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Abstract

Ancient Mesopotamian literature is riddled with gaps, caused by the decay and fragmentation of its writing material,
clay tablets. The discovery of overlaps between fragments allows reconstruction to advance, but it is a slow and
unsystematic process. Since new pieces are found and digitized constantly, NLP techniques can help to identify
fragments and match them with existing text collections to restore complete literary works. We compare a number of
approaches and determine that a character-level n-gram-based similarity matching approach works well for this
problem, leading to a large speed-up for researchers in Assyriology.
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1. Introduction

Cuneiform script, one of the oldest known writing
systems, was deciphered in the mid-nineteenth
century and has been extensively researched for
more than a century. Traditionally, the corpus of
cuneiform literature has primarily been processed
manually, but with the increased availability of
cuneiform data in digital form there is a growing in-
terest in the development of automatic approaches
to processing the data, ranging from OCR to end-
to-end MT.

One of the idiosyncrasies of cuneiform is that
is was written on clay tablets which, though much
more durable than other media, are prone to break-
ing. As a result, the majority of the cuneiform cor-
pus consists of fragments of larger tablets, and the
whereabouts of the missing parts that would make
a complete tablet are often unknown. However, if
a text was written down more than once, as is of-
ten the case with literary and scientific work, the
original text can be reconstructed by assembling
partially overlapping fragments of different tablets
covering the same content. So far, these match-
ing pieces are accidental discoveries made by ex-
perts who come across overlapping passages in
the course of transliterating fragments, normally
using printed dictionaries or concordances. Al-
though such discoveries happen on a regular basis,
it would take decades to complete the literary and
scientific works written on dozens of thousands
of artifacts which await identification in museum
cabinets around the world.

We formulate cuneiform fragment identification
as an NLP problem and explore the feasibility of
text matching methods to automate and speed up
the process. Our main contributions are threefold:

1. We describe the properties and challenges of
the cuneiform writing system and the fragmen-

tary nature of the data from a CL and NLP
perspective.

2. We define the task of fragment identification
as a text matching problem.

3. We present initial work on semi-automatic frag-
ment matching. A method to generate syn-
thetic test data from a corpus of partially iden-
tified cuneiform fragments is described, and
results from a number of experimental match-
ing approaches are compared.

The remainder of the paper is structured as
follows. Section 2 presents the background of
cuneiform fragments and the challenges of the writ-
ing system for NLP. The task of fragment identifica-
tion is defined in Section 3. We proceed with a de-
scription of the dataset and a heuristic to generate
test data in Section 4. The matching approaches
we explored are defined in Section 5, followed by
a discussion of the results in Section 6. Related
work is summarized in Section 7, and some con-
cluding remarks and directions for future research
are given in Section 8.

2. Background

The literary works from ancient Mesopotamia were
written on clay tablets inscribed with cuneiform
script. If stored under favorable conditions, this
medium is enormously durable but prone to break-
ing, so most works of Babylonian literature only
survived in fragmentary form.

Cuneiform script was used for all kinds of written
records, including personal letters and other every-
day documents. Without any duplicates parts of
documents that go missing are lost forever, but lit-
erary and scientific texts were frequently copied on
multiple clay tablets which were often kept together
in one and the same library, particularly in the first
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Figure 1: A fragmentary clay tablet of the Epic of Gil-
gamesh in the Iraq Museum (IM.67564). The tablet
originally had three columns per side, of which only
two fragmentary ones survive.

millennium bce. When sections of a text are pre-
served on fragments of different tablets they may
overlap and form partial duplicates, each of which
typically contains a few signs that are missing on
others. The manual identification of such pieces
has traditionally been the key for the reconstruction
of Babylonian literature. The process of identifying
new fragments is therefore often a matter of luck:
For example, a small fragment had been kept in a
museum’s drawer for over 100 years before it was
identified as the beginning of the Epic of Gilgameš
(Kwasman, 1998).

Part of the problem is that a substantial portion
of the cuneiform fragments excavated so far is not
fully documented. But even if digital records of
every fragment in existence were available there
are several factors that make their identification a
non-trivial task, i.e., (i) a lack of orthographic con-
ventions; (ii) a limited orthographic transparency;
and (iii) data sparseness.

Lack of orthographic conventions There was
never a strict orthography of any language written
in cuneiform script. The same word, e.g., Akkadian
aparras ‘I will divide’, can be written in different
ways, either phonetically with various combinations
of signs as in Examples (1i-iii) or by means of a
logogram (1iv).

(1) i. ����

a-par-ra-as

ii. �����

a-pa-ar-ra-as

iii. ����

a-pa-ra-as

iv. �

kud

‘I will divide’

The variation is particularly pronounced in
manuscripts from the first millennium bce since in
that period the original triptotic declension of the
Akkadian language had been lost in the spoken
variety but persisted in writing. With the vowels
no longer corresponding to the use in previous
periods, a high degree of variation, in particular in
word-final position, began to emerge. Example (2)
shows four different ways the word lemutta ‘evil’ is
written in the manuscripts of the Epic of Creation
I 44 (Heinrich, 2021). Matters are complicated
further by the absence of word boundaries and
punctuation.

(2) i. ����

le-mut-ta

ii. ����

le-mut-tu

iii. ����

le-mut-tu4

iv. ����

le-mut-ti
‘evil’

Limited orthographic transparency The read-
ings of cuneiform signs are context-sensitive.
The same grapheme can correspond to multiple
phonemes, and vice versa, a phoneme can be rep-
resented by several distinct signs. Example (3)
shows a selection of phonetic renderings of the
sign ud, and (4) lists different signs all of which cor-
respond to the phoneme /tu/, alongside the name
of the sign and its reading (accompanied by an in-
dex which is added in Assyriological research as a
means of disambiguating homophones).

(3) �

tam/tu2/par/ut/h
˘
iš/...

(4) i. �

tu (tu(1))
ii. �

ud (tu2)

iii. �

du (tu3)
iv. �

tum (tu4)

Another factor that affects the orthographic trans-
parency of cuneiform is the fact that the repertoire
of signs changed over time. For example, there are
cases of signs that originally had distinct shapes
such as the ones in (5i-iii) which coalesced into a
single grapheme, in this case (6).

https://www.ebl.lmu.de/fragmentarium/IM.67564
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(5) i. �

ku

ii. �

tug2

iii. �

eš2

(6) �

ku/tug2/eš 2

Sparseness Although there are cuneiform tablets
with extensive amounts of text, fragments tend to
be rather short. Some pieces can be as small
as a fingernail and may contain no more than a
few decipherable signs. With an average length
of 111 signs in the database used for this study
(cf. Section 4), cuneiform fragments can be consid-
ered the tweets of the ancient world. Accordingly,
many of the challenges posed by Twitter and other
short text data fully apply to cuneiform fragments,
too: a limited number of content words, spelling
variations, and other “ill-formed words” (Han and
Baldwin, 2011, p. 368) make it more difficult to cap-
ture similarities between documents (Phan et al.,
2008). Moreover, if fragments break unfavorably,
the resulting loss of context combined with the poly-
valence of signs can make the text difficult or even
impossible to decipher, possibly leading to transliter-
ation errors that directly impact matching accuracy.
Since cuneiform data consists of low-resource lan-
guages these issues cannot be leveraged by using
pre-trained models because the amounts of data
needed for developing such models are not avail-
able.

3. Fragment Matching

The aim of the fragment identification task is to re-
cover complete texts given a collection of fragmen-
tary pieces. As discussed above, multiple copies
of literary works such as the Epic of Gilgamesh
are known. Although they feature slight variations
(cf. Section 2), their contents are usually structured
in a relatively stable line format, i.e., line breaks
are generally consistent across different versions.
Fragments of different tablets that cover the same
textual material can thus be aligned similar to a
photo collage: One fragment may hold the begin-
ning of a line, and the rest may occur on another,
allowing longer passages of the text to be recon-
structed.

In what follows, we will refer to compilations of
overlapping cuneiform documents with shared tex-
tual content as chapters, and to fragments con-
firmed to be part of a chapter as manuscripts.

Given a collection of chapters and a set of frag-
ments that have not been identified yet, the identifi-
cation problem can be defined as a type of docu-

����
di-ma-tu-a

ABZ457 ABZ342 ABZ58 ABZ579

Figure 2: Cropped photograph, Unicode string, ATF
transliteration, and sequence of ABZ-signs of an
individual cuneiform text line

ment classification task: Each chapter represents
a category, and each new fragment needs to be
labelled with respect to which category (if any) it
belongs to. Formally, each cuneiform fragment
and manuscript is represented by a sequence of
text lines, and each line consists of a sequence of
cuneiform signs. The aim of fragment identification
is therefore to determine whether a given fragment
is a manuscript of any known chapter.

Because of the ambiguities of cuneiform script
and data sparseness, a fully automatic matching
of fragments does not seem feasible at this point.
Instead, we opt for a semi-automatic strategy with
traditional NLP approaches, and our goal is to find
a method that is capable of effectively aiding hu-
man experts in finding and validating potentially
matching documents.

4. Data

4.1. Corpus
We use the collection of literary texts made avail-
able in the corpus of the Electronic Babylonian Li-
brary (eBL) project1 (Jiménez et al., 2018a). As
of the time of writing, it comprises 159 chapters
containing between 1 and 70 (on average 8.82)
manuscripts each, adding up to a total of 1,402
manuscripts. This collection of identified docu-
ments is complemented by a growing body of about
27,000 transliterated fragments in the eBL Frag-
mentarium (Jiménez et al., 2018b) that may include
so far unidentified manuscripts.

Although there are Unicode blocks for
Cuneiform,2 Cuneiform Numbers and Punc-
tuation, 3 and Early Dynastic Cuneiform,4 Unicode
is an inadequate way of rendering signs for our
purposes because it amalgamates several different
periods (Studt, 2007) which, in combination with

1https://www.ebl.lmu.de/corpus
2https://unicode.org/charts/nameslist/

n_12000.html
3https://unicode.org/charts/nameslist/

n_12400.html
4https://unicode.org/charts/nameslist/

n_12480.html

https://www.ebl.lmu.de/corpus
https://unicode.org/charts/nameslist/n_12000.html
https://unicode.org/charts/nameslist/n_12000.html
https://unicode.org/charts/nameslist/n_12400.html
https://unicode.org/charts/nameslist/n_12400.html
https://unicode.org/charts/nameslist/n_12480.html
https://unicode.org/charts/nameslist/n_12480.html
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Figure 3: Schematic illustration of test fragment
creation by first sampling passages of existing
manuscripts and subsequently masking edges to
simulate breaking

the diachronic change of the sign repertoire
(cf. Section 2), would lead to an ambiguous
representation. We therefore base our approach
on transliterations of the texts.

In Digital Assyriological research, cuneiform is
transliterated into Latin script following the so-called
ASCII Transliteration Format (ATF; see the third row
in Fig. 2) introduced by the Cuneiform Digital Li-
brary Initiative (CDLI; CDLI contributors, 2016) in
the late 1990s and early 2000s. The specifications
were later modified by the Open Richly Annotated
Cuneiform Corpus consortium (Oracc; Novotny
et al., 2014). The eBL data employs an extended
version of ATF which additionally links each sign to
an entry in a dictionary of cuneiform specific for the
first millennium bce, Borger’s (1988) Assyrisch-
Babylonische Zeichenliste ‘Assyrian-Babylonian
sign list’ where each sign receives a unique iden-
tifier we refer to as ABZ number. Readings, lo-
gograms, numbers, and compound graphemes
in ATF format can be converted to a sequence
of ABZ numbers by assigning it the index of a
sign with a matching reading or name from Borger
(1988). If the sign does not have an ABZ number,
the name of the sign is used instead. Our experi-
ments are based on the resulting sequence of ABZ
signs which is the only way of digitally represent-
ing cuneiform that conforms to the repertoire of
cuneiform signs in the first millennium bce.

4.2. Test Data Generation
From the eBL chapters we derived a test set of artifi-
cial fragments by extracting manuscripts from their
source chapter and ‘breaking’ them into smaller
fragments via a simple masking heuristic.

100 manuscripts were randomly extracted from
the corpus chapters. The documents were masked
by first truncating them to extract random subse-
quences of lines, matching the length distribution of
real fragments in the eBL fragment database (i.e.,
an average length of about 15 lines with a minimum
of 2 and a maximum of 20). The extracts were then
further fragmentized by fitting their contents into

grids of signs and ‘breaking away’ corners by draw-
ing break lines between random points along the
edges of the grids and excluding the signs that fall
outside of the resulting boundaries (see Fig. 3). Al-
beit simple, this strategy results in a large variety
of shapes that resemble real cuneiform fragments
both in terms of size and the existence of partially
missing lines. This process was repeated 10 times
to generate 1,000 test documents. After filtering
out fragments that ended up empty, we obtained a
set of 965 artificial fragments.

5. Experiments

We conducted a number of experiments to explore
the feasibility of the task and establish baselines.
The approaches are briefly described below.

Bag of words As a naive way to compute the
pairwise similarity between documents the overlap
of their respective bags of words (BOW), or in this
case bags of cuneiform signs, can be used. It is
easy to implement, but all information regarding the
order of signs is lost. We used the Jaccard index
to rank the intersections.

Longest common substring The longest com-
mon substring (LCS) of two sequences of symbols
is the longest sequence of consecutive symbols
that occurs in both of the input strings. In contrast
to the longest common subsequence, a related
problem, LCS does not allow gaps between the in-
dividual symbols. In order to compute the LCS of a
fragment and a chapter, it was computed pairwise
between the fragment and each manuscript of the
chapter, and the longest match of all comparisons
was considered.

Sequence alignment The Needleman-Wunsch
alignment algorithm (Needleman and Wunsch,
1970) computes the optimal local or global align-
ment between two strings. Finding the best align-
ment is equivalent to minimizing the edit distance
of two input sequences. It has been successfully
applied for the alignment of genome sequences
in the field of Bioinformatics (Altschul et al., 1990)
which has parallels with alignment of natural lan-
guage data. The algorithm allows for gaps between
partially matching sequences and can be modified
with a custom matching function, so in principle it
can be adapted to account for common, systematic
cuneiform sign variations. As for LCS, the align-
ment was computed for each fragment-manuscript
pair per chapter and the best match was consid-
ered.
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N-gram matching Another way to approach the
matching problem that conserves sequential infor-
mation while allowing variations of individual signs
are n-gram models. The input sequences are par-
titioned into overlapping subsequences of length
n. For the task of fragment identification it seems
particularly adequate because it allows the individ-
ual manuscripts of a chapter to be combined into a
joint representation by merging their n-gram distri-
butions. This solves a major problem of LCS and
Needleman-Wunsch alignment which only take indi-
vidual manuscripts into account, potentially leading
to systematic misses if a fragment partially matches
two or more manuscripts. This could result in a
low score even if the total overlap is high. In ad-
dition, the creation of, and similarity computation
between, n-gram models are very fast, and n-gram
models can be created once and stored for later us-
age while LCS and Needleman-Wunsch alignment
need to be recomputed every time, making them
less adequate for real-time applications.

While the frequencies of n-grams can be impor-
tant for general document matching tasks, the over-
laps between the manuscripts of a chapter in our
case mean that the frequencies of those n-grams
that occur in multiple manuscripts would arbitrarily
be inflated, so we use a binary bag-of-n-grams ap-
proach disregarding the frequencies. That is, each
chapter and fragment is represented as a set of
n-grams, merging the sets of each manuscript for
a given chapter.

When deciding for a similarity metric it must be
considered that fragments are generally expected
to be much shorter than the chapters they belong to,
and vice versa, a large fragment could also poten-
tially be part of a shorter chapter (e.g., if not many
manuscripts have been identified yet, or if the frag-
ment contains excerpts of multiple texts). We want
a high score if a large portion of the smaller docu-
ment is included in the larger one, regardless of any
size differences. The similarity is therefore com-
puted as the proportion of n-grams of the shorter
document that occur in the longer one, a metric
referred to as overlap coefficient or sometimes
Szymkiewicz-Simpson coefficient (Vijaymeena and
Kavitha, 2016). It returns 0 if a chapter C and a
fragment F share no n-grams and 1 if all n-grams of
F are included in C (or vice versa). It is computed
as follows:

overlap(F,C) =
|F ∩ C|

min(|F |, |C|)
(1)

As an extension of the base approach, we im-
plemented two ways of weighting n-grams. First,
overlaps of longer n-grams should be valued con-
siderably higher than shorter ones. For example,
if a fragment and a chapter share three 1-grams,
i.e., three individual signs, it is less indicative of

a match than a single shared 3-gram. In order to
account for that, we adapt the above formula such
that instead of the set sizes we employ the sum of
the squared length of each n-gram in the set.

Second, in addition to the length of shared n-
grams, a differentiation should be made regarding
the overall prevalence of the n-grams in the cor-
pus. As for stopwords in natural language data in
general, overlaps of rare n-grams should be con-
sidered more important than overlaps of very com-
mon ones. This can be accounted for by Term
Frequency-Inverse Document Frequency weight-
ing (TF-IDF). Originally proposed by Sparck Jones
(1972), TF-IDF assigns a greater importance to
terms that occur in fewer documents in a reference
collection than more common ones (for a concise
and accessible introduction see, e.g., Robertson,
2004). In our specific use case, terms are sign
n-grams and the reference collection are the eBL
chapters. TF-IDF is defined as:

TF-IDF(t, d,D) = tf(t, d) · idf(t,D) (2)
where

• t represents a term (in our case n-gram),
• d represents a document (chapter), and
• D represents the collection of all chapters.

As we are dealing with sets of cuneiform sign n-
grams, document-wise frequencies are irrelevant,
so we compute the term frequency tf as binary
depending on whether the n-gram occurs in the
document or not, i.e.:

tf(t, d) =

{
1 t ∈ d

0 t /∈ d
(3)

We compute the smoothed inverse document fre-
quency as per the equation below:

idf(t,D) = log

(
1 + |D|

1 + |{d ∈ D : t ∈ d}|

)
(4)

where

• |D| is the total number of chapters
• |{d ∈ D : t ∈ d}| is the number of chapters

that contain the n-gram t.

The matching tool is publicly available.5 With
the exception of the Needleman-Wunsch algorithm,
the tests were run on a MacBook Pro with a 1.4
GHz Quad-Core Intel Core i5 processor and 8GB
of RAM. For our dataset, BOW and default n-gram
matching take a few seconds to finish. The n-
gram extraction and TF-IDF computation take about

5https://github.com/
ElectronicBabylonianLiterature/ngram-
matcher

https://github.com/ElectronicBabylonianLiterature/ngram-matcher
https://github.com/ElectronicBabylonianLiterature/ngram-matcher
https://github.com/ElectronicBabylonianLiterature/ngram-matcher
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Approach Precision@3

BOW 0.14
LCS 0.90
Needleman-Wunsch 0.79

Table 1: Results of the baseline approaches, re-
ported as proportions of chapters which included
a correctly assigned fragment among the top 3
matches (Precision@3).

30 seconds each. Computing the overlaps with
weights takes less than 2 minutes. LCS is consider-
ably slower at about 30 minutes. The Needleman-
Wunsch alignment is computationally expensive
and was run on a 10-core cloud-based supercom-
puter. Even so, the algorithm took about 24 hours
to complete.

6. Results and Discussion

For the evaluation, the set of artificial fragments
(cf. Section 4.2) was compared element-wise with
each of the chapters from the eBL dataset (exclud-
ing the manuscripts extracted for the creation of
the test fragments). Each fragment in the resulting
similarity matrix is considered a correct match if its
source chapter is among the the top 3 most simi-
lar items (Precision@k with k = 3). Although this
metric has certain limitations (Manning et al., 2008,
p. 148) it appears suitable for the task of cuneiform
fragment identification where we want to reduce
the number of elements for manual inspection to
an amount that is manageable yet maximizes the
chance of finding matches. The results of the base-
line approaches are summarized in Table 1, and
the results of the n-gram-based variants we tested
are in Table 2.

Since the order of signs is crucial to find over-
lapping text segments it is not surprising that the
BOW baseline is outperformed by all approaches
that take sequential information into account. The
low score also indicates that Jaccard index is inad-
equate because it is sensitive to size differences
between the input documents.

LCS shows a very high Precision@k although
it can be expected to degrade if sign variations,
deletions, or reordering of signs are present (which
are not included in the synthetic test data). The
Needleman-Wunsch alignment algorithm suffers
less from this problem as it allows gaps to occur in
the input sequences. Both approaches have the
benefit that they make explicit which parts of the
compared documents correspond to each other
which facilitates manual evaluation. However, this
advantage is outweighed by the fact that fragments
can only be aligned against individual manuscripts,
not against a chapter as a whole, which could lead

to systematic misses if a fragment partly overlaps
multiple manuscripts, resulting in individually low
scores without a way to reconcile them. Both ap-
proaches are also computationally expensive, in
the case of the alignment approach to a degree
that it becomes impractical for our scenario of an
online matching tool.

The n-gram approach combines the best of both
worlds. It retains information about the relative or-
der of signs while orthographic variations or missing
segments are not penalized as much as for LCS.
Furthermore, it allows for all manuscripts of a chap-
ter to be naturally merged into a single, joint rep-
resentation. Since n-grams can be precomputed
and stored for later usage, the approach is highly
performant, too, especially in the unweighted vari-
ants, making it ideal for frequent updating and real-
time experimentation. Since the different weighting
strategies appear to have little effect on the overall
precision while adding considerable computational
load (especially for the TF-IDF-based weighting),
the basic n-gram approach appears to be prefer-
able in applications where processing time is criti-
cal. Regarding the choice of n-values, the results
suggest that n-grams up to a size of 3 provide the
best balance between computational efficiency and
precision, with diminishing returns for higher n.

Our results show that a basic n-gram-based
matching approach is capable of effectively narrow-
ing down a collection of fragments to a small set of
candidates that are very likely to contain matches.
Thanks to its low computational requirements it can
be utilized, e.g., in a web-based click-through frag-
ment identification tool where a human expert can
rapidly check potential matches. Although LCS and
Needleman-Wunsch alignment are too slow to be
useful for processing the corpus as a whole, they
could facilitate manual evaluation as a means of vi-
sualizing parallels between pairs of fragments and
chapters known to be similar due to a high number
of shared n-grams.

It must be noted that the experiment consider-
ably simplifies the real task. We only compare syn-
thetic fragments against the eBL chapters which
were drawn from the same manuscripts used for
evaluation. Although the original documents were
excluded in the evaluation step (because otherwise,
each test fragment would be matched against itself),
each item is known in advance to match exactly
one of the chapters. This is not the case when
matching real fragments as they mostly belong to
no chapter at all, so the precision of the approach
must be expected to be much lower for the real
task.

To assess the usefulness of the approach in a
more realistic scenario, we matched a newly added
eBL chapter (Maqlû ‘Burning’, an anti-witchcraft
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Approach [1, 1] [1, 2] [1, 3] [1, 4] [1, 5]

n-grams 0.55 0.83 0.88 0.91 0.91
n-grams + L 0.55 0.82 0.91 0.92 0.92
n-grams + TF-IDF 0.55 0.83 0.92 0.92 0.92
n-grams + TF-IDF + L 0.55 0.83 0.94 0.94 0.93

Table 2: Results of the n-gram-based approaches, reported as proportions of chapters which included a
correctly assigned fragment among the top 3 matches (precision at k with k = 3), for combinations of
n-values with n ∈ [1, 5] and weighting by n-gram length (L) and TF-IDF.

text)6 against the entire eBL collection of approxi-
mately 27,000 fragments, with encouraging results:
Inspection of the top-ranking 300 fragments (1.2%
of all candidates) by a domain expert led to the dis-
covery of three previously unidentified manuscripts
(K.18050,7 Sm.1215,8 and Sm.1852,9).

7. Related Work

Computational approaches to processing
cuneiform data, so-called Digital or Computational
Assyriology, have seen a growing interest in recent
years due to the increasing availability of digital
corpora and the desire to speed up traditional
methods. Sahala (2021) gives an overview and
evaluation of studies between 1960 and 2020,
including the application of NLP techniques to
linguistic annotation of cuneiform texts (Sahala
et al., 2020), conversion of Unicode cuneiform to
transliterations (Gordin et al., 2020), MT (Punia
et al., 2020; Gutherz et al., 2023), automatic
reconstruction of textual gaps (Fetaya et al., 2020;
Lazar et al., 2021), and approaches to OCR
(Dencker et al., 2020).

Piecing together torn, ripped, or otherwise dam-
aged documents and other objects is an interdisci-
plinary task with a multitude of applications, e.g., in
archaeology, philology, and forensics (Kleber et al.,
2009; Papaodysseus et al., 2002). Methods focus
primarily on image processing techniques to find
matching contours, similar to jigsaw puzzle solving,
but in our case the documents to merge do not
necessarily match physically. Therefore, it is more
appropriate to rely on the linguistic information the
tablets provide which makes for an NLP problem
with parallels, e.g., in (short) text matching, cluster-
ing, text-reuse detection, and token alignment.

The aim of text matching is to determine the de-
gree of similarity between two or more pieces of text
which is crucial for countless applications. Match-
ing short text, i.e., documents that consist only of
a few words up to about a paragraph, is a subtask

6www.ebl.lmu.de/corpus/Mag/1/1
7www.ebl.lmu.de/K.18050
8www.ebl.lmu.de/Sm.1215
9www.ebl.lmu.de/Sm.1852

of text matching that is particularly challenging due
to the reduced informativeness of short text which
limits the effectiveness of techniques developed
on longer text forms (Hu et al., 2019; Jin et al.,
2011). Mitigation strategies include normalization
of the input (Han and Baldwin, 2011), utilization of
pre-trained neural networks (Hu et al., 2019), and
enhancement of the short texts with auxiliary data
(Jin et al., 2011). Although the latter is partly ap-
plicable, these techniques generally presuppose
the existence of larger amounts of preprocessed
data which are not available for cuneiform. For
this reason, traditional rule-based approaches ap-
pear to be the more promising route to take at this
point, especially due to the structural aspects of
matching cuneiform fragments (i.e., the task is to
match highly parallel sequences rather than less
structured types of data).

Text reuse or plagiarism detection is a core NLP
task with a rich body of literature we cannot fully
acknowledge here. Closely related to our task is
work on historical and other non-standard data.
E.g., Büchler et al. (2014) explore text re-use detec-
tion in different variants of Bible verses which pose
very similar challenges to cuneiform literary work in
that there are relatively fixed units of segmentation
(verses in biblical texts vs. lines in cuneiform) and a
high degree of structural parallelism among textual
variants caused, e.g., by different writing schools,
dialectal influence, or diachronic change. Büch-
ler et al. also utilize n-grams which belong to the
standard repertoire of NLP techniques that proved
effective, among others, for text classification in
general (Cavnar and Trenkle, 1994), text re-use de-
tection (e.g., Clough et al., 2002; Bensalem et al.,
2014), and authorship attribution (Wright, 2017;
Sari et al., 2017).

Orthographic variations are not exclusive to
cuneiform but are also found, e.g., in Hebrew:
Shmidman et al. (2016) present a method that uses
only the two most infrequent letters for comparison
purposes. This system accounts well for system-
atic orthographic variations in Hebrew script since
the most frequent signs are those that appear most
frequently in orthographic variations. It is, however,
less appropriate for the more arbitrary variations
that are prevalent in cuneiform, which do not in-

https://www.ebl.lmu.de/corpus/Mag/1/1
https://www.ebl.lmu.de/K.18050
https://www.ebl.lmu.de/Sm.1215
https://www.ebl.lmu.de/Sm.1852
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volve the systematic insertion or removal of any
sign in particular.

Since matching cuneiform fragments are ex-
pected to overlap structurally at the line and token
level, the task is also related to alignment problems.
Alignment of words and phrases is relevant, e.g., in
multilingual corpora, and has also been applied to
plagiarism detection (Sanchez-Perez et al., 2014;
Momtaz et al., 2016; Manjavacas et al., 2019).

A two-stage process where first the documents
to be matched are filtered using n-grams, followed
by the application of an alignment algorithm that
detects inserted or deleted passages is proposed
by O’Neill et al. (2021).

8. Conclusion and Future Work

We introduced cuneiform fragment identification
as a type of text matching problem. The idiosyn-
crasies of clay tablets and cuneiform script make
for a unique set of challenges that lend themselves
to be tackled with NLP methods. We have gener-
ated synthetic test data by simulating breaking of
fragments and explored experimental approaches
to simplifying the process of finding matching text
fragments. We found that n-grams offer an elegant
and efficient way to significantly reduce the number
of potential matches from 1,000 to 3 candidates
that contain a match up to 94% of the time.

We believe that the task of fragment identifica-
tion is an intriguing problem that opens up a whole
array of research opportunities. The data offers
much more than just the sign sequences, e.g., the
arrangement of the contents and information about
fracture lines can be leveraged to perform fully auto-
matic matching. Many of the fragments in the eBL
database include photographs, too, which have the
potential for developing multi-modal approaches.
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