent Candidates
The results mentioned above show that
RankPrompt consistently outperforms Major-
ity Voting across various tasks. We delve deeper
into the results of AQUA-RAT by categorizing
candidates based on their consistency. We
determine consistency by the frequency of major
answers among the candidates. Suppose we have
n candidates. When all candidates are identical,
the consistency reaches n, eliminating the need
for re-ranking. Conversely, in the most challenging
scenario where all candidates are unique, the
number of consistent answers drops to 1. We
conduct experiments with gpt-3.5-turbo on
the AQUA-RAT dataset, maintaining the same
settings as in Section 4.2.

Figure 2 illustrates that RankPrompt and Major-
ity Voting exhibit high accuracy when the answer
candidates are consistent, especially when there
are more than 3 consistent answers. However, the
performance dramatically drops when the number
of consistent answers is less than 3. Despite this
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decrease, RankPrompt notably outperforms the
voting method. These observations validate our
motivation that relying solely on the final answer
does not guarantee accurate identification of the
optimal candidate.

4.5. Results on Automatic Evaluation
In this section, we delve deeper into the effec-
tiveness of RankPrompt by examining its perfor-
mance in automatic evaluation tasks. We test
RankPrompt on the AlpacaEval benchmark intro-
duced by Dubois et al. (2023). This benchmark
comprises a test set of 805 instructions, each ac-
companied by pairs of responses, designed to as-
sess the instruction-following abilities of language
models. Our comparison incorporates Direct Scor-
ing (Zheng et al., 2023), AlpacaFarm, AlpacaEval
(Dubois et al., 2023), and Zero Ranking. We as-
sess the performance of each method by calcu-
lating the agreement rate with the majority of hu-
man preferences, a critical metric for understanding
how well each approach aligns with human judg-
ment. Additionally, we present a detailed analysis
of the costs associated with each method, includ-
ing the expenses related to human annotations
as reported by Dubois et al. (2023). We experi-
ment with gpt-4 and present the results in Table 5.
RankPrompt outperforms all other methods, achiev-
ing a 74.33% agreement rate with human evalua-
tors—Direct Scoring, however, trails by a significant
10% margin. Interestingly, LLM-based evaluators
not only yield superior results but also reduce cost
by more than 90% compared to crowd-sourced
annotators. These findings underscore the criti-
cal role of appropriate instructions and exemplars
when comparing candidate answers.

5. Analysis

In this section, we thoroughly study the factors that
influence ranking performance. Specifically, we
examine the effect of exemplars and candidate rea-
soning paths on ranking outcomes. We also an-
alyze the errors produced by different methods in
the complex arithmetic reasoning task. Through
this analysis, we aim to deepen the understanding
of our proposed method.

5.1. Impact of Comparison Exemplars
Exemplar correctness is the key to the perfor-
mance of RankPrompt. A fundamental compo-
nent of RankPrompt is its selection of comparison
paths that yield the correct answers. It has been
established that, in almost all cases, the interme-
diate steps generated by LLMs are also correct
when the final result of inference is accurate (Wang
et al., 2023a). Here, we aim to shed light on how
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Figure 3: Performance of RankPrompt with a cor-
rect example vs. an incorrect example when rank-
ing over 5 candidates. The results are obtained
with gpt-3.5-turbo.
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Figure 4: Test accuracy with varying complexity and
numbers of comparison exemplars. The results are
obtained on GSM8K (left) and CSQA (right) using
gpt-3.5-turbo-16k.

the accuracy of the comparison exemplars influ-
ences the overall effectiveness of our method. In
the experiments, we condition gpt-3.5-turbo
with no exemplars, correct exemplars, and incor-
rect exemplars, respectively. We adhere to the
settings specified in Section 4.2 for candidate gen-
eration and apply a single exemplar for ranking.
Our evaluation comprises 3 tasks: GSM8K, AQUA-
RAT, and StrategyQA. As illustrated in Figure 3,
the use of incorrect exemplars invariably compro-
mises the performance of the ranking, particularly
in more challenging tasks such as AQUA-RAT. On
the other hand, the application of correct exem-
plars consistently enhances the accuracy when
contrasted with the use of no exemplars or inconsis-
tent ones. These findings establish that choosing
the correct exemplars is essential for RankPrompt.

Exemplar complexity is much more important
than quantity. Beyond exemplar correctness, we
delve into the influences of complexity and quan-
tity on ranking performance. Intuitively, ranking
an expansive and diverse set of candidates inher-
ently possesses greater complexity. This complex-
ity may serve as a reflection of the depth and de-
tail involved in the ranking process. We utilize the
count of unique candidates involved in a single
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comparison exemplar as an indicator of its complex-
ity. We perform ranking over 5 candidates using
gpt-3.5-turbo-16k, which supports up to 16K
tokens. For instance, Figure 4 presents the results
from the GSM8K test set. "N-Cands" denotes an
exemplar that illustrates the ranking process across
N different candidates. The results reveal that the
complexity of exemplars is much more important
than the quantity. Remarkably, we find that employ-
ing a single complex exemplar is more effective
than using multiple simple exemplars.

5.2. Impact of Candidate Answers
We have demonstrated that RankPrompt is robust
to the inconsistency in candidate answers in Sec-
tion 4.4. Here, we further investigate the behaviors
of different methods by varying the number and
order of candidates.

Using more candidates offers minor benefits.
In our main experiments, we opt for 5 candidates,
partially due to the input length constraint of LLMs.
For instance, gpt-3.5-turbo has a 4096-token
limit. Here, we explore the impact of increasing
the number of candidates using gpt-3.5-turbo-
16k. We evaluate CoT Prompting, Majority Voting,
and RankPrompt on the test sets of GSM8K and
CSQA, varying the number of sampled reasoning
paths (1, 3, 5, 10, 15). As plotted in Figure 6, both
RankPrompt and Majority Voting show improved
performance with more candidates, but the gains
plateau beyond 5 reasoning paths. While further
increasing the number of candidates offers slight
improvements, it also significantly raises the cost.
Hence, we recommend using 5 candidates to make
trade-offs between performance and cost.

RankPrompt is robust to the ordering of can-
didates. A good evaluator should exhibit robust-
ness against variations in the order of candidate
answers. In this section, we investigate the robust-
ness of different ranking methods on the challeng-
ing BBH tasks. We employ the identical experi-
mental setup specified in Section 4.3 and run the
ranking process 3 times, with candidate orderings
being shuffled each time. Instead of reporting the
overall accuracy, which would gain from increas-
ing individual reasoning paths, we focus on the
prediction consistency across different methods.
Specifically, we regard a ranking as consistent if
it remains unchanged across all 3 iterations. As
depicted in Figure 5, RankPrompt exhibits greater
robustness compared to Zero Ranking when con-
fronted with variations in candidate orders. Specif-
ically, RankPrompt produces consistent rankings
ranging from 75% to 85% of the time. These re-
sults demonstrate that RankPrompt is a reliable

Logical Deduction Causal Judge Formal Fallacies65

70

75

80

85

C
on

si
st

en
cy

 R
at

e 
(%

)

Zero Ranking
RankPrompt

Figure 5: Consistency rates of Zero Ranking and
RankPrompt when ranking 5 candidates shuffled 3
times. The results are obtained with gpt-4.
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Figure 6: Test accuracy measured against vary-
ing numbers of reasoning paths. The results are
obtained on GSM8K (left) and CSQA (right) us-
ing gpt-3.5-turbo-16k. CoT Prompting uses
greedy decoding, while others employ sampling
(temp=0.7).

and robust judge for complex reasoning tasks.

5.3. Error Analysis
To gain further insights into how RankPrompt en-
hances the reasoning performance of language
models, we manually analyze the errors made by
RankPrompt and CoT Prompting on AQUA-RAT.
We utilize the same error categorizations as in
(Sawada et al., 2023) for the qualitative analysis
of the results in 3. In total, RankPrompt produces
72 errors, while CoT Prompting accumulates 105
errors. We find that RankPrompt mitigates all types
of errors identified in CoT Prompting. Interestingly,
both CoT Prompting and RankPrompt make a few
calculation errors (15 vs. 9). RankPrompt signifi-
cantly reduces errors caused by wrong approaches
(from 42 to 27) but proves less effective in mitigating
the impact of misinterpretation (from 17 to 14).

6. Conclusion

We have presented RankPrompt, a novel prompt-
ing method for selecting the optimal output from
a diverse set of reasoning paths generated by
LLMs. This method systematically steers LLMs to
compare potential answers, leveraging step-aware
comparison instructions and automated exemplars.
This approach confers three primary advantages:
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Error Type CoT Prompting RankPrompt
Calculation Error 15 9
Wrong Approach 42 27
Misinterpretation 17 14
Logical Error 31 22
Total Errors 105 72

Table 6: Error statistics on the AQUA-RAT dataset
using gpt-3.5-turbo.

(1) it eliminates the need for additional models and
human annotations, (2) it achieves strong perfor-
mance across a broad spectrum of reasoning and
automatic evaluation tasks, and (3) it is robust to
inconsistent reasoning paths. Our comprehensive
evaluation underscores that the precision and com-
plexity of comparison exemplars play a critical role
in ranking performance. Collectively, our findings
position RankPrompt as an effective strategy to
enhance the reasoning capabilities of LLMs.
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Limitations

Despite the impressive performance of our method,
its experiments has been limited to proprietary lan-
guage models. The lack of publicly accessible
training details for these models creates a signif-
icant barrier for researchers interested in pursu-
ing enhancements from a modeling standpoint. In
the future, we will enhance the ranking capabili-
ties of open-source models like LLaMA (Touvron
et al., 2023b,a) and Falcon (Penedo et al., 2023).
Learning from the explanations behind GPT-4’s
ranking decisions offers a promising path for explo-
ration. Additionally, while comparison exemplars in
prompts improves performance, they also signifi-
cantly increases the context size, leading to more
expensive API calls. A potential solution is to con-
dense the candidate paths by summarizing their
key points.
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