@inproceedings{benkler-etal-2024-recognizing,
title = "Recognizing Value Resonance with Resonance-Tuned {R}o{BERT}a Task Definition, Experimental Validation, and Robust Modeling",
author = "Benkler, Noam K. and
Friedman, Scott and
Schmer-Galunder, Sonja and
Mosaphir, Drisana Marissa and
Goldman, Robert P. and
Wheelock, Ruta and
Sarathy, Vasanth and
Kantharaju, Pavan and
McLure, Matthew D.",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1195",
pages = "13688--13698",
abstract = "Understanding the implicit values and beliefs of diverse groups and cultures using qualitative texts {--} such as long-form narratives {--} and domain-expert interviews is a fundamental goal of social anthropology. This paper builds upon a 2022 study that introduced the NLP task of Recognizing Value Resonance (RVR) for gauging perspective {--} positive, negative, or neutral {--} on implicit values and beliefs in textual pairs. This study included a novel hand-annotated dataset, the World Values Corpus (WVC), designed to simulate the task of RVR, and a transformer-based model, Resonance-Tuned RoBERTa, designed to model the task. We extend existing work by refining the task definition and releasing the World Values Corpus (WVC) dataset. We further conduct several validation experiments designed to robustly evaluate the need for task specific modeling, even in the world of LLMs. Finally, we present two additional Resonance-Tuned models trained over extended RVR datasets, designed to improve RVR model versatility and robustness. Our results demonstrate that the Resonance-Tuned models outperform top-performing Recognizing Textual Entailment (RTE) models in recognizing value resonance as well as zero-shot GPT-3.5 under several different prompt structures, emphasizing its practical applicability. Our findings highlight the potential of RVR in capturing cultural values within texts and the importance of task-specific modeling.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="benkler-etal-2024-recognizing">
<titleInfo>
<title>Recognizing Value Resonance with Resonance-Tuned RoBERTa Task Definition, Experimental Validation, and Robust Modeling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Noam</namePart>
<namePart type="given">K</namePart>
<namePart type="family">Benkler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="family">Friedman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sonja</namePart>
<namePart type="family">Schmer-Galunder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Drisana</namePart>
<namePart type="given">Marissa</namePart>
<namePart type="family">Mosaphir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="given">P</namePart>
<namePart type="family">Goldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruta</namePart>
<namePart type="family">Wheelock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vasanth</namePart>
<namePart type="family">Sarathy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pavan</namePart>
<namePart type="family">Kantharaju</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="given">D</namePart>
<namePart type="family">McLure</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Understanding the implicit values and beliefs of diverse groups and cultures using qualitative texts – such as long-form narratives – and domain-expert interviews is a fundamental goal of social anthropology. This paper builds upon a 2022 study that introduced the NLP task of Recognizing Value Resonance (RVR) for gauging perspective – positive, negative, or neutral – on implicit values and beliefs in textual pairs. This study included a novel hand-annotated dataset, the World Values Corpus (WVC), designed to simulate the task of RVR, and a transformer-based model, Resonance-Tuned RoBERTa, designed to model the task. We extend existing work by refining the task definition and releasing the World Values Corpus (WVC) dataset. We further conduct several validation experiments designed to robustly evaluate the need for task specific modeling, even in the world of LLMs. Finally, we present two additional Resonance-Tuned models trained over extended RVR datasets, designed to improve RVR model versatility and robustness. Our results demonstrate that the Resonance-Tuned models outperform top-performing Recognizing Textual Entailment (RTE) models in recognizing value resonance as well as zero-shot GPT-3.5 under several different prompt structures, emphasizing its practical applicability. Our findings highlight the potential of RVR in capturing cultural values within texts and the importance of task-specific modeling.</abstract>
<identifier type="citekey">benkler-etal-2024-recognizing</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1195</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>13688</start>
<end>13698</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Recognizing Value Resonance with Resonance-Tuned RoBERTa Task Definition, Experimental Validation, and Robust Modeling
%A Benkler, Noam K.
%A Friedman, Scott
%A Schmer-Galunder, Sonja
%A Mosaphir, Drisana Marissa
%A Goldman, Robert P.
%A Wheelock, Ruta
%A Sarathy, Vasanth
%A Kantharaju, Pavan
%A McLure, Matthew D.
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F benkler-etal-2024-recognizing
%X Understanding the implicit values and beliefs of diverse groups and cultures using qualitative texts – such as long-form narratives – and domain-expert interviews is a fundamental goal of social anthropology. This paper builds upon a 2022 study that introduced the NLP task of Recognizing Value Resonance (RVR) for gauging perspective – positive, negative, or neutral – on implicit values and beliefs in textual pairs. This study included a novel hand-annotated dataset, the World Values Corpus (WVC), designed to simulate the task of RVR, and a transformer-based model, Resonance-Tuned RoBERTa, designed to model the task. We extend existing work by refining the task definition and releasing the World Values Corpus (WVC) dataset. We further conduct several validation experiments designed to robustly evaluate the need for task specific modeling, even in the world of LLMs. Finally, we present two additional Resonance-Tuned models trained over extended RVR datasets, designed to improve RVR model versatility and robustness. Our results demonstrate that the Resonance-Tuned models outperform top-performing Recognizing Textual Entailment (RTE) models in recognizing value resonance as well as zero-shot GPT-3.5 under several different prompt structures, emphasizing its practical applicability. Our findings highlight the potential of RVR in capturing cultural values within texts and the importance of task-specific modeling.
%U https://aclanthology.org/2024.lrec-main.1195
%P 13688-13698
Markdown (Informal)
[Recognizing Value Resonance with Resonance-Tuned RoBERTa Task Definition, Experimental Validation, and Robust Modeling](https://aclanthology.org/2024.lrec-main.1195) (Benkler et al., LREC-COLING 2024)
ACL
- Noam K. Benkler, Scott Friedman, Sonja Schmer-Galunder, Drisana Marissa Mosaphir, Robert P. Goldman, Ruta Wheelock, Vasanth Sarathy, Pavan Kantharaju, and Matthew D. McLure. 2024. Recognizing Value Resonance with Resonance-Tuned RoBERTa Task Definition, Experimental Validation, and Robust Modeling. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 13688–13698, Torino, Italia. ELRA and ICCL.