
LREC-COLING 2024, pages 1327–1338
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

1327

An Untold Story of Preprocessing Task Evaluation:
An Alignment-based Joint Evaluation Approach

Eunkyul Leah Jo1,2∗ Angela Yoonseo Park3∗ Grace Zhang1∗

Izia Xiaoxiao Wang4∗ Junrui Wang3∗ MingJia Mao3∗ Jungyeul Park3
1Department of Computer Science, The University of British Columbia, Canada

2Faculté des Sciences et Ingénierie, Sorbonne Université, France
3Department of Linguistics, The University of British Columbia, Canada

4Linguistik Zentrum Zürich, Universität Zürich, Schweiz
jungyeul@mail.ubc.ca

Abstract
A preprocessing task such as tokenization and sentence boundary detection (SBD) has commonly been considered
as NLP challenges that have already been solved. This perception is due to their generally good performance and
the presence of pre-tokenized data. However, it’s important to note that the low error rates of current methods
are mainly specific to certain tasks, and rule-based tokenization can be difficult to use across different systems.
Despite being subtle, these limitations are significant in the context of the NLP pipeline. In this paper, we introduce
a novel evaluation algorithm for the preprocessing task, including both tokenization and SBD results. This algorithm
aims to enhance the reliability of evaluations by reevaluating the counts of true positive cases for F1 measures in
both preprocessing tasks jointly. It achieves this through an alignment-based approach inspired by sentence and
word alignments used in machine translation. Our evaluation algorithm not only allows for precise counting of true
positive tokens and sentence boundaries but also combines these two evaluation tasks into a single organized
pipeline. To illustrate and clarify the intricacies of this calculation and integration, we provide detailed pseudo-code
configurations for implementation. Additionally, we offer empirical evidence demonstrating how sentence and word
alignment can improve evaluation reliability and present case studies to further support our approach.

Keywords:Tokenization, sentence boundary detection (SBD), alignment-based evaluation algorithm

1. Introduction
Recognizing and adjusting for errors is crucial to
achieve dependable outcomes in most computer-
based language tasks. However, this step often
does not get the attention it deserves because
there is a common practice of accepting some
level of errors. This lack of focus becomes even
more problematic during the initial stages of text
processing, particularly when dealing with tasks
like tokenization and sentence boundary detection
(SBD). Given that most commonly used prepro-
cessingmethods are generally recognized as well-
established and can be easily reused, people tend
to think that challenges like tokenization and SBD
have already been completely solved. However,
what often goes unnoticed is the fact that there has
been a longstanding lack of attention to the eval-
uation process, which has been underestimated
despite the apparent success of these tools.
In light of these points, there have been efforts
in the literature to address and improve the limi-
tations of tokenization and SBD. These efforts in-
volve extensive comparisons and detailed reeval-
uations, as seen in studies like Dridan and Oepen
(2012) for tokenization and Read et al. (2012) for
SBD. While their reevaluation results are compre-
hensive and convincing, they often lack clear and

∗Equally contributed authors.

adaptable configurations that others can use for
reimplementation.
When you examine these efforts side by side, it
becomes evident that the tasks of sentence and
word segmentation are closely related and com-
plement each other more than they are typically
considered as separate steps. In response to this,
some innovative sequence labeling methods, as
discussed in Evang et al. (2013), have been pro-
posed, showing promising results in terms of re-
producibility across various domains. However,
there are still noticeable challenges related to sen-
tence boundaries that may remain unresolved in
the evaluation process.
In this paper, we introduce a new evaluation al-
gorithm for preprocessing tasks, which we call
the jp-algorithm (a joint evaluation algorithm
for preprocessing). This algorithm utilizes an
alignment-based approach to enhance the accu-
racy of evaluation by addressing the previously
mentioned issues, which we refer to as ”mis-
matches” in preprocessing. Drawing inspiration
from alignment techniques used in machine trans-
lation (MT), our algorithm simplifies the extensive
evaluation process for both preprocessing tasks,
making it more efficient and accurate. This inte-
gration allows us to reevaluate key edge cases,
refining precision and recall for F1 measures in
the final evaluation results. These calculations are

1328

based on adjusted true positive counts after re-
alignment.
To emphasize the importance of reevaluating pre-
processing tasks, we begin by addressing certain
aspects that have been overlooked in tokenization
and SBD. We showcase the effectiveness of our
alignment method and illustrate the core compo-
nents of our approach with adjusted examples to
highlight the evaluation challenges faced in previ-
ous works (Section 2). To demonstrate the imple-
mentation of the jp-algorithm, we provide pseudo-
code and detailed explanations (Section 3). To
confirm the reliability and usefulness of our algo-
rithm, we carry out case studies. In these case
studies (Section 4), we assess the results obtained
from various existing preprocessing tools. This
evaluation helps us establish the effectiveness of
our approach before we summarize our findings
and conclude the paper (Section 5).

2. Mismatches in Preprocessing
2.1. Tokenization
The primary challenge in tokenization, as demon-
strated by several methods, revolves around han-
dling the ambiguity related to sentence periods
and contractions (Dridan and Oepen, 2012). For
instance, consider the sentence When No. 1 Isn’t
the Best1. Different tokenization schemes, such
as tok.sed2, Moses (Koehn et al., 2007), and
CoreNLP (Manning et al., 2014), tokenize the con-
traction and abbreviation of common words in this
sentence differently.

tok.sed When No⊔. 1 is⊔n’t the Best
Moses When No. 1 isn⊔’t the Best

CoreNLP When No. 1 is⊔n’t the Best

where ⊔ is a symbol for a token delimiter. Typ-
ically, periods are treated as individual tokens in
text processing. However, due to the common use
of word-final periods in conjunction with abbrevi-
ations, acronyms, and named entities, there is a
lack of consistency in how these cases are han-
dled. This inconsistency results in variations in
tokenization approaches for these words. While
there are various tokenization methods available,
CoreNLP results suggest that, in practice, the ter-
minal leaf nodes in the Penn treebank (Marcus
et al., 1993; Taylor et al., 2003) have become a
widely accepted standard tokenization scheme for
English.

1https://www.washingtonpost.com/archive/
sports/2004/05/26/when-no-1-isnt-the-best/
fa34156f-881a-4181-b0fe-4447e2f36f0e/

2ftp://ftp.cis.upenn.edu/pub/treebank/
public_html/tokenization.html

2.2. Sentence boundary detection
The task of sentence boundary detection involves
identifying the points where sentences start and
end. In many prior studies (Palmer and Hearst,
1997; Reynar and Ratnaparkhi, 1997; Kiss and
Strunk, 2006; Gillick, 2009; Lu and Ng, 2010), sen-
tence boundary disambiguation has been treated
as a classification problem. It is important to note
that sentence boundary disambiguation is distinct
from sentence boundary detection. The former re-
quires the use of punctuation marks for classifica-
tion, while the latter does not necessarily rely on
punctuation to determine sentence boundaries. A
significant challenge in sentence boundary disam-
biguation arises when dealing with text that lacks
consistent punctuation marks. To tackle this issue,
Evang et al. (2013) proposed a method involv-
ing supervised character-level sequence labeling
for both sentence and word segmentation. Addi-
tionally, Lim and Park (2024) annotated a dataset
with rich linguistic information to improve sentence
boundary detection. However, many common
sentence boundary detection systems, such as
splitta (Gillick, 2009), CoreNLP (Manning et al.,
2014), and Elephant (Evang et al., 2013), often fail
to correctly identify sentence boundaries in cases
where there are no punctuation marks between
two sentences, even when their methods are not
designed to rely on punctuation marks. For in-
stance, this issue can be observed between ...
session and I ... in the following text extracted from
the Europarl parallel corpus (Koehn, 2005):

Opening of the session I declare resumed
the 2000-2001 session of the European
Parliament.

Additionally, textual content often exhibits im-
proper formatting, including issues such as miss-
ing or incorrect punctuation, inconsistent casing,
and the presence of unnecessary symbols. For
instance, in social media text, individuals may
write in all uppercase or with incorrect punctua-
tion and casing, or entirely omit punctuation. In
the domain of automatic speech recognition (ASR)
where there are no punctuation marks, several
SBD-related works have been proposed (Treviso,
Shulby, and Aluísio, 2017; González-Gallardo and
Torres-Moreno, 2018). Punctuation restoration in
ASR has also been explored (Fu et al., 2021; Alam
et al., 2020; Poláček et al., 2023).

2.3. Evaluation
Methods for evaluating sentence boundary disam-
biguation and tokenization can be broadly catego-
rized into three main approaches:

Accuracy and error rate This method assesses
how accurately the boundaries are detected

https://www.washingtonpost.com/archive/sports/2004/05/26/when-no-1-isnt-the-best/fa34156f-881a-4181-b0fe-4447e2f36f0e/
https://www.washingtonpost.com/archive/sports/2004/05/26/when-no-1-isnt-the-best/fa34156f-881a-4181-b0fe-4447e2f36f0e/
https://www.washingtonpost.com/archive/sports/2004/05/26/when-no-1-isnt-the-best/fa34156f-881a-4181-b0fe-4447e2f36f0e/
ftp://ftp.cis.upenn.edu/pub/treebank/public_html/tokenization.html
ftp://ftp.cis.upenn.edu/pub/treebank/public_html/tokenization.html

1329

or tokens are separated, and quantifies the
rate of errors made.

Precision and recall for F1 Measure This ap-
proach focuses on measuring the precision
(how many of the detected boundaries or to-
kens are correct) and recall (how many of the
actual boundaries or tokens are detected).
The F1 measure is then calculated to balance
these two factors.

Levenshtein distance This method involves cal-
culating the Levenshtein distance, which rep-
resents the number of edits (insertions, dele-
tions, or substitutions) needed to transform
the detected boundaries or tokens into the
correct ones.

These three evaluation approaches help assess
the performance and accuracy of sentence bound-
ary detection and tokenization methods.
In previous SBD tasks, such as the one men-
tioned in Dridan and Oepen (2012), each char-
acter position is considered a potential boundary
point. If a gold-standard boundary is missed, it
is counted as a false negative. This imbalance
between negative and positive cases makes pre-
cision and recall for F1 evaluation metrics more
informative than accuracy or error rate metrics.
To address these issues, character-level methods
aim to facilitate the integration of evaluations be-
tween the two tasks, as proposed by Evang et al.
(2013). However, even at the character level, the
imbalance problem persists, especially in cases
where there are partial matches, which can lead
to miscounted true positive cases. For example,
in Figure 1, within the context of tokenization, a
perfect alignment between the system output and
the reference gold standard is observed, yielding
an F1 measure of 1.0 (100%). However, when
it comes to sentence boundary detection (SBD),
there’s a difference. Using previous methods,
Click here and To view it. are identified as two sep-
arate sentences in SBD, with two ”S” labels mark-
ing sentence boundaries under Click and To, as
shown in Figure 1. However, the first sentence
boundary marked by Click is essentially a partial
match, while the second part is separated into an-
other sentence by the second sentence boundary
marked by To.

Click here To view it.
sys SIIIIOTIIIOSIOTIIIOTIT
gold SIIIIOTIIIOTIOTIIIOTIT

Figure 1: BIO-style evaluation in previous work
where partial matched sentences (e.g Click here)
could be considered as true positive.

The proposed evaluation using the alignment al-
gorithm in this paper aims to prevent such partially

matched sentences from being incorrectly counted
during evaluation. This is achieved by incorporat-
ing sentence alignment methods borrowed from
machine translation (MT), addressing various pre-
processing issues along the way.

3. Alignment-based Evaluation
We begin by employing a fundamental algorithm
that leverages sentence and word alignment tech-
niques typically used in MT. In MT and other cross-
language applications, sentence and word align-
ment have been crucial sub-tasks. They are of-
ten employed when working with parallel corpora,
where sentences in one language need to be
aligned with their translations in another language.
This necessity arises from the fact that when two
sentences are direct translations of each other,
they can differ significantly in terms of word order,
length, and structure. Therefore, to enable down-
stream cross-language tasks, it’s often essential
to perform comprehensive structural adjustments
by establishing sentence and word alignments be-
tween the source and target languages. These
alignment methods, used to address inter-lingual
differences, shed light on the challenges we dis-
cuss in Section 2 regarding evaluation.
However, when dealing with monolingual inputs
from both the system and gold results, there are
no inter-lingual differences between sequences
on each side (L and R). Instead, these se-
quences are essentially identical sentences, dif-
fering only in terms of token and sentence bound-
aries. Nevertheless, when evaluating tokenization
and SBD tasks, they share a commonality with
cross-language tasks: for a corresponding sen-
tence pair from the system and gold results, even
if they are identical at the character level, they
can still vary in length across lines due to differ-
ences in tokenization and SBD results, as demon-
strated in the system result and gold file in
Figure 2. This is where the alignment approach
used in MT becomes useful in the evaluation al-
gorithm we propose. Figure 2 provides a simpli-
fied example of how our proposed evaluation, fa-
cilitated by the alignment process, would resolve
the partial match issue discussed in the previous
section.
While Figure 2 presents sentence alignment for
the evaluation of sentence boundary detection, a
same approach will be employed for tokenization
evaluation, utilizing word alignment.

3.1. Algorithm description
Notations To describe our proposed algorithms
more concisely and clearly, we’ll use the following
notations: L and R represent the system output
and the gold files for preprocessing, respectively.
We assume len(L ̸⊔) == len(R ̸⊔), where L ̸⊔ and

1330

input file:
Click here To view it. He makes some good ⊓
observations on a few of the picture's. ⊓
system result:
Click here ⊓
To view it⊔. ⊓
He makes some good observations on a few of the picture⊔'s⊔. ⊓
gold file:
Click here To view it⊔. ⊓
He makes some good observations on a few of the picture⊔'s⊔. ⊓
sentence-aligned result for preprocessing evaluation:
Click here ∼∼∼ To view it⊔. ⊓ Click here To view it⊔. ⊓
He makes some good observations on a few of
the picture⊔'s⊔. ⊓

He makes some good observations on a few of
the picture⊔'s⊔. ⊓

Figure 2: Example of intermediate results of the evaluation by alignment algorithm where Click here
and To view it. In the system result are the realigned, produced by merging after the implementation of
sentence alignment: ⊔ is a symbol for tokenization, ⊓ is a symbol for SBD, and ∼∼∼ is a symbol for
merged sentences by sentence alignment.

R ̸⊔ are sequences of characters with all spaces
removed from L and R. L and R denote the cur-
rent sentence pair from the system output and the
gold files. The following notations are also used
interchangeably for both L and R:

Csb(L) and Ctk(L): These represent the total
number of sentence boundaries (sb) and the
total number of tokens (tk) in L.

TPsb and TPtk: These denote the number of true
positives (tp) for sentence boundaries and to-
kens, respectively.

L⊔: This represents L where spaces between to-
kens have not been removed.

L ̸⊔: This represents L where spaces between to-
kens have been removed.

Li: It stands for the ith token in L⊔.

Evaluation measures To calculate an F1 score
for SBD, we need to have the total counts of
sentence boundaries in both the system output
and the gold standard (Csb(L) and Csb(R), respec-
tively), as well as the number of true positives for
sentence boundaries (TPsb). Precision and recall,
for example, are defined as follows, considering
sentence boundary detection:

precision =
relevant # of sb ∩ retrieved # of sb

retrieved # of sb

=
Csb(L) ∩ Csb(R)

Csb(L)
=

TPsb

Csb(L)

recall = relevant # of sb ∩ retrieved # of sb
relevant # of sb

=
Csb(L) ∩ Csb(R)

Csb(R)
=

TPsb

Csb(R)

To apply in the algorithm, ‘relevant # of sb ∩
retrieved # of sb’ represents TPsb, ‘retrieved # of

sb’ is Csb(L) by a system result, and ‘relevant # of
sb’ is Csb(R) by a gold file. The same precision and
recall can be defined for tokenization using Ctk(L),
Ctk(R) and TPtk.

Sentence alignment for SBD evaluation In
MT, sentence alignment involves identifying cor-
responding sentences in two or more languages
and linking sentences from one language to their
corresponding counterparts in another. Sentence
alignment has been a subject of study for many
years, leading to the development of various al-
gorithms. Early research in this area relied on
statistical methods that used bilingual corpora to
create models capturing the lexical equivalence
between words in different languages. For in-
stance, the Gale-Church algorithm, based on sen-
tence length, was one such approach (Gale and
Church, 1993). Bleualign introduced a more
advanced iterative bootstrapping approach build-
ing on length-based methods (Sennrich and Volk,
2011). Earlier approaches also aimed to enhance
sentence alignment methodologies by incorporat-
ing lexical correspondences, as seen in hunalign
(Varga et al., 2005). Some attempts involved
the integration of linguistic knowledge, heuristics,
and various scoring methods to improve efficiency,
as demonstrated by vecalign (Thompson and
Koehn, 2019).
The proposed alignment algorithm processes L
andR and increments the TPsb count if L ̸⊔ is equal
to R ̸⊔. However, when they do not match, the al-
gorithm merges sentences in L′ and R′ for mis-
matched sentence pairs until L′ and R′ are identi-
cal (practically, this is done until the following L ̸⊔
and the following R ̸⊔ are identical instead of veri-
fying L′ and R′ being identical). After this merging
process, the algorithm continues to increment TPsb
if L ̸⊔ is equal to R ̸⊔.

1331

Word alignment for tokenization evaluation
In MT, word alignment methodologies are em-
ployed to establish correspondences between
words in one language and their direct transla-
tions in another. Widely used IBM models, along
with tools like giza++ (Brown et al., 1993; Och
and Ney, 2000) or BerkeleyAligner (Liang et al.,
2006; DeNero and Klein, 2007), are capable of
aligning words.
In the context of our evaluation algorithm, we in-
crement the TPtk count in the word-aligned L⊔
and R⊔ pair if Li is equal to Rj , where Li and
Rj represent the i-th and j-th tokens in L⊔ and
R⊔, respectively. While IBM word alignment can
be adapted for token alignment within our evalu-
ation approach, our focus lies in aligning tokens
within the specific sentence pair expected to be
identical, rather than traversing the entire doc-
ument as IBM models are designed to find the
proper lexical translation pair between sentence
pairs. For our evaluation algorithm, token align-
ment only needs to traverse each aligned sen-
tence pair within L⊔ and R⊔, directly assessing
token equivalence within the corresponding sen-
tence pair.
Summary Drawing an analogy from sentence
and word alignment, we introduced an alignment-
based algorithm that significantly enhances the ef-
ficiency of evaluating sentence boundary detec-
tion (SBD) and tokenization results. This algorithm
allows us to evaluate both tasks in a single pass
through the input. Through the alignment of sen-
tences and tokens, we can streamline the evalu-
ation process, resulting in more precise counts of
true positive cases for both tokenization and SBD
results.

3.2. Pseudo-codes
Alignment algorithm The alignment algorithm
is employed in two key scenarios: (a) to align
sentences between the system and the gold re-
sults, and (b) to align tokens within the current
sentence pair. Once the alignment is established,
we can conduct a side-by-side comparison be-
tween the system and gold results. This compari-
son allows us to discern and integrate all the inter-
twined matched and mismatched cases between
sentence boundary detection (SBD) and tokeniza-
tion. Algorithm 1 provides a generic representa-
tion of the alignment algorithm, which we can apply
to both sentence boundary and tokenization eval-
uation. The inner while statement, where mis-
matches are addressed, is part of an iterative pro-
cess controlled by the outer while loop, which it-
erates through each element. The time complex-
ity of this algorithm is O(N + N ′), where N and
N ′ represent the lengths of the left and right sen-
tences (L and R), respectively. Additionally, this

algorithm is applicable to tokens.

Algorithm 1: Alignment algorithm
while L and R do

if Li == Rj then
TP++;

else
L′ += Li;
R′ += Rj ;
while Li+1 ̸= Rj+1 do

if len(L′) > len(R′) then
j++;
R′ += Rj ;

else
i++;
L′ += Li;

end
end

end
i++;
j++;

end

Implementations We provide two comprehen-
sive implementations of the algorithm: one as a
basic algorithm (Algorithm 2) and another as a joint
algorithm (Algorithm 3). In Algorithm 2, the evalu-
ation procedure distinguishes between sentence
boundary detection (SBD) and tokenization. Its
time complexity is O(2N +4NM), whereN repre-
sents the number of sentences andM denotes the
number of tokens in each sentence. We assume
that N ≃ N ′ and M ≃ M ′ for the left (L) and right
(R) sentences, respectively. This version simpli-
fies notations by removing indexes i and j. During
the alignment of sentences, we obtain TPsb. Sub-
sequently, in the second outer while loop, we ob-
tain TPtk during word alignment, where L′

i,i′ rep-
resents the i′-th token in the i-th sentence of L′.
Both iteration processes resemble those in Algo-
rithm 1. In contrast, Algorithm 3 processes SBD
and tokenization jointly, reducing the time com-
plexity to O(4NM). We maintain the assumption
that N ≃ N ′ and M ≃ M ′ for L and R.

Examples Figure 3 provides examples to illus-
trate the jp-algorithm in different scenarios. In
the first case, where L ̸⊔ matches R ̸⊔, we obtain
true positive instances for sentence boundaries,
denoted as TPsb. The second case depicts con-
ditions where true positive sentence boundaries
are not present. In such instances, the algorithm
proceeds to build L′ and R′ if a sentence is seg-
mented and requires merging (which we consider
sentence alignment). After merging, these sen-
tences should align correctly, and we identify the
true positives among these pairs. To count the

1332

Algorithm 2: Basic algorithm
Data: L, R
Result: Csb(L), Ctk(L), Csb(R), Ctk(R), TPsb,

TPtk
Obtain Csb(L), Ctk(L) from L and Csb(R),
Ctk(R) from R;
while L and R do

/** Obtain TPsb **/
if Li ̸⊔ == Rj ̸⊔ then

TPsb++;
L′, R′ += Li, Rj ;

else
while Li+1 ̸⊔ ̸= Rj+1 ̸⊔ do

L′ += Li;
R′ += Rj ;

end
L′, R′ += L′, R′

end
end
while L′ and R′ do

/** Obtain TPtk **/ if Li⊔ == Rj⊔ then
TPtk += len(Li⊔);

else
while Li⊔ and Rj⊔ do

TPtk++ if Li,i′ == Rj,j′ ;
end

end
end

number of true positives for tokens between L and
R, we obtain TPtk if Li == Rj . Figure 4 provides a
detailed breakdown of how to evaluate and count
the number of true positives (TP) for tokens. This
is done using the same alignment method as pre-
viously explained for sentence alignment.

Discussion The length-based sentence align-
ment algorithms, like the one described by
Gale and Church (1993, p.83), typically consider
matches in the ratios of 1:0, 0:1, 1:1, 2:1, 1:2, and
2:2. However, we need to account for cases where
the system segments a sentence into more than
two sentences or where gold sentence boundaries
are segmented into more than two sentences. In
other words, even after using sentence alignment,
the segmented results of L ̸⊔ andR ̸⊔ may still differ
from each other if we apply pre-existing sentence
alignment algorithms from MT. To address this, we
accumulate and merge L andR together until their
characters match, resulting in L′ == R′ instead of
using MT’s alignment algorithm. As described in
Algorithm 3, the ’else’ condition (when L ̸⊔ ̸= R ̸⊔)
entails aggregating L′ and R′ to form a matched
sentence pair between L and R. This process al-
lows for the accumulation of pairs such as m:1,
1:n, or m:n sentence segments.

Algorithm 3: Joint algorithm
Data: L, R
Result: Csb(L), Ctk(L), Csb(R), Ctk(R), TPsb,

TPtk
Obtain Csb(L), Ctk(L) from L and Csb(R),
Ctk(R) from R;
while L and R do

/** Obtain TPsb **/
if Li ̸⊔ == Rj ̸⊔ then

TPsb++;
/** Obtain TPtk **/
if Li⊔ == Rj⊔ then

TPtk += len(L);
else

while Li⊔ and Rj⊔ do
TPtk++ if Li,i′ == Rj,j′ ;

end
end

else
while Li+1 ̸⊔ ̸= Rj+1 ̸⊔ do

L′ += Li;
R′ += Rj ;

end
while L′

⊔ and R′
⊔ do

TPtk++ if L′
i′ == R′

j′ ;
end

end
end

3.3. Proof
We refer a perfect sentence alignment pair toL ̸⊔ =
R ̸⊔. We also consider L′

̸⊔ = R′
̸⊔ as another perfect

matched pair by accumulating unmatched lines of
L and R if L ̸⊔ ̸= R ̸⊔. We investigate such align-
ment implementations as it can achieve L′ and R′

where L ̸⊔
′ == R ̸⊔

′.

3.3.1. Soundness
The algorithm is sound when each premise is true
and can return a true answer, resulting in a tautol-
ogy. By the Soundness Theorem, the Algorithm
A is sound through the following three cases. Let
L,R, L′, R′ ∈ A.

Case 1 Algorithm 3 is sound if L ̸⊔ ⊢ L implies
L ̸⊔ |=taut L and R ̸⊔ ⊢ R implies R ̸⊔ |=taut R.

Case 2 Algorithm 3 is sound if (L ̸⊔&L⊔) ⊢ L im-
plies (L ̸⊔&L⊔) |=taut L and (R ̸⊔&R⊔) ⊢ R implies
(R ̸⊔&R⊔) |=taut R.

Case 3 Algorithm 3 is sound if L ̸⊔ ⊢ L′ implies
L ̸⊔ |=taut L

′ and R ̸⊔ ⊢ R′ implies R ̸⊔ |=taut R
′.

3.3.2. Correctness
To prove the correctness of L′ == R′, let L′ =
Li...Ln and R′ = Rj ...Rm for some i, j, n,m ∈
Z≥0.

1333

L (system) R (gold)
L ̸⊔ == R ̸⊔ When No. 1 Isn 't the Best ⊓ When No. 1 Is n't the Best ⊓ TP
L ̸⊔ ̸= R ̸⊔ Mike McConnell 07/06/2000 14:57 John , Mike McConnell ⊓

(before alignment) Hello from South America . ⊓ 07/06/2000 14:57 ⊓
John , Hello from South America . ⊓

(after alignment) Mike McConnell 07/06/2000 14:57 John , Mike McConnell ∼∼∼ 07/06/2000 14:57 -
Hello from South America . ⊓ ∼∼∼ John , Hello from South America. ⊓

Figure 3: Examples with the jp-algorithm in Algorithm 3 for true positive of sentences. If not, merging
sentence boundaries.

L (system) When No. 1 Isn ∼∼∼ 't the Best
R (gold) When No. 1 Is ∼∼∼ n't the Best

TP TP TP - TP TP

Figure 4: Examples for true positive of tokens. If not, merging tokens.

Case 4 Li+1 == Rj+1. For any i and j, we know
that i + 1, j + 1 ≥ 0 such that i, j ∈ Z≥0. Hence,
for Li+1 and Rj+1 to have the same value, i and j
will remain in the domain. This will allow Li+1 and
Rj+1 to accumulate together.

Case 5 Ln+1 == Rm+1. We know for any n and
m, n+1 andm+1 are positives. Since n,m ∈ Z≥0,
Ln+1 and Rm+1 are able to accumulate together.

Therefore, the statement L′ == R′ is true.

4. Experiments and Results
4.1. Case study on English corpora
For our case studies, we conduct preprocessing
on five raw input files sourced from English Uni-
versal Dependencies (Nivre et al., 2016, 2020).
These files include: (1) Universal Dependencies
syntax annotations from the GUM corpus. (2) Amul-
tilingual parallel treebank known as ParTUT, devel-
oped at the University of Turin. (3) A gold stan-
dard Universal Dependencies corpus for English,
constructed using the source material of the En-
glish Web Treebank (EWT). (4) The English portion
of the parallel Universal Dependencies (PUD) tree-
banks. (5) The English half of the LinES Paral-
lel Treebank. (6) A dataset specifically created for
pronoun identification (Pronouns).
We employ the nltk library (Loper and Bird, 2002;
Bird et al., 2009) along with its word_tokenizer
and sent_tokenizer for both sentence boundary
detection (SBD) and tokenization tasks. We also
utilize the stanza toolkit (Qi et al., 2020), which
is a natural language processing toolkit based
on Dozat’s biaffine attention dependency parser
(Dozat and Manning, 2017). This toolkit includes
a standard tokenizer with built-in sentence bound-
ary detection, enabling us to generate text and
CoNLL-U format3 outputs. We use these out-
puts to evaluate preprocessing results using our

3https://universaldependencies.org/format.
html

alignment-based evaluation algorithm. Further-
more, we juxtapose our evaluation findings with
those of prior methods, such as the evaluation
script utilized in the CoNLL 2018 Shared Task (Ze-
man et al., 2018), employing the CoNLL-U format
outputs generated by stanza.
Both nltk and stanza handles tokenization and
sentence boundary detection similarly in some as-
pects. For instance, they both split words like
gift’s into two tokens, gift and ’s, and treat peri-
ods as separate tokens. However, they differ in
their treatment of certain contentious areas, such
as words containing dashes. For example, in the
case of search-engine found in EWT, nltk consid-
ers it as one token, while stanza separates it into
three tokens: search⊔-⊔engine. Another differ-
ence arises in how they identify sentence bound-
aries, especially in cases where the text lacks cap-
italized beginnings or period endings. This am-
biguity is more pronounced in sentences without
clear markers. Table 1 presents the results of
case studies, including the numbers of true pos-
itives (TP), false positives (FP), and false nega-
tives (FN) for both sentence boundaries and to-
kens. These results were obtained using the pro-
posed alignment-based evaluation algorithm with
both nltk and stanza. Additionally, we provide
the results of the CoNLL evaluation script, which
was applied to the SBD and tokenization results
produced by stanza and formatted in CoNLL-U
format.
The previous evaluation method also utilized pre-
cision and recall for F1 measures as evaluation
metrics, relying on true positives (TP), false posi-
tives (FP), and false negatives (FN). In the CoNLL
2018 Shared Task evaluation script,4 both tokens
and sentences are treated as spans. In the case
of a character-level mismatch in the positions of
spans between the system output and the gold
file, the script adjusts by skipping to the next to-
ken in the file with the smaller start value until

4https://universaldependencies.org/conll18/
conll18_ud_eval.py

https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
https://universaldependencies.org/conll18/conll18_ud_eval.py
https://universaldependencies.org/conll18/conll18_ud_eval.py

1334

GUM ParTUT EWT PUD LinES Pronouns
TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN

sbd nltk & jp 845 137 251 149 2 4 1084 349 993 976 26 24 865 141 170 285 0 0
stanza & jp 1038 38 58 144 6 9 1805 160 272 998 4 2 912 128 123 285 0 0
stanza* & conllu 1038 38 58 144 6 9 1805 160 272 998 4 2 912 128 123 285 0 0

tk nltk & jp 19443 351 462 3345 27 63 24176 1109 918 20733 251 443 17571 56 104 1673 16 32
stanza & jp 19791 118 114 3381 20 27 24724 286 370 21162 18 14 17517 380 158 1649 28 56
stanza* & conllu 19791 118 114 3381 20 27 24724 286 370 21162 18 14 17517 380 158 1649 28 56

Table 1: Numbers of TP (true positive), FP (false positive) and FN (false negative) using nltk and
stanza for sentence boundaries and tokens. The stanza* line provides result numbers by the CoNLL-U
evaluation script.

the positions align. This process is also applied
to sentence boundaries. The start and end val-
ues of sentence spans are compared between the
system and the gold file, with matching values in-
crementing the count of correctly matched sen-
tences (true positive sentence boundaries). How-
ever, in our alignment-based evaluation method,
this process is limited to the aligned sentence
pair, ensuring accuracy in the counts. Any mis-
counted true positives can significantly impact the
evaluation results negatively. Therefore, this pa-
per addresses these issues in the existing evalua-
tion scripts, highlighting them as sources of mis-
matches, and suggests adjusted alternatives to
enhance the reliability of sentence preprocessing
evaluation.
Due to the differing characters in these represen-
tations, our character-level evaluation of both nltk
and stanza preprocessing results may not cap-
ture such cases accurately. The lack of consensus
on tokenization across different corpora, including
Universal Dependencies, contributes to the mis-
match issue. Notably, EWT tokenizes can’t as
ca and n’t, while ParTUT tokenizes it as can and
not. We identified variations in the representa-
tion of contractions like can’t and ain’t. These
contractions can be expressed in multiple ways,
where EWT tokenizes can’t as ca and n’t, while
ParTUT tokenizes it as can and not. The same
issue can arise when converting ”starting quotes”
(``) and ”ending quotes” ('') in the corpus into
straight quotes (") in nltk, resulting in discrepan-
cies. Since the number of contractions and sym-
bols to convert, such as quotes, in a language is
limited, we have created an exception list for our
system to capture such cases in English. During
the final stages of our implementation, we cross-
check against the exception list to ensure that ev-
ery case can be correctly handled by the proposed
algorithm. As a result, the algorithm effectively ad-
dresses the preprocessing mismatches discussed
in Section 2, which could otherwise disrupt our
evaluation procedures.

4.2. Case study on Multilingual corpora
While we have addressed tokenization mis-
matches, such as the representation of contrac-
tions, other tokenization issues may arise from

morphological segmentation or analysis, where
additional morphemes can be introduced during
the analysis rather than through mechanical to-
ken segmentation. Table 2 presents the results of
case studies using seven GSD corpora (McDon-
ald et al., 2013) in UD, which have been provided
by Google. Our results closely align with those
suggested by the CoNLL UD evaluation script, ex-
cept for French. In FrenchGSD, tokenization often
combines several units into a single token. For ex-
ample, the expression de 1 000 mètres (‘of 1,000
meters’) is treated as three tokens instead of four,
as spaces are used to separate the words. No-
tably, this discrepancy is not a limitation of the pro-
posed algorithm but rather stems from differences
in tokenization conventions between plain text and
the richCoNLL-U format. Even when the input text
is de 1 000 mètres, with 1 and 000 separated, it is
tokenized as separated in plain text. Such exam-
ples occur across various treebanks. For exam-
ple, in UD_Kurmanji-MG, phrases like dagir kiriye
(‘occupied’) are tokenized as a single unit.

4.3. Discussion and limitation
The effectiveness of the proposed word align-
ment approach would remain unaffected even
in the presence of significant morphological mis-
matches. For example, we trace back to the sen-
tence in Hebrew described in Tsarfaty et al. (2012)
as a word mismatch example caused by morpho-
logical analyses:
gold 0B 1.0H ∼∼∼ 1.1CL 2FL 3HM 4.0H ∼∼∼ 4.1NEIM

’in’ ’the’ ’shadow’ ’of’ ’them’ ’the’ ’pleasant’
sys 0B 1CL 2FL 3HM 4HNEIM

’in’ ’shadow’ ’of’ ’them’ ’made-pleasant’

Pairs of {1.0H 1.1CL, 1CL} (’the shadow’) and
{4.0H 4.1NEIM, 4HNEIM} (’the pleasant’) are word-
aligned using the proposed algorithm, and we can
obtain 4/5 and 4/7 for precision and recall using the
proposed method. The CoNLL evaluation script is
unable to assess such mismatches because the
concatenation of tokens in gold file and in sys-
tem file differ.5 Unfortunately, we were unable
to find real-world examples of morphological mis-
matches from GSD treebanks. Since stanza has
been trained on UDs, it would produce UD-friendly

5This is an actual UDError message.

1335

DE ES FR ID JA KO PT
TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN

sbd stanza & jp 787 110 190 373 35 53 393 23 23 515 35 42 541 5 2 629 143 360 1161 71 39
stanza* & conllu 787 110 190 373 35 53 393 23 23 515 35 42 541 5 2 629 143 360 1161 71 39

tk stanza & jp 16172 61 52 11705 33 28 9714 17 22 11523 9 18 12750 361 284 11332 184 345 29311 52 50
stanza* & conllu 16172 61 52 11705 33 28 9710 19 23 11523 9 18 12750 361 284 11332 184 345 29311 52 50

Table 2: Numbers of TP , FP and FN using stanza for sentence boundaries and tokens for multilingual
case studies using UD_*-GSD where * is German, Spanish, French, Indonesian, Japanese, Korean, and
Portuguese.

results without discrepancies. Therefore, we view
this area as a potential subject for future investiga-
tion.
Given the absence of consensus evaluation meth-
ods for tokenization and sentence boundary de-
tection, as well as the lack of direct approaches to
evaluate preprocessing outcomes, a comprehen-
sive comparison with previous work is unfeasible.
Instead of utilizing the plain text format, where con-
ventional preprocessing tools are typically applied,
we opt to perform comparisons using the CoNLL-
U evaluation script in the CoNLL-U format, which
offers representational advantages over plain text,
such as representing tokenization results like 1
000 as a single token.
We have expanded our alignment-based evalua-
tion approach to include other tasks, such as eval-
uating constituency parsing results. The widely
used evalb script has traditionally been employed
for evaluating the accuracy of constituency parsing
results, albeit with the requirement for consistent
tokenization and sentence boundaries. We align
sentences and words when discrepancies arise
to to overcome several known issues associated
with evalb by utilizing the ‘jointly preprocessed
alignment-based method (Jo et al., 2024). The
proposed approach will also be applicable to vari-
ous sentence-based evaluation metrics, including
POS tagging, machine translation, and grammati-
cal error correction.

5. Conclusion
While most existing tokenization and sentence
boundary detection (SBD) implementations
are generally considered suitable for direct re-
implementation, it is important to note that when
they are applied to new use cases, many mis-
counted true positives are likely to be overlooked.
As a result, these inaccuracies remain hidden
and not immediately apparent in the intermedi-
ate preprocessing results. However, these text
segmentation tasks play a fundamental role in
sentence processing. Any unnoticed inaccuracies
at these early stages can potentially be magnified
in downstream NLP tasks, significantly affecting
the entire NLP pipeline. This issue of miscounted
true positives is a largely unacknowledged as-
pect of sentence preprocessing. By introducing
sentence and word alignments into the proposed

pipeline, we can better identify and reassess
such hidden but prevalent inaccuracies in the
foundational preprocessing steps. Through the
jp-algorithm, we can focus on addressing mis-
matches that occur during crucial preprocessing
procedures and accurately count the true pos-
itives during evaluation. All codes and results
from the case studies can be accessed at https:
//github.com/jungyeul/jp-preprocessing/.

6. Ethics Statement
We would like to affirm that our research or project
has been conducted in accordance with ethical
guidelines and standards. We have thoroughly
reviewed and addressed all relevant ethical con-
siderations, and we can confidently state that
we have no ethical concerns associated with our
work.

7. Acknowledgements
This research is based upon work partially sup-
ported by Students as Partners for Eunkyul Leah
Jo and Grace Zhang.

8. Bibliographical References

Tanvirul Alam, Akib Khan, and Firoj Alam.
2020. Punctuation Restoration using Trans-
former Models for High-and Low-Resource Lan-
guages. In Proceedings of the Sixth Workshop
on Noisy User-generated Text (W-NUT 2020),
pages 132–142, Online. Association for Compu-
tational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python.
O’Reilly Media, Newton, Massachusetts, United
States.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
Mathematics of Statistical Machine Translation:
Parameter Estimation. Computational Linguis-
tics, 19(2):263–311.

John DeNero and Dan Klein. 2007. Tailoring Word
Alignments to Syntactic Machine Translation. In
Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics, pages

https://github.com/jungyeul/jp-preprocessing/
https://github.com/jungyeul/jp-preprocessing/
https://doi.org/10.18653/v1/2020.wnut-1.18
https://doi.org/10.18653/v1/2020.wnut-1.18
https://doi.org/10.18653/v1/2020.wnut-1.18
http://shop.oreilly.com/product/9780596516499.do
https://aclanthology.org/J93-2003
https://aclanthology.org/J93-2003
https://aclanthology.org/J93-2003
https://aclanthology.org/P07-1003
https://aclanthology.org/P07-1003

1336

17–24, Prague, Czech Republic. Association for
Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep Biaffine Attention for Neural Dependency
Parsing. In Proceedings of the 5th International
Conference on Learning Representations (ICLR
2017), Toulon, France. The International Con-
ference on Learning Representations (ICLR).

Rebecca Dridan and Stephan Oepen. 2012. Tok-
enization: Returning to a Long Solved Problem
— A Survey, Contrastive Experiment, Recom-
mendations, and Toolkit —. In Proceedings of
the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Pa-
pers), pages 378–382, Jeju Island, Korea. As-
sociation for Computational Linguistics.

Kilian Evang, Valerio Basile, Grzegorz Chrupała,
and Johan Bos. 2013. Elephant: Sequence La-
beling for Word and Sentence Segmentation. In
Proceedings of the 2013 Conference on Empir-
ical Methods in Natural Language Processing,
pages 1422–1426, Seattle, Washington, USA.
Association for Computational Linguistics.

Xue-Yong Fu, Cheng Chen, Md Tahmid Rahman
Laskar, Shashi Bhushan, and Simon Corston-
Oliver. 2021. Improving Punctuation Restora-
tion for Speech Transcripts via External Data. In
Proceedings of the Seventh Workshop on Noisy
User-generated Text (W-NUT 2021), pages
168–174, Online. Association for Computational
Linguistics.

William A. Gale and Kenneth W. Church. 1993. A
Program for Aligning Sentences in Bilingual Cor-
pora. Computational Linguistics, 19(1):75–102.

Dan Gillick. 2009. Sentence Boundary Detection
and the Problem with the U.S. In Proceedings of
Human Language Technologies: The 2009 An-
nual Conference of the North American Chapter
of the Association for Computational Linguistics,
Companion Volume: Short Papers, pages 241–
244, Boulder, Colorado. Association for Compu-
tational Linguistics.

Carlos-Emiliano González-Gallardo and Juan-
Manuel Torres-Moreno. 2018. WiSeBE:
Window-based Sentence Boundary Evaluation.
In Advances in Computational Intelligence:
Proceedings of the17th Mexican International
Conference on Artificial Intelligence (Part II),
MICAI 2018, pages 119–131, Guadalajara,
Mexico. Springer International Publishing.

Eunkyul Leah Jo, Angela Yoonseo Park, and
Jungyeul Park. 2024. A Novel Alignment-based
Approach for PARSEVAL Measures. Computa-
tional Linguistics, pages 1–10.

Tibor Kiss and Jan Strunk. 2006. Unsuper-
vised Multilingual Sentence Boundary Detec-
tion. Computational Linguistics, 32(4):485–525.

Philipp Koehn. 2005. Europarl: A Parallel Corpus
for Statistical Machine Translation. In Proceed-
ings of The Tenth Machine Translation Summit
X, pages 79–86, Phuket, Thailand. International
Association for Machine Translation.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, Chris Dyer, Ondrej Bojar,
Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open Source Toolkit for Statistical Ma-
chine Translation. In Proceedings of the 45th
Annual Meeting of the Association for Computa-
tional Linguistics Companion Volume Proceed-
ings of the Demo and Poster Sessions, pages
177–180, Prague, Czech Republic. Association
for Computational Linguistics.

Percy Liang, Ben Taskar, and Dan Klein. 2006.
Alignment by Agreement. In Proceedings of
the Human Language Technology Conference
of the {NAACL}, Main Conference, pages 104–
111, New York City, USA. Association for Com-
putational Linguistics.

Kyungtae Lim and Jungyeul Park. 2024. Real-
world Sentence Boundary Detection usingMulti-
Task Learning: A Case Study on French. Natu-
ral Language Engineering, 30(1):150–170.

Edward Loper and Steven Bird. 2002. NLTK:
The Natural Language Toolkit. In Proceed-
ings of the ACL-02 Workshop on Effective Tools
and Methodologies for Teaching Natural Lan-
guage Processing and Computational Linguis-
tics, pages 63–70, Philadelphia, Pennsylvania,
USA. Association for Computational Linguistics.

Wei Lu and Hwee Tou Ng. 2010. Better Punctu-
ation Prediction with Dynamic Conditional Ran-
dom Fields. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, pages 177–186, Cambridge,
MA. Association for Computational Linguistics.

Christopher Manning, Mihai Surdeanu, John
Bauer, Jenny Finkel, Steven Bethard, and David
McClosky. 2014. The Stanford CoreNLP Natu-
ral Language Processing Toolkit. In Proceed-
ings of 52nd Annual Meeting of the Association
for Computational Linguistics: System Demon-
strations, pages 55–60, Baltimore, Maryland.
Association for Computational Linguistics.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a Large An-

http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
http://www.aclweb.org/anthology/P12-2074
http://www.aclweb.org/anthology/P12-2074
http://www.aclweb.org/anthology/P12-2074
http://www.aclweb.org/anthology/P12-2074
http://www.aclweb.org/anthology/D13-1146
http://www.aclweb.org/anthology/D13-1146
https://doi.org/10.18653/v1/2021.wnut-1.19
https://doi.org/10.18653/v1/2021.wnut-1.19
https://aclanthology.org/J93-1004
https://aclanthology.org/J93-1004
https://aclanthology.org/J93-1004
http://www.aclweb.org/anthology/N/N09/N09-2061
http://www.aclweb.org/anthology/N/N09/N09-2061
https://doi.org/10.1007/978-3-030-04497-8
https://doi.org/10.1007/978-3-030-04497-8
https://doi.org/10.1162/coli_a_00512
https://doi.org/10.1162/coli_a_00512
http://aclweb.org/anthology/J/J06/J06-4003.pdf
http://aclweb.org/anthology/J/J06/J06-4003.pdf
http://aclweb.org/anthology/J/J06/J06-4003.pdf
http://www.aclweb.org/anthology/P07-2045
http://www.aclweb.org/anthology/P07-2045
https://aclanthology.org/N06-1014
https://doi.org/https://doi.org/10.1017/S1351324922000134
https://doi.org/https://doi.org/10.1017/S1351324922000134
https://doi.org/https://doi.org/10.1017/S1351324922000134
https://doi.org/10.3115/1118108.1118117
https://doi.org/10.3115/1118108.1118117
https://aclanthology.org/D10-1018
https://aclanthology.org/D10-1018
https://aclanthology.org/D10-1018
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://aclanthology.org/J93-2004

1337

notated Corpus of English: The Penn Treebank.
Computational linguistics, 19(2):313–330.

Ryan McDonald, Joakim Nivre, Yvonne
Quirmbach-Brundage, Yoav Goldberg, Di-
panjan Das, Kuzman Ganchev, Keith Hall, Slav
Petrov, Hao Zhang, Oscar Täckström, Claudia
Bedini, Núria Bertomeu Castelló, and Jungmee
Lee. 2013. Universal Dependency Annotation
for Multilingual Parsing. In Proceedings of
the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2:
Short Papers), pages 92–97, Sofia, Bulgaria.
Association for Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christo-
pher D. Manning, Ryan McDonald, Slav Petrov,
Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty,
and Daniel Zeman. 2016. Universal Depen-
dencies v1: A Multilingual Treebank Collection.
In Proceedings of the Tenth International Con-
ference on Language Resources and Evalua-
tion (LREC 2016), page 1659–1666, Portorož,
Slovenia. European Language Resources As-
sociation (ELRA).

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Jan Hajič, Christopher D. Manning,
Sampo Pyysalo, Sebastian Schuster, Francis
Tyers, and Daniel Zeman. 2020. Universal
Dependencies v2: An Evergrowing Multilingual
Treebank Collection. In Proceedings of the 12th
Language Resources and Evaluation Confer-
ence, pages 4034–4043, Marseille, France. Eu-
ropean Language Resources Association.

Franz Josef Och and Hermann Ney. 2000. Im-
proved Statistical Alignment Models. In Pro-
ceedings of the 38th Annual Meeting of the As-
sociation for Computational Linguistics, pages
440–447, Hong Kong. Association for Compu-
tational Linguistics.

David D. Palmer and Marti A. Hearst. 1997.
Adaptive Multilingual Sentence Boundary
Disambiguation. Computational Linguistics,
23(2):241–267.

Martin Poláček, Petr Červa, Jindřich Žďánský, and
Lenka Weingartová. 2023. Online Punctuation
Restoration using ELECTRA Model for stream-
ing ASR Systems. In Proceedings of INTER-
SPEECH 2023, pages 446–450, Dublin, Ire-
land. International Speech Communication As-
sociation.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason
Bolton, and Christopher D Manning. 2020.

Stanza: A Python Natural Language Process-
ing Toolkit for Many Human Languages. In Pro-
ceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics: System
Demonstrations, pages 101–108, Online. Asso-
ciation for Computational Linguistics.

Jonathon Read, Rebecca Dridan, Stephan
Oepen, and Lars Jørgen Solberg. 2012. Sen-
tence Boundary Detection: A Long Solved
Problem? In Proceedings of COLING 2012:
Posters, pages 985–994, Mumbai, India. The
COLING 2012 Organizing Committee.

Jeffrey C. Reynar and Adwait Ratnaparkhi. 1997.
A Maximum Entropy Approach to Identifying
Sentence Boundaries. In Proceedings of the
Fifth Conference on Applied Natural Language
Processing, pages 16–19, Washington, DC,
USA. Association for Computational Linguistics.

Rico Sennrich and Martin Volk. 2011. Itera-
tive, MT-based Sentence Alignment of Parallel
Texts. In Proceedings of the 18th Nordic Confer-
ence of Computational Linguistics (NODALIDA
2011), pages 175–182, Riga, Latvia. Northern
European Association for Language Technology
(NEALT).

Ann Taylor, Mitchell Marcus, and Beatrice San-
torini. 2003. The Penn Treebank: An Overview.
In Anne Abeillé, editor, Treebanks: Building and
Using Parsed Corpora, pages 5–22. Springer
Netherlands, Dordrecht.

Brian Thompson and Philipp Koehn. 2019. Ve-
calign: Improved Sentence Alignment in Linear
Time and Space. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 1342–1348,
Hong Kong, China. Association for Computa-
tional Linguistics.

Marcos Treviso, Christopher Shulby, and San-
dra Aluísio. 2017. Evaluating Word Em-
beddings for Sentence Boundary Detection in
Speech Transcripts. In Proceedings of the 11th
Brazilian Symposium in Information and Human
Language Technology, pages 151–160, Uber-
lândia, Brazil. Sociedade Brasileira de Com-
putação.

Reut Tsarfaty, Joakim Nivre, and Evelina Ander-
sson. 2012. Joint Evaluation of Morphological
Segmentation and Syntactic Parsing. In Pro-
ceedings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
2: Short Papers), pages 6–10, Jeju Island, Ko-
rea. Association for Computational Linguistics.

https://aclanthology.org/J93-2004
https://aclanthology.org/P13-2017
https://aclanthology.org/P13-2017
https://www.aclweb.org/anthology/L16-1262%0A
https://www.aclweb.org/anthology/L16-1262%0A
https://www.aclweb.org/anthology/2020.lrec-1.497
https://www.aclweb.org/anthology/2020.lrec-1.497
https://www.aclweb.org/anthology/2020.lrec-1.497
http://www.aclweb.org/anthology/N/N09/N09-1069
http://www.aclweb.org/anthology/N/N09/N09-1069
http://aclweb.org/anthology/J/J06/J06-4003.pdf
http://aclweb.org/anthology/J/J06/J06-4003.pdf
https://doi.org/10.21437/Interspeech.2023-664
https://doi.org/10.21437/Interspeech.2023-664
https://doi.org/10.21437/Interspeech.2023-664
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
http://www.aclweb.org/anthology/C12-2096
http://www.aclweb.org/anthology/C12-2096
http://www.aclweb.org/anthology/C12-2096
https://doi.org/10.3115/974557.974561
https://doi.org/10.3115/974557.974561
https://aclanthology.org/W11-4624
https://aclanthology.org/W11-4624
https://aclanthology.org/W11-4624
https://doi.org/10.1007/978-94-010-0201-1{_}1
https://doi.org/10.18653/v1/D19-1136
https://doi.org/10.18653/v1/D19-1136
https://doi.org/10.18653/v1/D19-1136
https://www.aclweb.org/anthology/W17-6618
https://www.aclweb.org/anthology/W17-6618
https://www.aclweb.org/anthology/W17-6618
http://www.aclweb.org/anthology/P12-2002
http://www.aclweb.org/anthology/P12-2002

1338

Dániel Varga, Lázló Németh, Péter Halácsy, An-
drás Kornai, Viktor Trón, and Viktor Nagy. 2005.
Parallel corpora for medium density languages.
In Proceedings of the RANLP (Recent Ad-
vances in Natural Language Processing), pages
590–596, Borovets, Bulgaria.

Daniel Zeman, Jan Hajič, Martin Popel, Mar-
tin Potthast, Milan Straka, Filip Ginter, Joakim
Nivre, and Slav Petrov. 2018. CoNLL 2018
Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. In Proceed-
ings of the CoNLL 2018 Shared Task: Multilin-
gual Parsing from Raw Text to Universal Depen-
dencies, pages 1–21, Brussels, Belgium. Asso-
ciation for Computational Linguistics.

https://doi.org/10.18653/v1/K18-2001
https://doi.org/10.18653/v1/K18-2001
https://doi.org/10.18653/v1/K18-2001

	Introduction
	Mismatches in Preprocessing
	Tokenization
	Sentence boundary detection
	Evaluation

	Alignment-based Evaluation
	Algorithm description
	Pseudo-codes
	Proof
	Soundness
	Correctness

	Experiments and Results
	Case study on English corpora
	Case study on Multilingual corpora
	Discussion and limitation

	Conclusion
	Ethics Statement
	Acknowledgements
	Bibliographical References

