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Abstract
Text simplification lacks a universal standard of quality, and annotated reference simplifications are scarce and costly.
We propose to alleviate such limitations by introducing REFeREE, a reference-free model-based metric with a
3-stage curriculum. REFeREE leverages an arbitrarily scalable pretraining stage and can be applied to any quality
standard as long as a small number of human annotations are available. Our experiments show that our metric
outperforms existing reference-based metrics in predicting overall ratings and reaches competitive and consistent
performance in predicting specific ratings while requiring no reference simplifications at inference time.
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1. Introduction

The task of text simplification (TS) aims to re-
duce the reading and grammatical complexity of
text while retaining its meaning and grammatical-
ity (Chandrasekar and Srinivas, 1997). Alongside
other text-to-text generation tasks (such as ma-
chine translation or summarization), it has been
a common practice in TS to use reference-based
automatic metrics and evaluate a generated text by
comparing it to gold-standard references, typically
produced by humans. However, the complexities
of TS pose particular challenges for this type of
evaluation approaches, and prevalent metrics such
as BLEU (Papineni et al., 2002), SARI (Xu et al.,
2016) and BERTScore (Zhang et al., 2020) have
been shown to correlate poorly with human evalu-
ation (Alva-Manchego et al., 2021; Maddela et al.,
2023).

To a large extent, this is due to the absence of a
singular, precise definition of what text simplifica-
tion aims to do and how the output quality should
be judged: text simplification may involve lexical,
syntactic and conceptual modifications conducted
using different operations (e.g. word-swapping,
sentence-splitting, and paraphrasing) (Sulem et al.,
2018b), and simplification quality is associated with
different aspects such as fluency (or grammati-
cality), meaning preservation (or adequacy) and
simplicity. Since reference-based metrics rely on
availability of a large enough number of diverse
yet high-quality references, the availability of such
reference outputs creates a clear bottleneck, as
collection of human-produced references is a slow
and expensive process. Even though some high
quality TS corpora (e.g., Newsela (Xu et al., 2015))
exist, they are still costly to create and often are
not open-access (Martin et al., 2018). Finally, there
are cases when such references will be impossible

to collect: e.g., when there is a need to estimate
the quality of text in real time as is increasingly be-
coming the case for texts generated using large
language models (LLMs) (Zhang et al., 2023).

The above reasons motivate development of
supervised, model-based evaluation approaches,
where a model is trained to mimic human evalu-
ation on given examples, which is applicable to
any standard as long as the annotations are avail-
able and internally consistent. The need for reli-
able reference-free evaluation metrics has been ex-
pressed before (Specia et al., 2010; Thompson and
Post, 2020), and more recently a number of learn-
able TS metrics have been proposed (Maddela
et al., 2023; Zhao et al., 2023; Cripwell et al., 2023).
For instance, Maddela et al. (2023) have proposed
LENS, where they use RoBERTa-extracted (Liu
et al., 2019) representations of (source, simplifi-
cation, reference) tuples to predict overall quality
scores as annotated by humans. Whereas LENS
significantly outperforms conventional metrics in
correlation with human judgements, it is severely
limited by the scarcity of human annotations, with
its training data consisting of only 2.4K simplifica-
tion outputs from 24 systems.

Inspired by the success of BLEURT (Sellam
et al., 2020) in machine translation, we propose
pretraining on synthesised data and supervision
signals as a means to leverage large-scale, unla-
beled data and overcome the bottleneck of refer-
ence simplifications and human ratings. To facili-
tate the arbitrarily scalable synthesis of pretraining
data, we argue for a reference-free, source-based
metric. Specifically, we use existing TS models
to produce simplifications for arbitrary source sen-
tences. Given (source, simplification) pairs, we
task a model-based metric to predict a range of syn-
thesised supervision signals such as BERTScore,
GPT-2 perplexity and model-based simplicity rat-



13741

ings. An additional benefit is that, by enabling direct
comparison with the source sentence, such a met-
ric can more accurately evaluate criteria such as
meaning preservation and relative simplicity (as
opposed to source-free metrics such as BLEURT
and BERTScore).

In this work, we introduce REFeREE, a model-
based metric for text simplification that is reference-
free. We propose a curriculum with two pretraining
stages and a fine-tuning stage as shown in Figure
1. The first pretraining stage uses reference-free
supervision signals and is arbitrarily scalable, al-
lowing us to leverage the large amounts of unla-
beled texts. The second pretraining stage relies on
both reference-free and reference-based supervi-
sion signals. This stage makes use of the readily
available TS corpora that do not include human
ratings and provides more accurate supervision.
Finally, we fine-tune the metric on human ratings
such that it is aligned with the specific simplification
operations and criteria.

We evaluate our approach on overall ratings from
the SimpEval dataset (Maddela et al., 2023) and
specific adequacy, fluency and simplicity ratings
from the smaller Simplicity-DA (Alva-Manchego
et al., 2021) and Human-Likert (Scialom et al.,
2021b) datasets. REFeREE correlates better with
the overall human ratings, outperforming popular
rule-based metrics, BERTScore, BLEURT, LENS
and other model-based strong baselines while us-
ing a smaller model and requiring less information
at inference time. On the smaller Simplicity-DA
and Human-Likert datasets, REFeREE overall un-
derperforms Lens but still performs better than con-
ventional metrics and is more consistent across
different datasets. Additionally, we perform exten-
sive ablation studies to investigate the effects of
each component in our training process.1

2. Related Work

The literature on TS models and automatic eval-
uation is vast. In this section, we provide a brief
outline of the types of model-based metrics and
then give a more detailed account of the previous
work that addresses reference-free evaluation.

2.1. Model-Based Evaluation Metrics
Model-based evaluation metrics have been actively
investigated in NLP and particularly machine trans-
lation (MT). Metrics fine-tuned on human ratings,
such as BLEURT (Sellam et al., 2020; Pu et al.,
2021), COMET (Rei et al., 2020), and UniTE (Wan
et al., 2022), have been shown to produce good
results. In this work, we take direct inspiration from

1Code and model checkpoints are available at https:
//github.com/i-need-sleep/referee.

Figure 1: An overview of the proposed curriculum.

BLEURT, a generic metric for natural language gen-
eration (NLG). BLEURT produces evaluation from
(prediction, reference) pairs and utilizes an arbitrar-
ily scalable pretraining stage where it is trained to
predict automatically generated supervision signals
(BLEU, BERTScore, etc.) based on synthesized,
semantically similar pairs. The pretraining step al-
lows BLEURT to produce good results even when
fine-tuned on a reasonably small set of human an-
notations. However, this method is not immediately
applicable to TS evaluation as reference simplifica-
tions are difficult to synthesize and TS evaluation in-
volves particular aspects of quality (e.g. simplicity)
not considered in BLEURT’s pretraining objectives.
In response to these challenges, we propose a
reference-free, source-based setup with a modified
pretraining process.

There also exists a family of unsupervised met-
rics that do not rely on human ratings and instead
compare the embeddings either between the sys-
tem output and the reference (Zhang et al., 2020)
or between the system output and the source sen-
tence (Zhao et al., 2020; Reimers and Gurevych,
2020; Belouadi and Eger, 2023). This line of re-
search is not immediately suitable for our task as
text simplification can be evaluated in terms of differ-
ent aspects, resulting in different ratings even when
given the same (source, simplification, reference)
tuple.

Another recent trend that addresses automatic
evaluation is based on the direct use of Large
Language Models (LLMs) for evaluation. Fu et al.
(2023) use LLM-predicted conditional probabilities
as estimates for NLG quality. Liu et al. (2023) task
LLMs to directly produce numeric ratings given de-
scriptions of evaluation criteria through a chain-of-
thought (Wei et al., 2022) process. With natural
language instruction as an interface for defining
evaluation criteria, this type of approach is flexible,
data-lean at inference time, and has been shown to

https://github.com/i-need-sleep/referee
https://github.com/i-need-sleep/referee
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correlate well with human ratings. However, LLMs
are compute-hungry and tend to overestimate out-
puts generated by models similar to themselves
(Liu et al., 2023). In addition, most existing LLM-
based metrics are aligned with human raters im-
plicitly (through natural language instruction) rather
than explicitly (with human ratings). As such, we
see this line of work as orthogonal to ours.

2.2. Reference-Free Evaluation Metrics
Traditionally, the outputs of text-to-text genera-
tion models have been evaluated using reference-
based metrics such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), or BERTScore (Zhang et al.,
2020). These metrics do not always correlate
with human judgments of the generated output
quality (Sulem et al., 2018a), and such evalua-
tion paradigm falls short when human references
are not available or only a single model is avail-
able (Louis and Nenkova, 2013). The quality of the
references also has an impact on reference-based
evaluation, and, given that evaluation of generated
outputs is cognitively demanding and highly sub-
jective (Vasilyev et al., 2020), it is hard to avoid
variability across a set of references and gold stan-
dard judgements (Harman and Over, 2004).

As a result, development of Quality Estimation
(QE) (Specia et al., 2010) and reference-free met-
rics has gained increased attention in the recent
years (Louis and Nenkova, 2013; Scialom et al.,
2019; Thompson and Post, 2020, inter alia). For
summarization, Louis and Nenkova (2013) show
that quantifying the similarity between the source
text and its summary with appropriately chosen con-
tent similarity based measures produces scores
which replicate human assessments accurately.
Scialom et al. (2019, 2021a) and Vasilyev et al.
(2020) evaluate summary quality by measuring how
such summaries help with related tasks rather than
how well they align with a pre-defined set of ref-
erences: Scialom et al. (2019, 2021a) introduce
metrics based on the intuition that the quality of a
generated summary is directly related to the num-
ber of relevant questions that can be answered
on its basis; and Vasilyev et al. (2020) estimate
summary quality measuring the performance boost
gained by a pre-trained language model with ac-
cess to the summary while carrying out its language
understanding task on the document’s text. In MT,
such systems as COMET and its extensions, which
use pre-training and subsequent normalization, and
Prism (Thompson and Post, 2020), which casts
the evaluation task to that of scoring MT output
with a zero-shot paraphraser, show results compet-
itive with reference-based models (Rei et al., 2020,
2021); finally, Fonseca et al. (2019) demonstrate
that such metrics also highly correlate with human
judgments while alleviating the need for references,

thus suggesting that reference-free evaluation is a
promising direction for future research.

2.3. Reference-Free TS Evaluation
In TS, researchers have also been investigating
application of reference-free measures (Temnikova
and Maneva, 2013; Kajiwara and Fujita, 2017, inter
alia): for instance, Temnikova and Maneva (2013)
propose to evaluate TS quality extrinsically via hu-
man reading comprehension. Other early works on
automatic reference-free evaluation rely on feature-
based classification approaches aimed at specific
aspects of simplification (e.g., lexical, syntactic,
structural). For instance, Štajner et al. (2014) inves-
tigate applicability of popular MT evaluation metrics
to the TS systems outputs and the corresponding
original sentences, and demonstrate their poten-
tial in replacing human assessment of TS systems
aimed at syntactic simplifications and content re-
duction. Kajiwara and Fujita (2017) show that a
classification model utilizing alignment-based se-
mantic features is capable of reliably predicting
TS system quality when lexical simplifications are
also involved as is the case with the QATS 2016
dataset (Štajner et al., 2016). Experiments of Mar-
tin et al. (2018) on the same data demonstrate that
n-gram-based MT metrics correlate the most with
human judgment of grammaticality and meaning
preservation, whereas simplicity is best evaluated
by basic length-based metrics. Finally, Sulem et al.
(2018b) focus on the structural aspects of TS and
propose SAMSA, a system that uses decomposi-
tion of the input based on its semantic structure
and compares it to the output.

A different line of research investigates the use of
large-scale pre-trained models for direct quality es-
timation in TS systems: a notable example is Kriz
et al. (2020), who propose Simple-QE, a BERT-
based QE model adapted from prior summarization
work, and show that it correlates well with human
quality judgments. Scialom et al. (2021b) present a
BERTScore-based (Zhang et al., 2020) adaptation
of their QuestEval metric (Scialom et al., 2021a)
for TS and show that it yields competitive results
along the meaning preservation dimension, with
considerable improvement over BLEU and SARI. At
the same time, their analysis suggests that datasets
commonly considered in TS research show a con-
siderable level of spurious correlations between
different dimensions, with fluency being highly cor-
related with meaning preservation and simplicity.
To that end, they release Human-Likert, a new
large corpus of human evaluations devoid of such
spurious correlations.

Recently, Zhao et al. (2023) have proposed
BETS, a reference-free TS metric aggregating a
simplicity score and an adequacy score. The sim-
plicity branch is trained on pairs of complex and
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Training stage Data Supervision signals

Pretraining (Stage 1) OpenWebText

Meaning preservation: SBERT, self-BLEU, self-BERTScore
Fluency: Source perplexity, simplification perplexity
Simplicity: Source FKGL, simplification FKGL,

source simplicity, simplification simplicity

Pretraining (Stage 2)
Newsela (test)
WikiSmall (test)
WikiLarge (test)

All stage 1 objectives
+ BLEU, SARI, BERTScore

Fine-tuning (Stage 3) Overall: SimpEval
Specific: Simplicity-DA, Human-Likert Human ratings

Table 1: An overview of the data and supervision signals used in each training stage. For the final stage,
we fine-tune and evaluate REFeREE separately for each dataset and quality aspect.

simple phrases, and the adequacy branch is based
on word embedding similarity akin to BERTScore.
At the same time, Cripwell et al. (2023) propose
to evaluate TS quality with SLE, a reference-free
simplicity metric trained on softened reading lev-
els from Newsela (Xu et al., 2015). These metrics
focus on specific simplification qualities and eval-
uation criteria: BETS primarily considers lexical
simplification, with its simplicity branch unable to
return a score when all words in the simplified sen-
tence are present in the original sentence (as would
be the case with simplification by deletion or split-
ting), and SLE is not trained nor tested on machine
simplifications with adequacy or fluency issues.

By contrast, we propose a metric that is compat-
ible with any simplification operation as it is fine-
tuned end-to-end on human ratings. To the best of
our knowledge, the only learnable model-based TS
metric aligned with human ratings is LENS (Mad-
dela et al., 2023), which adopts a COMET-like ap-
proach and relies on references.

3. Methodology

REFeREE is based on a pretrained DeBERTa-v3-
base model (He et al., 2023) and takes as input
delimited pairs of source sentences and system out-
puts. The DeBERTa-extracted sequence embed-
ding is passed into a linear regression head for each
supervision signal. The training process consists of
three stages: (1) an arbitrarily scalable pretraining
stage with reference-free supervision signals, (2) a
second pretraining stage with both reference-free
and reference-based supervision signals, and (3) a
fine-tuning stage with human ratings. An overview
of the data and supervision signals is shown in
Table 1. We describe the three stages in the follow-
ing subsections. More implementation details are
reported in Appendix A.

3.1. Pretraining with Reference-Free
Supervision Signals

The first pretraining stage aims to learn important
aspects of simplification quality directly from text. It
involves a collection of reference-free supervision

signals and is designed to be arbitrarily scalable
such that the metric can leverage large amounts of
unlabeled text. Based on the common criteria of
text simplification quality (Martin et al., 2018; Kriz
et al., 2020; Scialom et al., 2021b, inter alia), we
select a range of supervision signals measuring
meaning preservation (also referred as adequacy),
fluency (or grammaticality) and simplicity:

• Meaning preservation (adequacy) focuses
on how well the TS output preserves the mean-
ing of the original text. For this, we use the
cosine embedding distance from SBERT em-
beddings (Reimers and Gurevych, 2019) as
well as self-BLEU and self-BERTScore mea-
sured against the source sentence. In this way,
our metric can capture both lexical overlaps
and paraphrases.

• Fluency (grammaticality) aims to measure
how well-formed the TS output is. For this, we
include the perplexity for both the source sen-
tence and the system output as measured by
GPT-2 (Radford et al., 2019). Our intuition is
that if the content of the source and the system
output is similar, then the difference between
their perplexities reflects the difference in flu-
ency.

• Simplicity focuses on the extent to which
the output is easier to read and understand
than the original text. Here, we utilize the
FKGL score (Kincaid et al., 1975) and a model-
based readability score for both the source
and the system output. We use an ALBERT-
based (Lan et al., 2020) system trained on the
CommonLit dataset.2

To generate pairs of source sentences and ma-
chine simplifications, we use a small subset of
the OpenWebText dataset (Gokaslan and Cohen,
2019) of approximately 200K sentences. To obtain
a range of good and bad simplifications, we use
outputs from high-performing models and augment
the dataset with degraded simplifications. We use

2https://github.com/mathislucka/
kaggle_clrp_1st_place_solution

https://github.com/mathislucka/kaggle_clrp_1st_place_solution
https://github.com/mathislucka/kaggle_clrp_1st_place_solution
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outputs from MUSS (Martin et al., 2022) as well as
5-shot results from GPT-3.5-turbo (OpenAI, 2023)
and GPT-3-Curie (Brown et al., 2020). Based on
the results of preliminary experiments, we augment
40% of the outputs by random deletion, scrambling
and swapping of the original and simplified sen-
tences. As no annotated reference simplification is
required, this stage is arbitrarily scalable, and the
set of supervision signals is extendable.

3.2. Pretraining with Reference-Free and
Reference-Based Supervision
Signals

As highlighted earlier, TS data with human ratings
are scarce, which creates a bottleneck for TS eval-
uation. However, there exist several TS corpora of
aligned complex and human-simplified sentences,
and in the second stage, we utilize this data in the
form of reference-based supervision signals to pro-
vide more accurate supervision. Specifically, the
second pretraining stage includes BLEU, SARI and
BERTScore as supervision signals in addition to
the reference-free signals from Stage 1. We uti-
lize the Newsela (Xu et al., 2015), WikiSmall and
WikiLarge (Zhang and Lapata, 2017) test sets, to-
talling at 1,536 (source, reference) pairs. In ad-
dition to the outputs from the models used in the
previous stage, we include outputs from EditNTS
(Dong et al., 2019), DRESS (Zhang and Lapata,
2017), Hybrid (Narayan and Gardent, 2014), and
PBMT-R (Wubben et al., 2012). Due to the reliance
on reference simplifications, this stage is scalable
only in terms of the number of simplification sys-
tems.

3.3. Fine-tuning
Finally, we fine-tune the metric on human ratings
such that it is aligned with the particular criteria
used in each dataset. We consider fine-tuning on
overall as well as specific ratings. For overall rat-
ings, we use the SimpEval (Maddela et al., 2023)
corpus which contains overall quality ratings from
five annotators. Following Maddela et al. (2023),
we use the SimpEvalPAST and SimpEval2022 sub-
sets of the SimpEval corpus respectively for train-
ing and evaluation. SimpEvalPAST contains ratings
for 2.4K system outputs from 24 systems and is
based on a subset of the TurkCorpus (Xu et al.,
2016). SimpEval2022 is designed to present a
more challenging scenario and contains 360 sim-
plifications from 6 systems for a new, curated set
of sentences that are longer and discuss recent
events. In particular, SimpEval2022 includes only
higher-quality simplifications from GPT-3.5 (Ope-
nAI, 2023), T5 (Raffel et al., 2020), MUSS (Martin
et al., 2022) and human annotators. We report the
aggregated results from three runs.

To evaluate our method on learning
specific scores, we utilize the Simplicity-
DA (Alva-Manchego et al., 2021) and Human-
Likert (Scialom et al., 2021) datasets. Simplicity-
DA contains 600 system outputs from six systems
from the TurkCorpus (Xu et al., 2016) test set,
each with annotations on adequacy, fluency and
simplicity. Human-Likert follows the same format
and contains 112 human-written simplifications
from the ASSET(Alva-Manchego et al., 2020) and
TurkCorpus test sets. The smaller size of the
two datasets presents a challenge to learnable
metrics. We fine-tune and evaluate REFeREE
separately on the different aspects. We split the
datasets into training, validation and test sets by
source sentences with a 4-1-1 ratio and report the
averaged results on five runs with non-overlapping
test sets.

4. Experimental Results

We fine-tune and evaluate REFeREE separately
on the three datasets. For each stage, the model
is trained on the unweighted average of L2 losses
from the training signals. We use the Adam opti-
mizer (Kingma and Ba, 2015) with ϵ = 10−6, β1 =
0.9, and β2 = 0.999, learning rates of 10−5, 10−5,
and 10−7 for the three stages, and perform early-
stopping based on the development set perfor-
mance.

Human ratings are aggregated by taking the av-
erage. For Simplicity-DA and Human-Likert, we
report the Pearson correlation r. For SimpEval,
as the ratings for different simplification operations
(deletion, paraphrase and splitting) are separately
collected and not comparable, we follow Maddela
et al. (2023) and report the Kendall Tau-like coef-
ficient τ (Bojar et al., 2017), which has a range
between -1 and 1 and is defined as:

τ =
|Concordant| − |Discordant|
|Concordant|+ |Discordant|

where Concordant is the set of pair-wise rankings
where the metric agrees with human ratings on
simplifications for the same source sentence, and
Discordant is the set of rankings where they dis-
agree.

We compare our metric with non-learnable met-
rics (FKGL, BLEU, SARI, self-BERTScore and
BERTScore), as well as BLEURT (Pu et al., 2021),
Lens, BETS, and SLE.3 For a fair comparison with
Lens, we also include a variant of REFeREE with

3We include the precision score of BERTScore in ad-
dition to the F1 score as Alva-Manchego et al. (2021)
observe that it correlates better with human judgments.
BLEURT was originally fine-tuned on WMT datasets (Bar-
rault et al., 2019). We also experiment with fine-tuning it
on the simplification datasets. We compare against the
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Metric τparaphrase ↑ τsplitting ↑ τall ↑
FKGL −0.556 −0.310 −0.356
BLEU −0.048 −0.054 −0.033
SARI 0.397 0.264 0.289
BERTScoreF1 0.175 0.023 0.052
BERTScoreprecision 0.238 0.093 0.112
self-BERTScoreF1 −0.174 −0.333 −0.300
self-BERTScoreprecision −0.079 −0.348 −0.300
BLEURTWMT 0.055 0.073 0.030
BLEURTfine−tuned 0.270± 0.113 0.132± 0.023 0.163± 0.040
BETS −0.302 −0.349 −0.331
SLE 0.492 0.256 0.295
Lensk=3 0.429 0.333 0.331
REFeREE 0.481± 0.015 0.341± 0.029 0.360± 0.020
REFeREE (RoBERTa) 0.534± 0.030 0.328± 0.019 0.368± 0.018

Table 2: Results on the SimpEval2022 dataset for different operation types. We use the official checkpoints
for off-the-shelf metrics. For the metrics we trained (REFeREE and BLEURTfine−tuned), we report the
aggregated results from three runs. We follow Maddela et al. (2023) and report the Kendall Tau-like
coefficient on filtered pairs where all three annotators agree with the ranking order and the unnormalized
score difference (out of 100) is larger than five for at least two annotators. Since each operation group is
rated separately for the dataset, we do not compare simplifications of different operation types. For the
same reason, the overall Pearson correlation is not compatible with this dataset.

a RoBERTa-large backbone. Finally, to investigate
the contribution of the three training stages, data
augmentation and training signals, we also report
ablation results on SimpEval.

4.1. Overall Ratings
Results on the SimpEval2022 dataset are shown
in Table 2.4 Non-learnable metrics perform poorly,
with FKGL, BLEU and self-BERTScore having more
discordant pairs than concordant ones, demonstrat-
ing the need for learnable metrics. In particular,
self-BERTScore measures sentence similarity and
may mistakenly punish simplifications that remove
non-essential information or inadequately punish
under-simplifications. The off-the-shelf and fine-
tuned BLEURT metrics also perform poorly as the
BLEURT pretraining process mainly considers se-
mantic similarity and does not adequately encom-
pass all aspects of simplification quality. Some-
what surprisingly, BETS performs very poorly for all
types of simplification. We hypothesize that this is
because it is primary designed for lexical simplifica-
tion and cannot effectively evaluate simplification
by syntactic changes. SLE, a metric trained to
predict simplicity, performs relatively well on this

highest-performing Lens variant trained using the top-3
references and the highest-performing SLE variant mea-
suring relative simplicity and trained on softened labels.
In the cases where the simplicity branch of BETS fails to
return a score, we assign a simplicity score of 0.

4We observe slightly different results than those re-
ported in Maddela et al. (2023), which is likely due to
the use of different implementations of the evaluation
metrics.

dataset, suggesting that the overall quality ratings
are correlated with sentence simplicity and that the
simplifications in SimpEval2022 have relatively few
adequacy and fluency issues.

REFeREE outperforms Lens, which uses a
larger model (354M parameters compared with
226M parameters) and relies on more information
at inference time. Changing to the larger RoBERTa-
large backbone results in slightly improved overall
performance, with a significant improvement in eval-
uating paraphrases. A further inspection reveals
that compared with Lens, REFeREE is more ef-
fective at evaluating machine simplifications and
relatively underperforms when handling human sim-
plifications. Specifically, REFeREE results in a
KendallTau-like coefficient of 0.310 when evaluat-
ing sentence pairs involving human simplifications
and 0.500 when evaluating other pairs whereas the
results for Lens are 0.371 and 0.273, respectively.
We suspect that this is because REFeREE is less
exposed to human-written simplifications during
pretraining compared with machine simplifications.

4.2. Specific Ratings
Tables 3 and 4 show the results on the Simplicity-
DA and Human-Likert datasets for adequacy, flu-
ency and simplicity. Overall, REFeREE underper-
forms Lens but still performs better than conven-
tional metrics. On Simplicity-DA, we observe that
most source-based metrics (self-BERTScore, Lens
and REFeREE) outperform source-free metrics,
suggesting that having direct access to the source
sentence helps with measuring meaning preser-
vation. Self-BERTScore, with the highest perfor-
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Metric Adequacy Fluency Simplicity
r↑ r↑ r↑

FKGL 0.064± 0.164 0.083± 0.207 0.099± 0.117
BLEU 0.354± 0.153 0.317± 0.144 0.221± 0.145
SARI 0.258± 0.066 0.164± 0.077 0.180± 0.094
BERTScoreF1 0.569± 0.075 0.462± 0.108 0.362± 0.066
BERTScorePrecision 0.513± 0.095 0.480± 0.111 0.426± 0.074
self-BERTScoreF1 0.727± 0.044 0.528± 0.083 0.390± 0.045
self-BERTScorePrecision 0.687± 0.069 0.566± 0.054 0.481± 0.041
BLEURTWMT 0.595± 0.082 0.437± 0.172 0.323± 0.111
BLEURTfine−tuned 0.096± 0.229 0.384± 0.158 0.150± 0.228
BETS 0.592± 0.050 0.367± 0.094 0.155± 0.065
SLE −0.329± 0.097 −0.128± 0.155 0.018± 0.082
Lensk=3 0.636± 0.069 0.758± 0.059 0.732± 0.094
REFeREE 0.622± 0.079 0.478± 0.045 0.366± 0.126
REFeREE (RoBERTa) 0.633± 0.038 0.483± 0.57 0.427± 0.058

Table 3: Results on the Simplicity-DA dataset. The Lens model is trained on SimpEvalPAST and not
fine-tuned on this dataset. The dataset is not compatible with the Kendall Tau-like coefficient as it mostly
does not contain simplifications from different systems for the same source sentence.

Metric Adequacy Fluency Simplicity
r↑ r↑ r↑

FKGL 0.111± 0.125 −0.169± 0.136 −0.385± 0.226
BLEU 0.280± 0.163 0.316± 0.183 0.157± 0.209
SARI 0.139± 0.120 0.236± 0.089 0.445± 0.108
BERTScoreF1 0.280± 0.150 0.214± 0.042 0.105± 0.130
BERTScorePrecision 0.266± 0.192 0.433± 0.065 0.321± 0.077
self-BERTScoreF1 0.421± 0.169 0.016± 0.103 −0.385± 0.108
self-BERTScorePrecision 0.345± 0.210 0.175± 0.107 −0.255± 0.128
BLEURTWMT 0.441± 0.047 0.247± 0.022 0.093± 0.072
BLEURTfine−tuned 0.472± 0.110 0.251± 0.150 0.077± 0.109
BETS 0.375± 0.167 −0.114± 0.106 −0.513± 0.066
SLE −0.206± 0.142 0.186± 0.099 0.532± 0.072
Lensk=3 0.201± 0.122 0.561± 0.057 0.561± 0.055
REFeREE 0.425± 0.127 0.308± 0.108 0.322± 0.075
REFeREE (RoBERTa) 0.386± 0.120 0.292± 0.171 0.528± 0.083

Table 4: Results on the Human-Likert dataset. The Lens model is trained on SimpEvalPAST and not
fine-tuned on this dataset. The dataset is not compatible with the Kendall Tau-like coefficient as it mostly
does not contain simplifications from different systems for the same source sentence.

mance on adequacy, also performs well in measur-
ing fluency and simplicity. This is likely due to the
high intra-correlation between the three aspects
in Simplicity-DA (e.g. inadequate simplifications
are likely not fluent and difficult to understand) as
pointed out by (Scialom et al., 2021b). SLE, despite
performing well on Simplicity-DA when controlling
for adequacy and fluency (Cripwell et al., 2023),
performs poorly on the unfiltered dataset as it is
not exposed to the lower-quality machine simpli-
fications during its training process. The relative
underperformance of REFeREE is likely because
the dataset includes outputs from several dated
systems absent in our pretraining process. Incorpo-
rating more systems and refining the augmentation
process will likely lead to improvements.

We observe that the performance of most metrics
is inconsistent between Simplicity-DA and Human-

Likert. For instance, Lens performs much worse
in predicting adequacy scores on Human-Likert
than on Simplicity-DA. Aside from Human-Likert
having lower inter-correlations, this can also be
due to the variances in the collection of human
ratings (e.g. annotators and criteria). Despite hav-
ing lower overall performance, REFeREE performs
more consistently between the datasets as it can
be fine-tuned to be aligned with the particularities
of each set of ratings.

4.3. Ablation Experiments

Finally, to shed light on how the different compo-
nents of REFeREE affect the overall performance,
we report the ablation study results on SimpE-
val2022 with respect to the training regime, the
types of supervision signals and data augmenta-
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Metric τparaphrase ↑ τsplitting ↑ τall ↑
REFeREE 0.481± 0.015 0.341± 0.029 0.360± 0.020
Stage 1 + fine-tuning 0.439± 0.054 0.370± 0.041 0.374± 0.031
Stage 2 + fine-tuning 0.365± 0.052 0.240± 0.058 0.254± 0.058
Fine-tuning only 0.354± 0.030 0.220± 0.045 0.242± 0.037
REFeREE, all stages
w/o fluency 0.376± 0.015 0.328± 0.007 0.335± 0.003
w/o meaning 0.407± 0.030 0.372± 0.013 0.358± 0.006
w/o simplicity 0.418± 0.015 0.305± 0.015 0.309± 0.016
w/o augmentation 0.439± 0.015 0.271± 0.006 0.289± 0.009

Table 5: Ablation results on SimpEval2022.

tion. Comparing variants of REFeREE with differ-
ent training regimes, we find that the first pretrain-
ing stage significantly improves the performance
thanks to its relatively large scale, leading to an
increase of over 0.13 in the Kendall Tau-like coef-
ficient for all operation types compared with fine-
tuning only. The second pretraining stage appears
limitedly helpful when compared with fine-tuning
only and even results in slightly degraded perfor-
mance when combined with the first pretraining
stage. This can be due to potentially varying qual-
ity of the references and the small dataset size for
this stage, which may more easily lead to overfitting.
This further signifies the utility of the arbitrarily scal-
able first pretraining stage as a means to improve
model performance under the scarcity of human-
annotated ratings.

We also experiment with ablating types of su-
pervision signals for meaning preservation (BLEU,
self-BLEU, BERTScore and self-BERTScore), flu-
ency (GPT-2 perplexity) and simplicity (FKGL and
CommonLit readability). We observe that the super-
vision signals for meaning preservation only slightly
influence the performance, which is likely because
the machine simplifications in SimpEval2022 are of
high quality and generally preserve the meaning of
the complex sentences. The signals for fluency and
simplicity seem to play a more impactful role, likely
because the systems in SimpEval2022 (GPT-3.5,
T5, MUSS and humans) produce simplifications
in different styles and of varying fluency. This ex-
plains why our metric outperforms non-specialized
metrics such as BERTScore which primarily focus
on meaning preservation.

Ablating data augmentation leads to a significant
decrease in the metric’s performance. This is be-
cause the first pre-training stage involves relatively
high-quality simplification produced by MUSS and
GPT, and data augmentation is an effective way of
generating lower-quality simplifications that com-
plement these system outputs.

5. Discussion

Despite promising results demonstrated in this
work, we also recognize that there are limitations of
the proposed method. In this section, we discuss
such limitations, outlining potential directions for
future research.

First of all, due to the data limitations, REFeREE
is only fine-tuned and evaluated on sentence-level
simplifications in the English news and Wikipedia
domains. Its performance on other languages, do-
mains and simplification setups (e.g. document-
level simplification (Sun et al., 2021) and elabora-
tive simplification (Srikanth and Li, 2021)) awaits
further investigation. Whereas our reference-free
pretraining stage is arbitrarily scalable in design,
we only experimented with a reasonably small pre-
training dataset of around 200K source sentences
simplified by three systems. Further experiments
are required to determine how the performance of
the metric scales with the dataset size and the num-
ber of simplification systems. In addition, since the
metric is fine-tuned on small datasets, its out-of-
domain performance on other datasets and simpli-
fication systems is not guaranteed.

Finally, despite the increasing need for reference-
free evaluation metrics and the development of mul-
tiple reference-free approaches, the applicability
of such metrics needs to be carefully considered.
Deutsch et al. (2022) highlight that the metrics can
be over-optimized at test time, and may be biased
both towards models similar to their backbones
and against higher-quality outputs produced by hu-
mans. We agree with Deutsch et al. (2022) that
reference-free metrics should be used as diagnos-
tic tools and with Louis and Nenkova (2013) that
these metrics should complement high-quality hu-
man evaluation. However, we also contend that this
still makes them useful during the rapid prototyp-
ing of new systems where human evaluations are
costly, difficult or sometimes impossible to collect.

6. Conclusion

We propose REFeREE, a reference-free model-
based metric for text simplification with a 3-stage
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curriculum, including an arbitrarily scalable pre-
training using reference-free supervision signals
as well as pretraining with both reference-free and
reference-based supervision signals, and a fine-
tuning stage with human ratings. Our experiments
show that our metric is effective and flexible, at-
taining competitive performance in evaluating with
respect to both general and specific ratings of the
quality of the text simplification system outputs.

Since the formulation of our metric is largely gen-
eralizable, it can be modified and applied to other
conditional natural language generation tasks such
as abstractive summarization, among others. This
calls for an investigation into task-agnostic and
multi-task supervision, which we leave as future
work.
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A. Implementation Details

A.1. Data

For the first pretraining stage, we use
source sentences from the first 10 volumes
of the OpenWebText dataset. We use the
muss_en_wikilarge_mined checkpoint for
the MUSS model (Martin et al., 2022). For the
GPT models, we randomly sample five source-
simplification pairs from the TurkCorpus dataset
(Xu et al., 2016) as in-context examples. We use
the following prompt template:

• System prompt: You are a helpful assistant
that simplifies English sentences, making them
easier to read while preserving key meanings.

• User prompt: Follow the examples and simplify
the sentence, making it easier to read while
preserving key meanings. Reply with only the
simplified sentence. Sentence: {...} Simplifica-
tion: {...} ... Sentence: {...}

with the system prompt only applicable to the GPT-
3.5-turbo model. For the models in the second
pretraining stage, we use the model outputs as
published by their authors.

For the pretraining stages, we randomly select
40% of the system outputs for augmentation. Each
instance selected for augmentation is assigned to
be augmented by deletion, scrambling or by swap-
ping the complex and simplified sentences respec-
tively with probabilities of 0.3, 0.3 and 0.4. We use
the NLTK Tree Bank Word Tokenizer5 and
uniformly randomly select one to four words for
deletion and one to five words for scrambling.

We use the HuggingFace Evaluate implemen-
tation6 of BLEU, the Sentence Transformer im-
plementation of all-distillroberta-v17 for
SBERT, the HuggingFace Evaluate implemen-
tation8 of GPT-2 perplexity and the EASSE (Alva-
Manchego et al., 2019) implementation of SARI.
For FKGL, we use the syllable and lexicon counts
calculated using the Textstat package.9 Each
supervision signal is normalized across the dataset.

5https://www.nltk.org/api/nltk.
tokenize.TreebankWordTokenizer.html

6https://huggingface.co/spaces/
evaluate-metric/bleu

7sentence-transformers/
all-distilroberta-v1

8https://huggingface.co/spaces/
evaluate-metric/perplexity

9https://pypi.org/project/textstat/
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A.2. Model Implementation and Training
We base REFeREE on the HuggingFace implemen-
tation 10 of the DeBERTa-v3-base model with 12
layers and a hidden size of 768. The model takes
as input the source and simplified sentences de-
limited by a <SEP> token. We use the embedding
corresponding to the <BOS> token as the sequence
embedding and feed it into separate linear regres-
sion heads for each supervision signal.

For each stage, the model is trained on the un-
weighted sum of L2 losses from the training signals.
We use the Adam optimizer (Kingma and Ba, 2015)
with ϵ = 10−6, β1 = 0.9, and β2 = 0.999. For the
three stages, we respectively train the model for
a maximum of three, 30, and 50 epochs with a
learning rate of 10−5, 10−5, and 10−7 and apply
early-stopping based on the loss on development
sets.

For the fine-tuned BLEURT model, we start from
the BLEURT-20-D12 checkpoint11 fine-tuned on
WMT and reinitialize the regression head. The fine-
tuning follows the same process as REFeREE.

10https://huggingface.co/microsoft/
deberta-v3-base

11https://github.com/lucadiliello/
bleurt-pytorch
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