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Abstract
Data annotation is crucial for machine learning, notably in technical domains, where the quality and quantity of annotated data,
significantly affect effectiveness of trained models. Employing humans is costly, especially when annotating for multi-label
classification, as instances may bear multiple labels. Active Learning (AL) aims to alleviate annotation costs by intelligently
selecting instances for annotation, rather than randomly annotating. Recent attention on transformers has spotlighted the
potential of AL in this context. However, in practical settings, implementing AL faces challenges beyond theory. Notably, the
gap between AL cycles presents idle time for annotators. To address this issue, we investigate alternative instance selection
methods, aiming to maximize annotation efficiency by seamlessly integrating with the AL process. We begin by evaluating two
existing methods in our transformer setting, employing respectively random sampling and outdated information. Following
this we propose our novel method based on annotating instances to rebalance label distribution. Our approach mitigates biases,
enhances model performance (up to 23% improvement on f1score), reduces strategy-dependent disparities (decrease of nearly
50% on standard deviation) and reduces label imbalance (decrease of 30% on Mean Imbalance Ratio).

Keywords: active learning, transformers, wait time, label distribution

1. Introduction

Data annotation is a focal point in both machine and
deep learning (Fredriksson et al., 2020) as the accu-
racy of trained models often hinges on the quantity and
quality of the annotated data available. The annotation
process, especially in technical domains, is a resource-
intensive endeavor, necessitating human involvement,
and in some cases, expertise (Wu et al., 2021). This
holds even more true with multi-label classification
(Zhang, 2022), where each instance may be associated
with multiple labels. The primary objective of Active
Learning (AL) lies in mitigating the cost of data anno-
tation (Wang et al., 2021) by judiciously selecting and
limiting the data to be annotated. Instead of annotating
data in a random manner, AL strategies prioritize the
selection of optimal data subsets for annotation, aim-
ing to maximize the model’s information gain during
subsequent training steps. These chosen data subsets
are then annotated by human oracles. These two steps
iteratively repeat until a designated stopping criterion
is met. The effectiveness of an AL strategy is directly
linked to the value of interacting with a human oracle.

The notion of AL in the context of multi-label tasks
holds particular interest for research (Liu et al., 2021),
especially in addressing challenges such as label imbal-
ance (Tarekegn et al., 2021). Indeed, there is often
an imbalance among various labels within a dataset,
as well as within individual labels themselves (the ra-
tio of positive to negative representation of a label).
This imbalance makes it harder to correctly train mod-
els. Moreover, AL tends to perpetuate, and sometimes
exacerbate, this imbalance when selecting data for an-

notation (Attenberg and Ertekin, 2013). Furthermore,
recent findings (Wertz et al., 2022) underscore that
many existing AL strategies for this task do not seam-
lessly apply on transformers. Indeed, recent advance-
ments in deep architectures (Vaswani et al., 2017) have
prompted investigations around applying AL on trans-
formers. Transformers are well-suited for uncertainty-
based AL due to the fact that these strategies induced
less computational overhead than other state-of-the-art
strategies (Schröder et al., 2022).

In practical work settings, when aiming to imple-
ment AL into workflows, both theoretical and practi-
cal challenges emerge. Research predominantly delves
into theoretical concerns like devising the better strat-
egy to evaluate informativeness and select one instance
to annotate over another (Settles, 2009) and overlooks
human-in-the-loop or strategic aspects of this solution.
Nonetheless, intriguing research avenues lie within
practical challenges as well. For instance, a major hur-
dle in implementing AL in practice is the lack of cer-
tainty regarding the effectiveness of a given strategy on
an unknown dataset as strategy performance is dataset-
linked (Wertz et al., 2022). Furthermore, our back-
ground in applying AL has revealed that when used in
conjunction with transformers, the time between two
AL cycles can become relatively high. Depending on
hardware capabilities and the size of unlabeled datasets,
this waiting time can reduce or even negate any bene-
fits brought by the implementation of AL. We are then
faced with a dilemma: "either increase hardware costs
to reduce this waiting time or pay for annotators wait-
ing time". In AL, we target resource-constrained sce-
narios, where limited access to annotators can corre-
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lates with computer resource constraints. The cost of
machine learning today lies in both annotation and the
computational resources required for model training,
making the idea of reducing training/inference time
through more powerful computers impractical. Our
approach sidesteps this dilemma by implementing an
alternative method to annotate parallel to AL to keep
annotators engaged while AL scores are calculated,
thereby avoiding wait times and the need for more com-
putation power.

Surprisingly, very little research (Zhang et al., 2022)
has been conducted to determine which sampling meth-
ods can harmoniously coexist with AL to maximize the
entirety of annotation time, rather than just the portion
dedicated to AL. Consequently, we explore multiple
alternative methods along different AL strategies and
show that our realistic workflow reduces some of the
biases of AL highlighted in previous studies such as
sampling redundant instances (Citovsky et al., 2021).
We also present a new approach that not only can be
utilized in conjunction with AL and effectively elimi-
nates annotator wait times, but also enhances the per-
formance of the trained model. Moreover, it reduces
the importance of the strategy choice as model perfor-
mances are close irrespective of the chosen AL strategy.
Finally, it also addresses another challenge inherent to
the multi-label classification tasks: the uneven distribu-
tion of labels.

Our work contributions are fourfold: 1. Providing
a workflow to eliminate waiting time for the annotator
during AL cycles. 2. Rebalancing label distribution
during annotation. 3. Reducing differences in perfor-
mance between different AL strategies. 4. Improving
performances over six classical AL strategies, for two
models and four datasets.

2. Related Work
Multi-label classification poses a unique set of chal-
lenges in the realm of AL due to the inherent imbalance
often observed within multi-label datasets (Tarekegn
et al., 2021). The imbalance issue becomes twofold:
not only do certain labels occur more frequently than
others within the dataset, but the distribution of pos-
itive and negative instances for each label can also
vary significantly (Ben-Baruch et al., 2021). This en-
tails that AL may inadvertently bias the model towards
frequently occurring labels or worsen the imbalance
problem by selecting predominantly one class of in-
stances (Attenberg and Ertekin, 2013). Inspirational
work can be found in the realm of multi-class classi-
fication coupled with AL, where, if imbalance thresh-
olds are reached during the standard AL cycle, it is
paused, and rebalancing steps are executed (Aggarwal
et al., 2020). The same authors have also delved into
addressing this imbalance directly throughout the en-
tire AL cycle by only selecting instance scores from
minority classes (Aggarwal et al., 2021).

The remarkable success of transformers (Vaswani

et al., 2017) in various natural language processing and
computer vision tasks has led to a surge in research
dedicated in integrating AL principles with these ar-
chitectures. While some studies (Ein-Dor et al., 2020;
Lu and MacNamee, 2020) have demonstrated that AL
can effectively mitigate biases during the initial stages
of model training, other preliminary results by D’Arcy
and Downey (2022) suggested that applying AL on
transformers leads to training instability. Drawing
inspiration from the insights of Lu and MacNamee
(2020), our focus centers on the study of uncertainty-
based strategies for AL within the framework of trans-
formers. The most comprehensive study of the use of
uncertainty-based AL strategies within the transformer
context (Schröder et al., 2022) reveals substantial per-
formance variations between different active strategies.
Moreover, AL strategies are highly dependent on the
used dataset. Those results are in line with results on
the extreme multi-label task (Wertz et al., 2022). High-
lighting one of the current main weaknesses of AL : the
lack of evidence in achieving a substantial benefit from
its implementation (Ren et al., 2022).

Annotation resources can be budgeted on a per-
annotation or per-hour basis, and in the latter case, it
becomes imperative to ensure a continuous supply of
instances for annotation without causing unnecessary
waiting time (Monarch et al., 2021). This motivation
first led to the development of batch-mode AL (Set-
tles, 2011), which provides instances in batches, reduc-
ing the frequency of model updates. Selecting AL in-
stances in batches aligns well with how transformers
are trained. However, Citovsky et al. (2021) demon-
strated that annotation of redundant instances is one
risk of batch-mode AL. Moreover, even in batch-mode
AL, there remains a waiting time for the annotator dur-
ing the model update between annotated batches. Some
approaches (Haertel et al., 2010), partially address this
issue by introducing a parallel process to AL that offers
instances for annotation based on their informativeness
from previous AL cycles, at the cost of reduced accu-
racy. In contemporary scenarios where models and un-
labeled datasets are becoming larger, waiting time is
no longer primarily induced by model updates but by
model inference on the extensive unlabeled set (Zhang
et al., 2022). To mitigate this induced waiting time,
Tsvigun et al. (2022) focus on subsampling, where only
a part of the unlabeled set is inferred at each AL cy-
cle. The work of Ashrafi Asli et al. (2020) explores
AL strategies with pre-calculated features for instance
pre-clustering. While promising, we aim to further ex-
plore these approaches with the goal of not only miti-
gating but completely eliminating waiting times for an-
notators.

3. Eliminating AL’s waiting time
In AL, we target resource-constrained scenarios, where
limited access to annotators often correlates with com-
puter resource constraints. With transformer models,
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Figure 1: Classic AL cycle without a parallel sampling
method to avoid annotator’s waiting time

inherent waiting times stem from model predictions on
the unannotated dataset, scaling with dataset size. Com-
pared to this, uncertainty-based AL calculations and
model updates are relatively swift. Indeed, from our
practical experiments conducted using a distilled vari-
ant of BERT (Sanh et al., 2019), a dataset of 100,000
unannotated text instances, and an Nvidia V100 (32
GB), we noticed that the average duration between two
active learning cycles is roughly 5 minutes. This du-
ration comprises approximately 25 seconds for model
updates and about 15 seconds for active learning calcu-
lations, which can vary by approximately 10 seconds
depending on the chosen strategy.

Although we can reduce waiting times by using aug-
mented computational power, it’s not realistic to com-
pletely eliminate them that way. So, in the regular
AL cycle (shown in Figure 1), we assume that anno-
tators will always have to wait for a noticeable amount
of time. To optimize this waiting time and optimize
the annotation budget, we suggest using methods to
pick which data to annotate that do not necessitate
an up-to-date model incorporating the latest annotated
data. By employing alternative annotation methods, we
thereby obtain a modified AL cycle (shown in Figure 2),
where annotators consistently possess data for annota-
tion, eliminating waiting time.

Furthermore, these alternative methods must swiftly
select data instances for annotation and deliver them
for annotation before annotators complete annotating
the set supplied by AL. Within our experimental frame-
work, we assume annotators work at a constant speed
and waiting time between AL cycles are constant. Data
annotated by alternative methods is incorporated into
AL cycles. At each AL update, there is a proportion α
of instances composing the batch that come from alter-
native sampling method and a proportion 1−α that has
been selected following an AL strategy.

When α = 0, it represents the ideal and unrealistic

Figure 2: AL cycle with an alternative sampling
method to avoid annotator’s waiting time

scenario depicted in most AL literature, where waiting
time is not taken into account, and all annotated data
comes from AL strategy selection. When α = 1, it
represents a case where we do not perform any AL and
thus, deviates from our use case.

Hence, we assess two alternative methods, namely,
Random and Stale (Haertel et al., 2010), along-
side introducing our method Eq_label, designed to
Equilibrate the labels annotated in order to improve
performance.

3.1. Random sampling
Random sampling is a frequently used baseline in AL,
where instances needing annotation are picked at ran-
dom from the pool of unlabeled data. In our frame-
work, we can easily apply this selection method, choos-
ing data for annotation randomly while the annotator
waits between AL cycles. This approach is worth study-
ing because recent findings have demonstrated that ran-
dom sampling is a robust baseline when AL is applied
to transformer models.

Indeed, some AL strategies have selection biases, re-
sulting in chosen data lacking diversity among them.
This may lead to redundancy and even model bias
among the selected data, despite AL’s inherent focus on
selecting the most informative data for annotation. By
employing random sampling, we purposefully choose
varied and dissimilar data, providing a countermeasure
against redundancy and potential bias. Additionally,
this method incurs minimal computational overhead.

3.2. Stale uncertainty sampling

An alternate approach for selecting data for annotation
involves utilizing the AL scores from the preceding
cycle, essentially employing "stale" informativeness
scores (Haertel et al., 2010). Consequently, a training
batch is composed of two halves: one derived from AL
computations based on the model’s predictions prior to
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updating, and the other derived from AL selection fol-
lowing the model’s update. This entails selecting less
ranked data w.r.t to their informativeness scores. Fur-
thermore, this alternative method also carries the risk
of amplifying the shortcomings of certain AL strate-
gies, possibly exacerbating their associated biases like
information redundancy or label imbalance in selected
batches.

3.3. Rebalancing label distribution

In this alternative method for selecting data for annota-
tion, we use outdated scores of informativeness, more
precisely scores of uncertainty. However, in contrast to
the previous method (seen in part 3.2), we do not select
data on which the model is most uncertain; instead, we
choose data on which the model is most certain. The
underlying premise behind this idea arises from the ob-
servation that between each model update during AL
cycles, the instances on which the model is most un-
certain change significantly, whereas the instances on
which the model is confident in its predictions remain
relatively consistent. In other words, the staleness of
uncertainty is far greater than that of certainty.

By weighting uncertainty scores with the probabil-
ity of the instance being labeled with a rare label (de-
tailed in Section 3.3.1), we achieve a more uniform la-
beling across different labels. Reducing the label dis-
parity not only enhances overall performance but can
also be a desired criterion in projects aiming for equal
performance across all labels. To mitigate label im-
balance, we rely on label presence probabilities, and
inherently, instances on which the model is uncertain
are those where these probabilities are least informa-
tive. Moreover, it’s reasonable to assume that having
batches containing both certain and uncertain instances
will naturally encourage diversity, as they are likely dif-
ferent, thus enhancing the learning accuracy.

3.3.1. Eq_label method definition

We want to obtain an interest score for an instance to
determine which instances are likely to have the most
interesting labels. An instance is considered interesting
if its labeling helps rebalance the labels we have anno-
tated, or in other words, if this instance is labeled with
rare labels.

Notation-wise, we denote our text instances as
x1, ..., xn and our label space as l = l1, ..., lq . For a
given instance xi we represent its probability-like pre-
dicted label distribution by yi = [y1i , ..., y

q
i ], y

j
i ∈ [0, 1]

where the more yji is close to 1, the more the model is
confident that xi is labeled as lj and where the more yji
is close to 0, the more the model is confident that xi is
not labeled as lj .

Our calculation method consists of the product of
two factors. The first factor represents the model’s con-
fidence in its label predictions for an instance, and the
second factor is a score associated with which labels

the model assigns to this instance. The higher the rarity
of the labels, the higher this score becomes.

Let the first factor of the final product be the certainty
score ci (inverse of the uncertainty scores calculated by
uncertainty-based AL strategy seen in part 4.2) associ-
ated with the instance xi.

The second factor of the final product is calculated
through a series of calculation steps. Let L(t) =
[L(t)1, . . . , L(t)q] with L(t)j be the sum of instances
annotated positively with label j at time t.

And, let ω(t) = [ω(t)1, . . . , ω(t)q] be the interme-
diate weighting vector, where ω(t)j = (max(L(t)) +
L(t)j)/(2 · L(t)j) if L(t)j ̸= 0.

The cases where L(t)j = 0 are computed in a subse-
quent step to equal 2 ·max(ωj

t ). At this stage, the rarer
a label is, the higher its associated ω(t)j .

To stabilize our method and make the comparison
more reliable among different instances, we normalize
the obtained scores. Let ω′(t) = [ω′(t)1, . . . , ω′(t)q]
be the normalized weighting vector, with ω′(t) =
softmax(ω(t)).

Finally, we get the second factor of the final product
be the label equilibrating score e(t)i associated with the
instance xi at time t, we have: e(t)i=

∑q
j=1 y

j
i · ω′(t)j .

This equilibrating score contributes to the instance’s
interest score (higher scores are selected to be anno-
tated), which is given by score(t)i = ci · e(t)i.

4. Experiments

Various values of alpha may be explored in future ex-
periments. However, based on our empirical investiga-
tions, if one aims for regular model updates and, there-
fore, more precise AL, only around half of the anno-
tation time can be allocated to AL. In our work, aside
from the initial training batch (an initial random model
initialization), we set α = 0.5 and all data batches used
for model training are thus equally composed of data
from our alternative method and data from AL.

In our experiments, multi-label AL consists in the
following process: first, our models are initialized by
training them with 25 randomly selected instances. Fol-
lowing (Schröder et al., 2022), we then perform 50 it-
erations of AL where each batch is composed of 25
instances, thus a total of 1250 annotated instances is
collected. To meet our target of α = 0.5, at each it-
eration, the batch consists of 12 instances selected by
an alternative method and 13 instances chosen through
an active learning strategy. After each iteration, we fur-
ther train the model with the newly annotated batch of
instances.

4.1. Dataset

Table 1 showcases the characteristics of the four
datasets utilized. Cardinality represents the average
number of labels per instance, while density is obtained
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Table 1: Features of the benchmark datasets

Name Labels Training Test Cardinality Density
Jigsaw_toxic 6 159,571 63,978 0.222 0.037
Go_emotions 27 43,410 5,427 0.848 0.031
EUR_Lex 4,271 55,000 5,000 4.526 0.036
UNFAIR-ToS 8 5,532 1,607 0.124 0.016

by dividing the cardinality by the total number of in-
stances.

We have selected these datasets to conduct our ex-
periments on texts that exhibit variations in the level of
language used (ranging from offensive language to le-
gal text, encompassing social media comments) as well
as variations in the number of labels associated with
each instance (ranging from 6 to 100).

The Jigsaw toxic comment classification (Jig-
saw_Toxic) dataset originates from a Kaggle competi-
tion1, aiming to detect and classify six distinct types of
toxicity prevalent in online content. Instances are ex-
tracted from comments on Wikipedia pages. The vari-
ous labels, corresponding to different forms of toxicity,
often exhibit correlations (for instance, all instances of
’severe toxicity’ also bear the ’toxicity’ label). Nearly
90% of dataset instances display no form of toxicity,
hence are unassociated with any label.

Go_Emotions is a dataset consisting of Reddit com-
ments2 labeled across 27 emotion categories like
’anger’ or ’curiosity’ (Demszky et al., 2020). Slightly
over 30% of instances are labeled as ’neutral’, signify-
ing an absence of labels.

EUR_Lex57K (EUR_Lex) stands as a dataset com-
posed of legal texts (Chalkidis et al., 2021) sourced
from the corresponding website3.

UNFAIR - Terms of Services (UNFAIR-ToS) is a
dataset comprising texts annotated with eight types of
unfair contractual terms (Lippi et al., 2018). These
terms potentially violate consumer rights according to
European consumer law.

In our research, we utilized the versions of EUR_Lex
and UNFAIR-ToS provided within the Legal Gen-
eral Language Understanding Evaluation (LexGLUE)
(Chalkidis et al., 2022).

Throughout our experiments, 10% of the training
dataset is allocated for validation purposes, and the re-
ported performance metrics are obtained from the test
dataset.

4.2. Multi-label active learning strategies

The task of multi-label text classification consists of
assigning appropriate labels to text instances. Unlike
multi-class classification, multiple labels can be as-
signed to an instance. For each experiment, our label

1https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge

2https://www.reddit.com/
3https://eur-lex.europa.eu

space is predefined and is not extended by the experi-
ment. AL aims to select the best possible instances to
annotate in a training process. This selection can be car-
ried out with different strategies. All these strategies
are based on estimating the uncertainty of the model
on each instance, that is to say the confidence of the
model in predicting the labels associated with an in-
stance. These strategies are based on the hypothesis
that by training on hard examples (where the model hes-
itates), the model will gain in performance.

We follow pool-based AL (Lewis and Gale, 1994)
where at each training iteration, the strategies select
the instances to annotate from the remaining unlabelled
data set. For each unlabelled instance, we compute a
score that indicates the uncertainty of the model on its
associated predictions.

We use notations from Section 3.3.1. We apply
six uncertainty-based multi-label AL strategies to trans-
formers:

Max Loss (ML) selects the instances with the highest
loss (Li et al., 2004):

argmax
xi

[ q∑
j=1

max{1−mj ∗ fj(xi), 0}
]

(1)

where mj = 1 if j = u, mj = −1 otherwise, u
corresponds to the label lu associated with the great-
est probability to a given instance and where fj(xi) is
defined as:

fj(xi) = 2 ∗ yji − 1 (2)

Mean Max Loss (MML) selects the instances with the
highest mean loss (Li et al., 2004):

argmax
xi

1

q

[ q∑
k=1

q∑
j=1

max{1− okj ∗ fj(xi), 0}
]

(3)

where okj = 1 if j=k, okj = −1 otherwise and
fj(xi) is defined in (2).

Minimum Confidence No weighting (CMN) selects
the instances where the confidence of the model is the
lowest (Esuli and Sebastiani, 2009):

argmin
xi

( q

min
j=1

fj(xi)
)

(4)

with fj(xi) being defined in (2).

Max Margin Uncertainty sampling (MMU) selects
the instances that maximize the separative margin be-
tween the predicted groups of positive and negative la-
bels (Li and Guo, 2013):

argmax
xi

1

min pos(xi)− maxneg(xi)
(5)

where pos(xi) = [pos1(xi), ..., posq(xi)] and
neg(xi) = [neg1(xi), ..., negq(xi)], with:

posj(xi) =

{
fj(xi) if fj(xi) > 0

+∞ otherwise
and (6)

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.reddit.com/
https://eur-lex.europa.eu
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negj(xi) =

{
fj(xi) if fj(xi) < 0

−∞ otherwise
(7)

with fj(xi) being defined in (2).

Label Cardinality Inconsistency (LCI) selects the in-
stances that maximize the distance between the number
of predicted positive labels and the label cardinality of
the labelled set (Li and Guo, 2013):

argmax
xi

√√√√( q∑
j=1

yji

)
− L

2

(8)

with L the average number of labels on the already
annotated instances.
Category Vector Inconsistency and Ranking of
Scores (CVIRS) selects the instances following two
measures. The first is based on a rank aggregation of
difference margins of classifier predictions. The second
is based on the inconsistency of the predicted label sets
compared to the label space of the labelled set. This
strategy is detailed in Reyes et al. (2018).

Those strategies are called myopic strategies, mean-
ing that they evaluate uncertainty instance-wise. As in
Reyes et al. (2018), we extend those strategies to batch-
mode AL in a simple way: instead of selecting the in-
stance for which the model is the most uncertain we
select the top instances for which the model is the most
uncertain, to fill our batch.

4.3. Study setup

Oracle: The simulation of a human oracle annotating
the unlabelled instances selected by the different strate-
gies is carried out using annotated multi-label datasets.
In each training iteration, the AL strategy selects the
best instances from the training dataset without having
access to their corresponding labels. These instances
and their corresponding labels constitute the next train-
ing batch.
Models: In order to make our experiments more ex-
haustive, our experiments are done on two different
models. As in (Schröder et al., 2022), the two trans-
formers used in this study are based on BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019). Consider-
ing that (Tsvigun et al., 2022) demonstrate that in AL
processes, distilled versions of these models achieve
similar performance to the original models while being
less computationally intensive, we also utilize the dis-
tilled versions of these models (Sanh et al., 2019). On
top of both models, we add a dense neuron layer and a
sigmoid layer to accomplish multi-label classification.
Implementation Details: DistilBERT consists of 6 lay-
ers, hidden units of size 768, and 66 billion parameters.
DistilRoBERTa follows a similar structure, with the ex-
ception of its parameter count, which is 82 billion. The
maximum input token size for both models is set to 128,
the number of epochs to 15, and the training batch size

to 25. To optimize the model parameters, we chose
AdamW with a learning rate of 2e-5. The experiments
were conducted on an Nvidia V100 (32 GB). The same
hyperparameters were used for both models across the
four datasets. For other parameters, we follow the fine-
tuning process outlined in (Howard and Ruder, 2018).
These experiments were conducted using the small-text
library4 (Schröder et al., 2023).

4.4. Evaluation

The results presented in this paper, represent an aver-
age calculated from five runs of each experiment, as in
(Schröder et al., 2022). Reference Values: As a point of
comparison we will use results from the idealistic set-
ting often used in AL works, where AL update time and
model inference time are considered negligible. This
scenario (with α = 0) referred to as Classic-AL, in
practice, result in a loss of annotation time (and money)
and does not answer our issue. However, it will be com-
pared to results from our three realistic settings where
we took into account waiting times by adding different
alternative sampling methods.
Performance metric: To evaluate performance, we em-
ploy a commonly used metric in multi-label classifica-
tion (Tsoumakas et al., 2010). We use the notations
from section 4.2, with the addition: for a given label lj

we denote the number of true positives (vpj), false pos-
itives (fpj), and false negatives (fnj), and define the
F1-score as:

F1(vpj , fpj , fnj) =
vpj

vpj + 1
2 (fp

j + fnj)
(9)

We employ a micro-averaged F1-score, meaning that
we sum up all true positives, false positives, and false
negatives across all labels, then compute the F1-score
(higher value indicates better performance):

MiF1 = F1(

q∑
j=1

vpj ,

q∑
j=1

fpj ,

q∑
j=1

fnj) (10)

Label imbalance metric: To measure the label imbal-
ance, we employ the Mean Imbalance Ratio (MeanIR)
(Tarekegn et al., 2021) (higher value indicates higher
imbalance in the label distribution).

MeanIR =
1

q

q∑
j=1

IRLbl(lj) (11)

With IRLbl being the Imbalance Ratio per Label,
such as:

IRLbl(lj) =
maxλ∈l

∑n
i=1 h(λ, yi)∑n

i=1 h(l
j , yi)

(12)

, with:

h(λ, yi) =

{
1 if λ ∈ yi

0 otherwise
(13)

4https://small-text.readthedocs.io/en/latest/

https://small-text.readthedocs.io/en/latest/
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5. Results

In our study, we establish a robust point of compari-
son under idealistic conditions, where the annotator al-
locates all available time to annotate instances selected
through AL.

Table 2 presents the detailed outcomes of our exper-
imental analysis. Primarly, we observe that Random
and Eq_label outperforms Stale and the Classic-AL set-
ting in many cases. Indeed, in 48 cases, Random out-
performs Classical-AL 32 times, Eq_label outperforms
Classical-AL 41 times, and Random outperforms Stale
34 times, while Eq_label outperforms Stale 39 times.
Secondly, we observe that the performance trends as-
sociated with Stale are not very distinct from those of
the Classic-AL setting. This outcome suggests that
the shift of a half-batch of annotated data following
the Stale method, as compared to Classic-AL setting,
does not significantly affect the progression of annota-
tion according to a specific AL strategy. According to
conventional statistical criteria, the difference between
Stale and the Classic-AL setting is not considered sta-
tistically significant (p-value > 0.05 with paired t-test
per dataset and model). On the contrary, Random and
Eq_label significantly deviate from the Classic-AL set-
ting in an extremely statistically significant manner (p-
value < 0.001 with paired t-test per dataset and model).

The overall performance enhancements observed
with the Random method likely stem from the diver-
sification of the batch, while for our Eq_label method,
these improvements arise not only from text diversifica-
tion within the batch but also from a more balanced rep-
resentation of various labels. Furthermore, it is notable
in the standard deviation lines that both the Random
and Eq_label methods exhibit a reduction in perfor-
mance differences among different AL strategies. This
outcome is expected, as now only half of the annotated
data during the experiments originate from these strate-
gies. Nonetheless, this is an interesting result, as one
of the significant challenges when implementing AL
is selecting an AL strategy beforehand. Following our
framework, this choice becomes less critical, simplify-
ing the practical implementation of AL.

The results of the Random method are generally
good, especially when considering its ease of imple-
mentation and understanding. Random is thus a strong
option to consider when implementing an alternative
method of sampling to eliminate wait time. However,
this method appears to degrade performance in certain
cases, such as the CMN strategy or the Go_emotions
dataset. Compared to Random and Eq_label, the results
of the Stale method are inferior, making this option the
less interesting one to implement in order to eliminate
wait times. The results of the Eq_label method are gen-
erally the most promising in our experiments, improv-
ing on all strategies and datasets, often more than Ran-
dom. It is worthwhile to focus on another aspect of this
method, which is label distribution (see Table 5). Once

again it is not surprising to observe no significant differ-
ence in average label distribution between Classic-AL
setting and Stale. Preliminary experiments have shown
that in some cases AL does worsen the label imbalance
present in the original dataset. Therefore as expected
we observe a significant improvement between Classic-
AL/Stale and Random, where the average MeanIR for
the latter is notably 10% lower for distilRoBERTa and
20% lower for distilBERT. For Eq_label, an even more
egalitarian distribution of annotated labels can be no-
ticed, as in average, MeanIR for Eq_label is 25% lower
for distilRoBERTa and 35% lower for distilBERT than
for Classic-AL/Stale. The results for each dataset in Ta-
ble 3 demonstrate that Eq_label outperforms the other
methods, achieving superior performance on three out
of four datasets and coming close to matching Ran-
dom on Jigsaw_toxic the fourth one. The trends de-
picted in Table 4 align with our expectations, indicating
that the strategies benefiting the most from the imple-
mentation of an alternative annotation method are the
ones that initially exhibited poorer performance, such
as ML and LCI. Furthermore, it can be observed that
our Eq_label method enhances performance similarly
or even surpasses Random. Additionally, unlike the
other two methods, the inclusion of our approach leads
to improvements across all strategies.

6. Discussion and Conclusion
It is noteworthy that our approach, which addresses the
practical issue of waiting time, has shown that inte-
grating a parallel annotation method can significantly
improve the overall output of the annotation process
through AL. Our approach, combining three key con-
cepts - prioritizing certainty over uncertainty regard-
ing staleness, enhancing performance through label dis-
tribution rebalancing, and using model prediction cer-
tainty for label association - consistently improves re-
sults across all datasets, models, and AL strategies.
From a practical standpoint, our method successfully
eliminates the wait time that can exist during classical
AL applications. It also simplifies the decision process
at the start of an AL project by making the choice of
an AL strategy less crucial for its success. Nonethe-
less, our findings highlight CMN and MMU as the top-
performing strategies. Even when combined with an-
other sampling method, they still exhibit slightly supe-
rior performance. While generally weaker, Random is
still an option to consider for its ease of implementa-
tion. In future work, we would like to explore how our
results evolve when varying the proportion of instances
originating from AL or an alternative method within
the same batch (varying α). We also aim to extend our
study to other related tasks such as multi-class and bi-
nary classification, where our method can be readily
adapted, as well as to more distant tasks like question
answering, where an equivalent of our method could
involve rebalancing the distribution of documents from
which answers are derived.
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Table 2: Experimental results (MiF1) of the Classic-AL setting and three parallel sampling methods to AL.
With ’dB’ being distilBERT, ’dR’ being distilRoBERTa and ’Std dev’ being standard deviation. Best values for
model/strategy are in bold.

Method → Classic-AL Random Stale Eq_label
Model → dB dR dB dR dB dR dB dR

Dataset ↓ Strategy ↓

Jigsaw_toxic

ML 0.412 0.486 0.57 0.577 0.529 0.522 0.567 0.548
MML 0.467 0.524 0.572 0.59 0.51 0.582 0.547 0.581
CMN 0.617 0.593 0.603 0.6 0.605 0.619 0.631 0.618
MMU 0.603 0.614 0.623 0.609 0.609 0.613 0.61 0.615
LCI 0.453 0.482 0.556 0.587 0.496 0.499 0.551 0.546
CVIRS 0.564 0.575 0.551 0.58 0.591 0.598 0.537 0.565
Std dev 0.086 0.056 0.028 0.012 0.051 0.05 0.038 0.031

Go_emotions

ML 0.404 0.414 0.411 0.432 0.386 0.383 0.412 0.415
MML 0.414 0.428 0.404 0.421 0.412 0.427 0.416 0.431
CMN 0.438 0.435 0.423 0.416 0.408 0.433 0.448 0.443
MMU 0.441 0.435 0.419 0.405 0.418 0.413 0.455 0.441
LCI 0.353 0.373 0.383 0.402 0.363 0.37 0.422 0.389
CVIRS 0.362 0.4 0.408 0.441 0.41 0.395 0.405 0.408
Std dev 0.037 0.024 0.014 0.015 0.021 0.025 0.02 0.021

EUR_Lex

ML 0.329 0.409 0.495 0.467 0.401 0.42 0.502 0.531
MML 0.517 0.56 0.52 0.53 0.517 0.513 0.543 0.553
CMN 0.513 0.55 0.464 0.526 0.511 0.522 0.521 0.556
MMU 0.53 0.567 0.539 0.489 0.518 0.526 0.545 0.565
LCI 0.454 0.488 0.521 0.5 0.47 0.478 0.515 0.525
CVIRS 0.479 0.509 0.565 0.535 0.562 0.5 0.534 0.537
Std dev 0.075 0.06 0.035 0.027 0.056 0.04 0.016 0.026

UNFAIR-ToS

ML 0.622 0.718 0.694 0.726 0.682 0.688 0.703 0.757
MML 0.647 0.724 0.696 0.71 0.651 0.704 0.717 0.758
CMN 0.708 0.778 0.756 0.777 0.749 0.689 0.767 0.758
MMU 0.7 0.762 0.741 0.773 0.741 0.763 0.738 0.762
LCI 0.65 0.744 0.732 0.753 0.619 0.713 0.765 0.738
CVIRS 0.708 0.76 0.723 0.746 0.746 0.703 0.721 0.765
Std dev 0.037 0.023 0.027 0.026 0.056 0.028 0.026 0.009

Table 3: Average percentage of MiF1 difference from the Classic-AL setting per method, model and dataset (a
positive value indicates improvement), ’dB’ being distilBERT and ’dR’ being distilRoBERTa. Best values are in
bold.

Dataset Jigsaw_toxic Go_emotions EUR_Lex UNFAIR-ToS
Model dB dR dB dR dB dR dB dR

Method
Random +11.521 +6.139 +1.493 -1.489 +9.993 +0.681 +7.608 -0.022
Stale +7.189 +4.856 -0.622 -2.575 +5.563 -4.022 +3.792 -5.038
Eq_label +10.494 +6.078 +6.053 +1.690 +11.977 +5.968 +9.318 +1.159

Table 4: Average percentage of MiF1 difference from the Classic-AL setting per method, model and AL strategy
(a positive value indicates improvement). Best values are in bold.

Method Random Stale Eq_label
Model distilBERT distilRoBERTa distilBERT distilRoBERTa distilBERT distilRoBERTa

Strategy

ML +22.807 +8.633 +13.073 -0.691 +23.599 +11.051
MML +7.188 +0.671 +2.200 -0.447 +8.704 +3.891
CMN -1.318 -1.570 -0.132 -3.947 +3.998 +0.806
MMU +2.111 -4.289 +0.528 -2.649 +3.254 +0.210
LCI +14.764 +7.427 +1.990 -1.294 +17.958 +5.319
CVIRS +6.342 +2.585 +9.276 -2.139 +3.975 +1.381
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Table 5: Average MeanIR per method and model (high
value indicates a high label imbalance). ’Full’ refers to
the MeanIR score calculated for the entire dataset. Best
values are in bold.

Method Classic-AL Random Stale Eq_label Full
Dataset Model

Jigsaw_toxic distilBERT 6.681 6.846 5.776 4.886 9.537
distilRoBERTa 6.782 6.869 6.548 5.874

Go_emotions distilBERT 12.945 13.035 15.065 10.017 12.661
distilRoBERTa 14.238 12.719 15.111 10.690

EUR_Lex distilBERT 54.560 37.422 53.409 34.826 25.918
distilRoBERTa 37.745 34.667 38.288 30.048

UNFAIR-ToS distilBERT 5.945 5.018 5.781 2.795 3.301
distilRoBERTa 5.960 5.972 7.286 2.894
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