
LREC-COLING 2024, pages 13919–13928
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

13919

RENN: A Rule Embedding Enhanced Neural Network Framework for
Temporal Knowledge Graph Completion

Linlin Zong1, Zhenrong Xie1, Chi Ma1, Xinyue Liu1, Xianchao Zhang1, Bo Xu2,3∗
1Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province,

School of Software, Dalian University of Technology, China
2School of Computer Science and Technology, Dalian University of Technology, China

3 Key Laboratory of Social Computing and Cognitive Intelligence (Dalian University of Technology),
Ministry of Education, China

{llzong, xyliu, xczhang, xubo}@dlut.edu.cn
xiezr1207@163.com, dlut.marx@gmail.com

Abstract
Existing approaches encompass deep neural network-based methods for temporal knowledge graph embedding and
rule-based logical symbolic reasoning. However, the former may not adequately account for structural dependencies
between relations.Conversely, the latter methods relies heavily on strict logical rule reasoning and lacks robustness in
the face of fuzzy or noisy data. In response to these challenges, we present RENN, a groundbreaking framework
that enhances temporal knowledge graph completion through rule embedding. RENN employs a three-step
approach. First, it utilizes temporary random walk to extract temporal logic rules. Then, it pre-trains by learning
embeddings for each logical rule and its associated relations, thereby enhancing the likelihood of existing quadruples
and logical rules. Finally, it incorporates the embeddings of logical rules into the deep neural network. Our
methodology has been validated through experiments conducted on various temporal knowledge graph models and
datasets, consistently demonstrating its effectiveness and potential in improving temporal knowledge graph completion.

Keywords: Temporal knowledge graph, graph completion, rule embedding

1. Introduction

A Knowledge Graph is a graph-based data struc-
ture that represents knowledge using triples (s, r, o).
Knowledge within a Knowledge Graph often con-
tains significant metatemporal aspects, leading to
dynamic changes as time progresses. The concept
of a Temporal Knowledge Graph (TKG) (Cai et al.,
2023) was introduced based on a static Knowl-
edge Graph, incorporating timestamps t to express
knowledge in the form of quadruples (s, r, o, t),
such as (Italy, Electing_Prime_Minister, Berlusconi,
1994). However, since many TKGs are constructed
manually or through a semi-manual process, they
often suffer from incompleteness, as collecting
and verifying facts can be expensive and time-
consuming. The incompleteness of TKGs presents
limitations to their potential applications. As a result,
a critical research task is to develop methods that
can predict missing facts in TKGs based on the ex-
isting quadruples. These methods aim to enhance
the completeness and usefulness of TKGs, making
them more valuable for various AI applications.

In the context of a TKG spanning from timestamp
0 to timestamp T , there are two primary TKG com-
pletion tasks: extrapolation and interpolation. The
goal of the extrapolation task is to use historical
knowledge (knowledge from timestamps 0 to T ) to

∗Corresponding author

predict and infer future facts for timestamps greater
than T . The interpolation task, on the other hand,
uses both historical information (knowledge from
timestamps 0 to t) and future information (knowl-
edge from timestamps t to T ) to reason and com-
plete the facts for timestamps t. In this paper, we
mainly focus on the extrapolation task.

To predict future facts based on the TKGs, global
structural inference must be performed as time pro-
gresses, necessitating the ability to integrate tempo-
ral and structural information. Two major methods
are used in the extrapolation task of TKG comple-
tion: deep neural network-based knowledge rep-
resentation learning (Zhu et al., 2021), which em-
beds all entities and relations into vectors, and rule-
based logical symbolic reasoning (Liu et al., 2022),
which infers new facts based on logical rules.

However, the former may overlook the struc-
tural dependencies of relations. For example,
Figure 1 shows a series of Rafael Leão re-
lated subgraphs from TKG. For the query
(Rafael Leão, T ransfer_To, ?, 2019), the knowl-
edge representation learning method may tend
to choose Lille F.C, which is more similar
to the subject entity Rafael Leão in the em-
bedding space. But the result ignores the
structural information related to the subject
entity RafaelLeo, i.e., two obvious logical paths
(Rafael Leão, Y outh_Train_At, Portugese Sports



13920

F.C, 2008 ) (Portugese Sports F.C,Contact, Lille
F.C, 2015 ) (Lille F.C,Coordinate,AC Milan F.C,
2018 ), and (Rafael Leão, T ransfer_To, Lille F.C,
2017 ) (Lille F.C,Coordinate,AC Milan F.C, 2018),
through which can infer the correct answer
AC Milan F.C.

On the other hand, the latter methods relies
on hard logical rule reasoning, making it less
tolerant of fuzzy and noisy data. As shown in
Figure 1, when noise and fuzziness appear in
TKG as the object entity LilleF.C in the quad
(Rafael Leão, Transfer_To, Lille F.C, 2017) is
blurred to Lisbon F.C, traditional logical reason-
ing is prone to making incorrect inferences as
Paris Saint-Germain F.C.

Figure 1: A series of Rafael Leão related sub-
graphs from TKG. The black dashed line repre-
sents the traditional logical reasoning route, while
the blue dashed line represents incorrect reason-
ing.

In response to the shortcomings of the two
kinds of methods, we propose a Rule embedding
Enhanced Neural Network framework for tempo-
ral knowledge graph completion (RENN). Firstly,
we extract logical rules from temporal knowledge
graphs in the form of first-order Horn clauses based
on the Tlogic (Liu et al., 2022) method. Secondly,
through joint training of relation and rule embed-
dings within the same vector space during pretrain-

ing, we maximize the likelihood of existing quads
quadruples logical rules. Finally, we employ tradi-
tional deep neural network-based knowledge rep-
resentation learning to effectively learn entity and
relation embeddings. By injecting logical rule em-
beddings into the entity and relation embeddings,
we enhance our ability to infer the global structure
of future timestamp execution orders, leading to
more efficient reasoning and improved predictions
of new events. Experimental results across multiple
datasets demonstrate that the logic injected through
this pretraining approach enhances the effective-
ness of existing deep neural network-based meth-
ods for completing temporal knowledge graphs.
Furthermore, our method is universal and flexible,
as pretraining can accommodate various rules with
differing confidence levels and can enhance multi-
ple TKG completion models.

2. Related Work

In this section, the paper provides an overview of
existing approaches for TKG completion, specif-
ically focusing on the extrapolation task. These
approaches fall into two broad categories: deep
neural network based knowledge representation
learning and rule-based logical symbolic reasoning.

2.1. Deep Neural Network-based
Knowledge Representation Learning

Deep neural network based knowledge representa-
tion learning aim to represent entities and relations
as vectors in a continuous vector space, allowing
for efficient inferences and predictions. Specifi-
cally, CyGNet incorporates a time-aware replication
mechanism. This model comprises two distinct in-
ference modes: the copy mode and the generation
mode (Zhu et al., 2021). The copy mode is ap-
plied to forecast entity probabilities from the known
entity vocabulary, while the generation mode is
leveraged to deduce entity probabilities from the
complete entity vocabulary. The RE-NET model
(Jin et al., 2020) establishes the joint probability
distribution for all events within a TKG through the
utilization of autoregressive techniques. This model
employs a circular event encoder to amalgamate
data from previous event sequences and a neigh-
borhood aggregator to collect data from simultane-
ous events occurring within the same time window.
Subsequently, the decoder employs this synthe-
sized information to define the joint probability of
the current event. TITer (Sun et al., 2021) operates
by navigating a TKG snapshot to retrieve answers
for future queries. To tackle the challenges posed
by future timestamps, TITer employs relative time
encoding capabilities to incorporate temporal infor-
mation when making decisions. The HIPNet model



13921

Figure 2: The framework of the RENN.

(He et al., 2021) leverages CompGCN to indepen-
dently update structural representations. RTFE (Xu
et al., 2021) distinguishes itself from static knowl-
edge graph embedding models and temporal knowl-
edge graph embedding models by modeling times-
tamp transformations as a Markov process. RTFE
achieves this by recursively learning entity repre-
sentations for various timestamps. In order to en-
code the global graph and capture the complex se-
mantic relationships and long-term time dependen-
cies between entities, HGLS (Zhang et al., 2023b)
proposes a hierarchical relational graph neural net-
work and designs a gated fusion module to model
the dependencies of different types of entities and
relationships on long-term and short-term time in-
formation. To explicitly discover and utilize latent
relations, L2TKG (Zhang et al., 2023a) proposes
a novel latent relations learning method for TKG
reasoning.

The deep neural network-based knowledge rep-
resentation learning is the prevailing approach
for completing TKGs. Despite their strong perfor-
mance, these methods could have a limitation: they
might not adequately consider the structural depen-
dencies between relations in the TKGs.

2.2. Rule-based Logical Symbolic
Reasoning

Rule-based logical symbolic reasoning apply for-
mal logic rules to infer new facts based on exist-
ing knowledge. Specifically, MLNs applies Markov
logic networks and probabilistic soft logic to tem-
poral reasoning in the temporal knowledge graph
(Chekol et al., 2017). RLvLR Stream model con-
siders temporal closed path rules and can learn
the structure of rules from temporal changes in
the knowledge graph for inference (Omran et al.,

2021). TLogic provides an interpretable framework
that revolves around the extraction of temporal logic
rules via temporal random walks (Liu et al., 2022).
Remarkably, it’s the first symbolic framework to di-
rectly acquire temporal logic rules from temporal
knowledge graphs and subsequently employ these
rules for link prediction.

The rule-based logical symbolic reasoning has
shown some promising results. However, these
methods heavily depend on strict logical rule rea-
soning, making them less suitable for many real-
world applications.

To address the limitations of the two aforemen-
tioned methods, we propose a rule embedding en-
hanced neural network framework for TKG comple-
tion, aiming to leverage the benefits of both method-
ologies while mitigating their individual drawbacks.

3. The RENN Framework

3.1. Preliminaries
Let E ,R, T , and F denote the sets of entities, rela-
tions, timestamps, and facts, respectively. A Tem-
poral Knowledge Graph (TKG) can be described as
G(1,T ) = {G1,G2, . . . ,GT }, where Gt = (Et,Rt, Et)
is a multi-relationship directed TKG snapshot. In
this context, a fact within a TKG can be represented
as a quadruple (es, r, eo, t), which equivalent to
(ets, r, e

t
o), where r ∈ R is a directed labeled edge

between a subject entity es ∈ E and an object entity
eo ∈ E at time t ∈ T , and et = (e, t).

This paper focuses on the task of extrapolated
temporal knowledge graph completion, which is
geared toward predicting new facts at times t > T .
More precisely, when presented with known facts
{(esi , ri, eoi , ti) | ti < tq} and a query (eq, rq, ?, tq)
or (?, rq, eo, tq) that involves a timestamp not previ-



13922

ously encountered, the aim is to generate a priori-
tized list of possible object/subject candidates that
are most likely to complete the query.

3.2. Overall Architecture

We propose an enhancement to the temporal knowl-
edge graph completion model by incorporating log-
ical rules. The model, as depicted in Figure 2,
comprises three main components: logical rule
extraction, pre-training of rule embedding, and a
rule-enhanced temporal knowledge graph comple-
tion model. Firstly, random walks are conducted in
the temporal knowledge graph based on a speci-
fied transfer distribution. These random walks are
then transformed into temporal logic rules, and the
confidence score of each rule is computed. Subse-
quently, in the pretraining phase, the embeddings
of relations, entities, and rules are initialized within
the same vector space, and the embeddings for
relations and rules are jointly trained. The objec-
tive of pretraining is to simultaneously maximize
the likelihood of existing quadruples and logical
rules. Finally, the rule embeddings are integrated
into the existing temporal knowledge graph comple-
tion model, enabling it to provide answers to future
queries.

Figure 3: A series of subgraphs related to query
(Merkel, consult, ?, 14/08/09) in TKG, with enti-
ties Merkel and Obama. The black dashed line
represents the relationship between the rule body
in rule, while the blue dashed line represents the
relation between the rule body ”→ ” the rule head.
The correct result of the inference is Obama.

3.3. Temporal Logic Rule Extraction
3.3.1. Temporary Random Walk

For a query (el+1, rl+1, ?, tl+1), the process begins
with a temporary random walk of length l originating
from el+1, resulting in a non-increasing temporary
random walk denoted as W .

For a rule of length l, a walk of length l + 1 is
sampled, where the additional step corresponds
to the rule header rh. In the first sampling step,
uniform sampling selects an edge from all edges
with the relation type as the head relation rh to
serve as the rule head (e1, rh, el+1, tl+1). In subse-
quent sampling steps, define an exponential map
m̂ := (l+1)−(m−2), this transfer distribution is ex-
ponentially weighted based on the index mapping
(Liu et al., 2022):

P (u;m, em̂, tm̂) =
exp (tu − tm̂)∑

û∈A(m,em̂,tm̂) exp (tû − tm̂)

(1)
Where tu represents the timestamp of edge u and
A (m, em̂, tm̂) represents the set of feasible edges
for the next transition. P providing an incentive in
the form of exponential-weighted probabilities for
edges close to the previous edge.

A non-increasing temporal random walk W of
length l from entity el+1 to entity e1 in the TKG is
defined as a sequence of edges

((el+1, rl, el, tl), (el, rl−1, el−1, tl−1), . . . , (e2, r1, e1, t1))

where tl ≥ tl−1 ≥ · · · ≥ t1 and (ei+1, ri, ei, ti) ∈ G
for i ∈ [1, l].

The non-increasing temporal random walks ad-
here to time constraints, allowing only the edges to
be traversed backwards in time, where it is also pos-
sible to walk along edges with the same timestamp
(Liu et al., 2022). As shown in Figure 3, starting
from the subject entity of the query quad Merkel
and following the non increasing reverse time edge
of the cross time subgraph, a random walk W can
be obtained as:

(Merkel, discuss by telephone,Obama, 14/07/22),

(Obama, consult−1,Merkel, 14/07/18), (Merkel,

express intent to meet,Obama, 14/05/02)

Since there are no edges between TKG snap-
shots, a random walk cannot be transferred from
one snapshot to another. Therefore, we add the
three types of edges in turn. 1) Reverse edge, for
each quadruple (es, r, eo, t), add the reverse edge
of

(
eo, r

−1, es, t
)
, where r−1 indicates the recipro-

cal relation of r. 2) Self-cyclic edge. Self-cyclic
edges can allow the random walk to stay in one
place except for the first step of the random walk.
3) Cross the edge of the time snapshot, if there is
(es, r, eo, ti) and ti ≤ tj , the random walk can walk



13923

from node e
tj
s to node etio through the edge r. The

non-increasing time edge along the cross-time sub-
graph indicates the effect of past facts on entities
and helps to find answers in historical facts.

Before extracting rules from the TKG, the reverse
edges for all relations in the TKG address the prob-
lem of being unable to infer certain bidirectional
relations present in reality (e.g., spouses, siblings,
handshakes, negotiations, etc.). For instance, the
rule ”married(x, y) ⇒ married(y, x), ” even if it
occurs only rarely in the TKG (1 to 2 data points),
will have high confidence due to the presence of
reverse edges.

3.3.2. Temporal Logic Rule

Under the results of random walk, entities and
timestamps are replaced with variables to convert
W into a temporal ruleR. LetEi and Ti be variables
that represent entities and timestamps, respectively.
Further, let r1, r2, . . . , rl, rl+1 ∈ R be fixed in the
set of relations R. The temporal logic rule R with
temporal constraints of length l is defined as fol-
lows:(

(E1, rl+1, El+1, Tl+1)← ∧li=1 (Ei, ri, Ei+1, Ti)
)
(2)

with the temporal constraints

T1 ≤ T2 ≤ · · · ≤ Tl < Tl+1

The left-hand side of R is known as the rule
head, where rl+1 represents the head relation.
The right-hand side is termed the rule body
and is expressed as a conjunction of body
atoms, specifically (Ei, ri, Ei+1, Ti) (Liu et al.,
2022). It’s important to note that in the rule(
(E1, rl+1, El+1, Tl+1)← ∧li=1

(
Ei, r

−1
i , Ei+1, Ti

))
,

the entities involved in it do not necessarily have
to be distinct. This is because a pair of entities
can have multiple interactions at different points
in time. To maintain this information, instances
where the same entity appears multiple times in W
are replaced with the same random variable in R.
As shown in Figure 3, entities Merkel and Obama
have multiple interactions at different time points in
random walk W . Therefore, in the extracted logic
R, E1 and E2 are used to replace entities Merkel
and Obama, resulting in the following rule R:

(E1, consult, E2, T4)←
(E1, discuss by telephone,E2, T3)

∧ (E2, consult
−1, E1, T3)

∧ (E1, express intent to meet, E2, T1)

3.3.3. Rule Extraction

Given the possibility of having numerous logic
rules derived from the random walks, we employ

frequency-based statistical methods to assess the
confidence score of closed loop path rules. This
process helps identify temporal rules that are highly
reliable for predicting future events.

In particular, the confidence score for each rule
is determined as outlined in Eq. (3).

Conf(R) =
rule support
body support (3)

Denote "grounding" as the utilization of quadruples
from the TKG to instantiate variables within the
rules. The rule support and the body support is the
number of sets in TKG that satisfy rule grounding
and body grounding, where rule grounding refers to
the replacement of all variables Ei in the entire rule
R, and body grounding refers to the replacement
of only variables in rule body, and all groundings
must comply with the time constraints in Eq.(2).

Rules that achieve a confidence score higher
than a pre-defined threshold are subsequently ex-
tracted. The rules extracted and filtered with high
confidence from the TKG. The high confidence re-
flects the consistency between the rule and existing
facts from the TKG. At this point, we believe that
the rule with high confidence is valid.

Figure 4: The figure represents the embedding of
entities, relations, and rule in the embedding vec-
tor space of our model RENN. The gray arrows
represent the embedding of entities Merkel and
Obama, the blue arrows represent the embedding
of relationsConsult−1, Express intent tomeet and
Discuss by telephone, and the red arrow represent
the embedding of rule R. The green arrow repre-
sent the embedding of rule head relation Consult,
and the dashed arrow represent the projection of a
vector on the x-axis.



13924

Dataset #train #valid #test #Entities #Relations Time granularity
ICEWS14 63685 13823 13222 7128 230 24 hours
ICEWS18 373018 45995 49545 23033 256 24 hours

YAGO 161540 19523 20026 10623 10 1 year
WIKI 539286 67538 63110 12554 24 1 year

Table 1: Statistics on datasets.

3.4. Pretraining of Logic Embedding
The central aspect of RENN involves the integra-
tion of logical rules into neural networks. Our ap-
proach focuses on embedding these logical rules
for subsequent incorporation into the neural net-
work architecture.

To jointly pretraining the embedding of relations
and logical rules in the same vector space, as
shown in Figure 4, a natural idea is to model rela-
tions in rule body rl∧rl−1∧ . . .∧r1 and logical rules
R as the rotation of arrows from the subject entity to
the object entity in query quad. The green arrow in
Figure 4 represent the embedding of relation rcl+1

between relations in rule body and rule theoretically
similar to the relation rq in the query quad, which
is our target rule head relation rl+1.

For a given temporal logic rule R : rl ∧ rl−1 ∧
. . . ∧ r1 → rl+1, from Figure 4 we can easily find
that the sum of the multiple rotation angles of rule
body relation embedding and rule embedding in
the vector space is equivalent to the corresponding
angles αc

rl+1
of rule head, i.e.,

αrl+1
≈ αc

rl+1
=

l∑
i=1

αri + αR (4)

Relation embedding αr represents the rotation an-
gle α of the relation r in vector space. Specifically,
we limit the modulus of each relation r and rule R
to 1. Then as show in Figure 4, the projection of the
embedding on the x-axis is cos(αr). Similarly, the
sum of projections of the multiple rotation angles
of rule body relation cos (αri) and rule cos (αR) in
the vector space is equivalent to the projections of
corresponding angle cos (αrl+1

) of rule head.
We could use the embedding of [r1, r2, . . . , rl, R]

as [αr1 , αr2 , . . . , αrl , αR] to obtain the embedding
of rcl+1 to approximate the embedding of rl+1. We
employ an LSTM to generate the embedding of rule
header αc

rl+1
. We construct a cascaded input LSTM

network for establishing the relationship between
the rule and its corresponding rule body. The input
of the network is the sum of projection of the angle
vector of rule body relations and rule, the output
of this network αc

rl+1
is theoretically expected to

approximate the embedding of the rule head rela-
tion αrl+1

. Our training objective is to minimize the
difference between the actual rule head relation
rl+1 and the output approximate rule head relation
rcl+1. To minimize the difference between the actual

relation rl+1 and the approximate relation rcl+1, we
define the euclidean distance d (R, r1, r2, . . . , rl+1)
using a binomial norm as follows,

d (R, r1, r2, . . . , rl+1) =∥∥∥∥∥LSTM
[

ι∑
i=1

cos (αri) + cos (αR)

]
− cos (αrl+1

)

∥∥∥∥∥
(5)

In Eq.(5) distance function, the objective is to
align the sum of the angle vector of the rule body
relations and the rule with the angle vector of the
rule head relation.

In theory, when the rule R has a high confidence
score, the embedding of the LSTM output and rule
header relationship αrl+1

should have high likeli-
hood. To future pretrain the embeddings, the loss
using a logsigmoid is defined as follows,

L (R, r1, r2, . . . , rl+1) =

− log σ (γr − d (R, r1, r2, . . . , rl+1))
(6)

3.5. Logic Enhanced TKG Completion
Model

The temporal logic rule embedding can be used for
any existing TKG completion models by taking a
copy of the logic embedding as input to the models.

For example, TITer (Sun et al., 2021) is reinforce-
ment learning besed model, which takes the dy-
namic embedding and historical path embedding
of the generated entity as input to obtain the ex-
pected prediction. The injection of temporal logic
rules could be the embedding matrix of all relations
in TKG. In the pre-training of the RENN framework,
we jointly trained the embedding of relations and
rules in the same vector space, thereby jointly max-
imizing the likelihood of existing quads and logical
rules. Using the pre-trained relation embedding
matrix as the initialization of the relation embed-
ding matrix in the TITer model. Compared to the
embedding of the original TITer, the embedding of
quads in RENN-TITer has higher similarity to logical
rules.

The reinforcement learning strategy network Π(θ)
of TITer utilizes the relation embedding r in the
agent transfer path to generate historical path em-
bedding hn, n represent the number of steps in the
history path in reinforcement learning.

hn = LSTM
(
hn−1,

[
rn−1; e

tn−1

n−1

])



13925

With input the dynamic entity embedding and his-
torical path embedding into the hierarchy, the ex-
pected output entities and expected output relations
are obtained. Finally, obtain the score of the candi-
date entities and select the entities with the highest
score.

4. Experiments

4.1. Experimental Setup

4.1.1. Datasets

We experiment on ICEWS-14 (García-Durán et al.,
2018), ICEWS18 (Jin et al., 2020), YAGO (Mahdis-
oltani et al., 2015) and WIKI for TKG completion.
The detailed statistics of the datasets are listed in
Table 1, including the number of quadruples in train-
ing set/validation set/test set, the number of entities
and relations in the datasets.

4.1.2. Evaluation Metrics

In the entity completion task, the model scores and
ranks all candidate entities in the entity set for the
knowledge to be inferred that lacks the object or
subject entities in the test set, and selects the high-
est ranked entity as the answer. The evaluation
indicators in the experiment include the Mean Re-
ciprocal Ranking (MRR) (Lacroix et al., 2020) and
the top 1/3/10 hit rate of the target entity Hit@1/3/10.
Among them, the Mean Reciprocal Ranking indi-
cator calculates the mean reciprocal ranking of all
queries in the test set. The larger the indicator, the
higher the ranking of correct answers and the better
the sorting effect. The indicator Hit@N represents
the proportion of the number of queries that hit an-
swers in the top N of the sorting results to the test
set. The larger the indicator, the better the sorting
effect.

4.1.3. Baseline

We compare our model with three kinds of methods.
(1) Symbolic logic TKG completion method,

TLogic (Liu et al., 2022) is currently the best TKG
completion method based on symbolic logic, which
extracts time-based logical rules through time ran-
dom walks and obtains inference results through
rule grounding.

(2) Interpolated TKG reasoning methods, in-
cluding TTransE (Leblay and Chekol, 2018), TA-
DistMult (García-Durán et al., 2018), DE-SimpleE
(Goel et al., 2020), and TNTComplEx (Lacroix et al.,
2020). We use these method to conduct the extrap-
olation task and report the result as in (Sun et al.,
2021).

(3) Extrapolation TKG completion methods, in-
cluding RE-NET (Jin et al., 2020), CyGNet (Zhu

et al., 2021), xERTE (Han et al., 2021), TITer(Sun
et al., 2021), L2TKG (Zhang et al., 2023a) and
HGLS (Zhang et al., 2023b).

We use the RENN framework to pre-train
TITer(Sun et al., 2021) and HGLS(Zhang et al.,
2023b) methods, obtain our two experimental meth-
ods, RENN-TITer and RENN-HGLS.

4.1.4. Implementation Details

Our model is implemented using PyTorch. The
parameters of the baselines are consistent with the
settings in the original text.

The length of the logical rules extracted from
TKGs is 1, 2, and 3, respectively. The confidence
score and the rule body support threshold of the
rule filter are 0.1 and 20, respectively. Using the
Adam optimizer to optimize parameters, the rule
learning rate is 0.0005. During the pre-training pe-
riod, the batch size was set to 2048. The maximum
number of steps for training is 50000.

4.2. Results and Analysis

4.2.1. Performance on TKG Completion.

Table 2 presents a comparison of the results ob-
tained by RENN-TITer and RENN-HGLS on the test
sets of four TKG datasets, relative to a baseline
method. Our RENN pre-training approach is com-
pared against TITer and HGLS models, using TITer
and HGLS as baselines to evaluate the effective-
ness of injecting logical rules. RENN pre-training
has demonstrated improvements over TITer and
HGLS methods on all the datasets, highlighting the
efficacy of the pre-training method in incorporating
logical rules. In comparison to all baseline methods,
our two methods based on the RENN framework
have consistently achieved the best results across
nearly all evaluation metrics.

4.2.2. RENN’s Effectiveness On Static
Knowledge Graphs

The model RENN should exhibit logical and predic-
tive effectiveness on static knowledge graphs with-
out timestamps. We have conducted experiments
on three widely used public static KG datasets -
UMLS, Kinship, and Family. The baselines for com-
parison were two classical static knowledge graph
embedding methods: RotatE and TransE. We ap-
plied our RENN framework, modified to exclude
time handling, to both baseline methods and ob-
served improvements over the baselines. The spe-
cific results are as Table 3.

This experiment successfully demonstrates the
effectiveness of our RENN method for static knowl-
edge graph reasoning tasks.



13926

Methods ICEWS14 ICEWS18 YAGO WIKI
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TLogic 43.0 33.6 48.3 61.3 29.8 20.5 33.9 48.5 - - - - - - - -
TTransE 13.4 3.1 17.3 34.6 8.3 1.9 8.6 21.9 31.2 18.1 40.9 51.2 29.3 21.7 34.4 42.4
TA-DistMult 26.5 17.1 30.2 45.5 16.8 8.6 18.4 33.6 54.9 48.2 59.6 66.7 44.5 39.9 48.7 51.7
DE-SimplE 32.7 24.4 35.7 49.1 19.3 11.5 21.9 34.8 54.9 51.6 57.3 60.2 45.4 42.6 47.7 49.6
TNTComplEx 32.1 23.4 36.0 49.1 27.5 19.5 30.8 42.9 57.9 52.9 61.3 66.7 45.0 40.0 49.3 52.0
CyCNET 32.7 23.7 36.3 50.7 24.9 15.9 28.3 42.6 52.1 45.4 56.1 63.8 33.9 29.1 36.1 41.9
RE-NET 38.3 28.7 41.3 54.5 28.8 19.1 32.4 47.5 58.0 53.1 61.1 66.3 49.7 46.9 51.2 53.5
xERTE 40.8 32.7 45.7 57.3 29.3 21.0 33.5 46.5 84.2 80.1 88.0 89.8 71.1 68.1 76.1 79.0
L2TKG 47.4 35.4 - 71.1 33.4 22.2 - 55.0 - - - - - - - -
TITer 41.7 32.7 46.5 58.4 29.9 22.1 33.5 44.8 87.5 84.9 89.9 90.3 73.3 70.9 74.8 76.7
HGLS 47.0 35.1 52.7 70.4 29.3 19.2 - 49.8 79.9 75.7 82.6 87.0 75.6 71.6 77.9 82.4
RENN-TITer 41.9 32.9 46.8 58.6 30.2 22.3 33.8 44.9 88.5 86.1 90.9 91.3 75.3 73.2 76.8 78.4
RENN-HGLS 47.8 36.3 53.9 70.3 33.6 22.1 38.1 57.1 80.9 75.9 82.9 87.3 77.6 72.9 79.3 83.7

Table 2: Results on TKG completion.The best performance is highlighted in boldface. The confidence
interval for the experiment is confidence(0.1, 1], number_of_body_support(20,+∞).

Methods UMLS Kinship Family
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 70.4 55.4 82.6 92.9 30.0 14.3 35.2 63.7 81.3 67.5 94.6 98.5
RENN-TransE 74.8 61.8 85.1 93.4 34.7 20.7 39.8 62.3 82.0 68.9 94.6 98.6
RotatE 80.2 69.6 89.0 96.3 67.2 52.8 76.4 93.5 94.1 85.3 97.4 99.0
RENN-RotatE 82.7 74.9 88.9 95.5 67.3 53.8 77.5 95.0 97.5 96.7 98.5 98.6

Table 3: Two classical static knowledge graph inference methods TransE and RotatE compare the RENN
enhancement results on different static knowledge graph datasets with the original results.

4.2.3. Unseen Entity Inference

To provide more detailed statistics, Unseenmore

and Unseenless in Table 4 summarizes two cases
of unseen entities in the test set of ICEWS14. The
unseen entities are entities that do not exist in the
training and validation sets. The table includes
the following details: the number of unseen enti-
ties in the test set Nent

unseen, the number of quadru-
ples where the object entity is unseen Nob

unseen, the
number of quadruples where the subject entity is
unseen Nsu

unseen, the number of quadruples where
both the subject entity and object entity are unseen
Nobs

unseen.

Dataset Nent
unseen Nob

unseen Nsu
unseen Nobs

unseen

Unseenmore 235 165 169 24
Unseenless 76 80 80 10

Table 4: Number of unseen entities in the test set
of dataset ICEWS14.

Table 5 shows the prediction results of our
method RENN-HGLS and the original HGLS
method without injecting logical rules on the
Unseenless and Unseenmore test sets of ICEWS14,
respectively. The difference in the results obtained
by the RENN-HGLS method on two different un-
seen entity test sets is 0.69%, 0.19%, 0.73% and
2.21% respectively, which is significantly lower than
the difference in the HGLS method on the two test
sets as 1.93%, 1.92%, 2.29%, 1.94%. The above
data indicates that the pre-training method using
the RENN framework has stronger ability in infer-
ring unseen entities.

Model Dataset MRR Hit@1 Hit@3 Hit@10

RENN-HGLS Unseenless 48.50 36.44 54.62 72.51
Unseenmore 47.81 36.25 53.89 70.30

HGLS Unseenless 48.93 36.98 55.01 72.35
Unseenmore 47.00 35.06 52.72 70.41

Table 5: The prediction results on unseen entities,
with the confidence interval for the experiment as
confidence(0.1, 1], number_of_body_support(20,
+∞).

Dataset Filter parameter IR RH RL1
RL2

RL3

ICEWS14
filter00 28661 428 8338 7991 12335
filter0.120 4803 428 1906 402 2495

WIKI
filter00 570 48 83 7 480
filter0.120 334 48 56 1 277

Table 6: The IR indicates the number of Initial
rules, RH indicates the number of different rule
heads, RL1

, RL2
and RL3

represents the number
of rules with lengths of 1, 2 and 3 respectively.

4.3. Ablation and Parameter Studies

4.3.1. Necessity of Rule Confidence Filtering

Taking ICEWS14 and WIKI data sets as examples,
the number of rules get filtered out in the experi-
ments shown in Table 6, where the filter confidence
and number of support sets thresholds are 0.1 and
20. Results show that the rules from ICEWS14 and
WIKI were respectively filtered out 23,858 and 236.

Figure 5 shows the experimental results of differ-
ent parameters in the RENN-HGLS method’s rule
filter on ICEWS14. Two experiments filtered out
rules are conducted with confidence scores less
than 0.01 and support sets less than 2, and rules
with confidence scores less than 0.1 and support
sets less than 20. In addition, we set both filtering
parameters to 0 to obtain experimental results on
the removal rule filtering mechanism. The experi-



13927

Filter parameter Dataset MRR Hit@1 Hit@3 Hit@10

filter0.012

ICEWS14 40.15 30.95 44.86 57.46
WIKI 73.35 71.03 74.84 76.67
YAGO 88.52 86.01 90.89 91.31

filter0.120

ICEWS14 41.86 32.88 46.81 58.57
WIKI 75.30 73.17 76.83 78.53
YAGO 88.74 86.16 91.22 91.55

Table 7: Results of RENN-TITer with various rule
filter parameters.The superscript represents the
confidence score of the filtered rule, while the sub-
script represents the number of supported sets of
the filtered rule. Respectively filtered out rules are
conducted with confidence scores less than 0.01
and support sets less than 2, and rules with confi-
dence scores less than 0.1 and support sets less
than 20.

mental results on all evaluation indicators indicate
that the method have good performance when the
filtered rules have high confidence and a large num-
ber of support sets. There is a necessity for the
existence of a rule filtering mechanism.

Figure 5: Results of RENN-HGLS with various rule
filter parameters.

Table 7 shows the experimental results of the
RENN-TITer on datasets ICEWS14 and YAGO, with
rule filter parameters of 0.01, 2, and 0.1, 20, respec-
tively. The experimental results show that rules with
higher confidence and more support sets after fil-
tering have better performance. The rule filtering
mechanism increases the weight of more impor-
tant rules, which helps to improve the accuracy of
experiments.

4.3.2. Maximum Rule Length Research

Using the RENN framework, rules with maxi-
mum lengths of [1, . . . , 5] were extracted from the
ICEWS14 dataset. Under filter parameters of 0.1
and 20, RENN-HGLS injected rules with differ-
ent maximum lengths into the embedding method

Figure 6: Rule length research.

through pre-training. As shown in Figure 6, the ex-
perimental effect was optimal at a maximum length
of 5, but it greatly increased the running time and
computational complexity of the model. Therefore,
we used the relatively good maximum length of 3
to extract the rule with a length of [1, 2, 5].

5. Conclusion

In this paper, we propose a novel model to rep-
resent and model logical rules and quadruples for
temporal knowledge graphs completion. The model
pre-trains by learning the embedding of each logical
rule and its corresponding relationship to improve
the likelihood of existing quadruples and logical
rules, injecting prior logical rules into the embed-
dings of the TKG. In addition, the filtering mech-
anism based on rule confidence scores limits the
contribution of different weight logical rules Our ex-
periments on multiple temporal knowledge graph
datasets verify the effectiveness of the model.

The knowledge graph typically records only ac-
curate facts explicitly and does not label incorrect
information. Consequently, when missing facts are
present in the knowledge graph, the model may
struggle to distinguish whether a quad not appear-
ing in the record is a false fact to be excluded or
a missing fact that has been overlooked. Future
work could involve implementing mechanisms to
address this challenge, such as refining algorithms
for fact validation or developing techniques for au-
tomated error detection and correction within the
knowledge graph.

6. Acknowledgements

This work is supported by the Social Science Plan-
ning Foundation of Liaoning Province under Grant
L22CTQ002.



13928

7. References

Borui Cai, Yong Xiang, Longxiang Gao, He Zhang,
Yunfeng Li, and Jianxin Li. 2023. Temporal knowl-
edge graph completion: A survey. In Proceed-
ings of the Thirty-Second International Joint Con-
ference on Artificial Intelligence, Macao, SAR,
China, pages 6545–6553.

Melisachew Wudage Chekol, Giuseppe Pirrò, Jo-
erg Schoenfisch, and Heiner Stuckenschmidt.
2017. Marrying uncertainty and time in knowl-
edge graphs. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, San
Francisco, California, USA, pages 88–94.

Alberto García-Durán, Sebastijan Dumancic, and
Mathias Niepert. 2018. Learning sequence en-
coders for temporal knowledge graph completion.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
Brussels, Belgium, pages 4816–4821.

Rishab Goel, Seyed Mehran Kazemi, Marcus A.
Brubaker, and Pascal Poupart. 2020. Diachronic
embedding for temporal knowledge graph com-
pletion. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, New York, NY, USA, pages
3988–3995.

Zhen Han, Peng Chen, Yunpu Ma, and Volker
Tresp. 2021. Explainable subgraph reasoning for
forecasting on temporal knowledge graphs. In
9th International Conference on Learning Repre-
sentations, Virtual Event, Austria.

Yongquan He, Peng Zhang, Luchen Liu, Qi Liang,
Wenyuan Zhang, and Chuang Zhang. 2021. HIP
network: Historical information passing network
for extrapolation reasoning on temporal knowl-
edge graph. In Proceedings of the Thirtieth In-
ternational Joint Conference on Artificial Intelli-
gence, Virtual Event / Montreal, Canada, pages
1915–1921.

Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren.
2020. Recurrent event network: Autoregres-
sive structure inferenceover temporal knowledge
graphs. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Pro-
cessing, Online, pages 6669–6683.

Timothée Lacroix, Guillaume Obozinski, and Nico-
las Usunier. 2020. Tensor decompositions for
temporal knowledge base completion. In 8th
International Conference on Learning Represen-
tations, Addis Ababa, Ethiopia.

Julien Leblay and Melisachew Wudage Chekol.
2018. Deriving validity time in knowledge graph.

In Companion of the the Web Conference, pages
1771–1776.

Yushan Liu, Yunpu Ma, Marcel Hildebrandt,
Mitchell Joblin, and Volker Tresp. 2022. Tlogic:
Temporal logical rules for explainable link fore-
casting on temporal knowledge graphs. In Thirty-
Sixth AAAI Conference on Artificial Intelligence,
Virtual Event, pages 4120–4127.

Farzaneh Mahdisoltani, Joanna Biega, and
Fabian M. Suchanek. 2015. YAGO3: A knowl-
edge base from multilingual wikipedias. In Sev-
enth Biennial Conference on Innovative Data Sys-
tems Research, CIDR 2015, Asilomar, CA, USA.

Pouya Ghiasnezhad Omran, Kewen Wang, and
Zhe Wang. 2021. An embedding-based ap-
proach to rule learning in knowledge graphs.
IEEE Transactions on Knowledge and Data En-
gineering, 33(4):1348–1359.

Haohai Sun, Jialun Zhong, Yunpu Ma, Zhen Han,
and Kun He. 2021. Timetraveler: Reinforcement
learning for temporal knowledge graph forecast-
ing. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Process-
ing, Virtual Event / Punta Cana, Dominican Re-
public, pages 8306–8319.

Youri Xu, Haihong E, Meina Song, Wenyu Song,
Xiaodong Lv, Haotian Wang, and Jinrui Yang.
2021. RTFE: A recursive temporal fact embed-
ding framework for temporal knowledge graph
completion. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, Online, pages 5671–
5681.

Mengqi Zhang, Yuwei Xia, Qiang Liu, Shu Wu, and
Liang Wang. 2023a. Learning latent relations for
temporal knowledge graph reasoning. In Pro-
ceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics,Toronto,
Canada, pages 12617–12631.

Mengqi Zhang, Yuwei Xia, Qiang Liu, Shu Wu,
and Liang Wang. 2023b. Learning long- and
short-term representations for temporal knowl-
edge graph reasoning. In Proceedings of the
ACM Web Conference 2023,Austin, TX, USA,
pages 2412–2422.

Cunchao Zhu, Muhao Chen, Changjun Fan,
Guangquan Cheng, and Yan Zhang. 2021.
Learning from history: Modeling temporal knowl-
edge graphs with sequential copy-generation
networks. In Thirty-Fifth AAAI Conference on
Artificial Intelligence, Virtual Event, pages 4732–
4740.


	Introduction
	Related Work
	Deep Neural Network-based Knowledge Representation Learning
	Rule-based Logical Symbolic Reasoning

	The RENN Framework
	Preliminaries
	Overall Architecture
	Temporal Logic Rule Extraction
	Temporary Random Walk
	Temporal Logic Rule
	Rule Extraction

	Pretraining of Logic Embedding
	Logic Enhanced TKG Completion Model

	Experiments
	Experimental Setup
	Datasets
	Evaluation Metrics
	Baseline
	Implementation Details

	Results and Analysis
	Performance on TKG Completion.
	RENN's Effectiveness On Static Knowledge Graphs
	Unseen Entity Inference

	Ablation and Parameter Studies
	Necessity of Rule Confidence Filtering
	Maximum Rule Length Research


	Conclusion
	Acknowledgements
	References

