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Abstract

Prompt-based fine-tuning (PF), by aligning with the training objective of pre-trained language models (PLMs), has
shown improved performance on many few-shot natural language understanding (NLU) benchmarks. However, the
word embedding space of PLMs exhibits anisotropy, which is called the representation degeneration problem. In
this paper, we explore the self-similarity within the same context and identify the anisotropy of the feature embedding
space in PF model. Given that the performance of PF models is dependent on feature embeddings, we inevitably
pose the hypothesis: this anisotropy limits the performance of the PF models. Based on our experimental findings,
we propose CLMA, a Contrastive Learning framework based on the [MASK] token and Answers, to alleviate the
anisotropy in the embedding space. By combining our proposed counter-intuitive SSD, a Supervised Signal based
on embedding Distance, our approach outperforms mainstream methods on the many NLU benchmarks in the
few-shot experimental settings. In subsequent experiments, we analyze the capability of our method to capture deep
semantic cues and the impact of the anisotropy in the feature embedding space on the performance of the PF model.

Keywords: anisotropy, prompt-based fine-tuning, contrastive learning

1. Introduction

The prompt-based fine-tuning (PF) method, by
aligning with the training objective of pre-trained
language models (PLMs) and without introduc-
ing additional trainable parameters, reduces the
data requirement during fine-tuning compared to
methods such as fine-tuning PLMs with a task-
specific head (FT) (Kavumba et al., 2022). This en-
ables the PF method to achieve remarkable perfor-
mance in many few-shot natural language under-
standing (NLU) tasks (Le Scao and Rush, 2021).
PF models convert any natural language process-
ing (NLP) task into a cloze prompt (Petroni et al.,
2019) or prefix prompt (Lester et al., 2021) format,
aligning with the training objective of masked lan-
guage models (MLMs) (Devlin et al., 2019) or auto-
regressive language models (Lewis et al., 2020).
Figure 1 illustrates the framework of a PF model for
handling natural language inference (NLI) tasks.
The PF model utilizes an MLM to predict the an-
swer at the masked position. Subsequently, a
verbalizer is used to map this answer to the cor-
responding label. The input of the MLM is con-
structed using specific template, which ensures
that all answers conform to the syntactic structure
of the context. In this case, the word embeddings
at the masked positions are referred to as feature
embeddings (Jiang et al., 2023). Therefore, the
performance of PF models is closely related to the
feature embeddings (Liu et al., 2023).
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Figure 1: The process of using the PF method to
complete the NLI task.

However, the word embeddings outputted by
PLMs occupy an anisotropic cone in the vector
space, which is known as the representation de-
generation problem (Gao et al., 2019; Wang et al.,
2020) and limits the performance of language mod-
els (Gao et al., 2019; Mu and Viswanath, 2018).
Unlike previous methods that analyze the self-
similarity of the same token across different con-
texts and the intra-sentence similarity of tokens at
different positions within the same context (Xiao
et al., 2023; Cai et al., 2021; Ethayarajh, 2019),
we investigate the relationship between the em-
beddings of the [MASK] token and answers at the
same position within the same context. We find
that within the same context, a remarkably high co-
sine similarity exists not only between any two an-
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swers but also between the [MASK] token and any
individual answer. This indicates that traditional
PF methods overlook the alleviation of anisotropy
in the feature embedding space. Based on this,
we propose a hypothesis: the anisotropy of the fea-
ture embedding space also limits the performance
of PF models.

Combining our experimental findings, we pro-
pose a contrastive learning framework, based on
the [MASK] token and answers in the same con-
text, that aims to maximize the distance between
the [MASK] token and answers, while minimizing
the distance between different answers, instead of
relying on traditional methods of minimizing intra-
class distance and maximizing inter-class distance
within the same batch (Xu et al., 2023; Jian et al.,
2022; Gao et al., 2021b; Yan et al., 2021). By com-
bining our proposed data augmentation method,
we effectively alleviate the anisotropy of the fea-
ture embedding space. As far as we know, this
is the first method that utilizes a contrastive learn-
ing framework to regularize the feature embedding
space for PF models.

Additionally, we discover a unique relationship
among the aforementioned feature embeddings.
Leveraging this particular finding, we believe that
the answer with the greatest embedding distance
from the [MASK] token within the same context
is the one that the model should output, and
we use this insight as a counter-intuitive super-
vised signal. Employing these methods, our
model achieves outstanding performance on mul-
tiple NLU benchmarks, compared to other main-
stream few-shot learning methods and non-fine-
tuned large language models (LLMs). Further-
more, when we directly transfer the models trained
on MNLI (Williams et al., 2018) and SNLI (Bow-
man et al., 2015) to the HANS (McCoy et al.,
2019) dataset for evaluation, our model maintain
the same optimal performance with minimal per-
formance degradation. Additional experimental re-
sults indicate that the performance improvement
of the PF model is not entirely positively correlated
with the alleviation of anisotropy in the feature em-
bedding space.

In summary, our main contributions are as fol-
lows:

1. We verify the anisotropy in the feature embed-
ding space of the PF model, leading us to propose
our hypothesis: The anisotropy in the feature em-
bedding space of PF models also limits the perfor-
mance of PF models.

2. Based on our hypothesis, we innovatively pro-
pose a contrastive learning framework to regulate
the feature embedding space in PF models. By
incorporating our proposed counter-intuitive super-
vised signals, our approach not only achieves per-
formance improvements on multiple few-shot NLU

benchmarks but also demonstrates effectiveness
in capturing deep semantic cues.

3. Through further analysis of the experimen-
tal results, we find that although our method mit-
igates the anisotropy in the feature embedding
space while enhancing the performance of the PF
model, the performance improvement is not en-
tirely positively correlated with the reduction of the
anisotropy.

2. Related Work

2.1. Representation Degeneration
The representation degeneration problem refers to
the phenomenon where word embeddings of lan-
guage models occupy a narrow cone of anisotropy
in the vector space (Gao et al., 2019; Ethayarajh,
2019). Xiao et al. (2023); Ethayarajh (2019); Cai
et al. (2021) analyze the anisotropy of word rep-
resentations from various hidden layers of the
PLMs by comparing their self-similarity and intra-
sentence similarity. Wu et al. (2023) analyze the
anisotropy within the same utterance and between
different utterances in dialogue models. However,
they have not focused on the relationship between
different word embeddings at the same position
within the same context. Previous works (Li et al.,
2020; Wang et al., 2020; Yan et al., 2021; Gao
et al., 2021b; Abaskohi et al., 2023; Xu et al., 2023)
have attempted to address the issue of represen-
tation degeneration, but they have not focused on
the problem of representation degeneration in PF
models. In this paper, we specifically analyze the
self-similarity of feature embeddings in the same
context for the PF models and propose a novel
contrastive learning framework based on feature
embeddings.

2.2. Prompting
Prompt-based fine-tuning has become a new
paradigm in NLP (Abaskohi et al., 2023; Gao et al.,
2021a; Schick and Schütze, 2021; Liu et al., 2023;
Shin et al., 2020; Brown et al., 2020; Petroni et al.,
2019). Xu et al. (2023) employ a contrastive
learning approach to obtain embeddings for the
[MASK] token in task-invariant continuous prompt-
tuning however, they still use the [MASK] tokens
from other samples in the same batch as posi-
tive and negative samples for contrastive learn-
ing, without investigating the relationship between
the embeddings of [MASK] tokens and answers.
In addition, previous research has shown that PF
methods exploit dataset-specific superficial cues
(Kavumba et al., 2022). Therefore, PF models
trained on MNLI or SNLI datasets, tend to ex-
hibit poorer performance when evaluated on NLI
datasets like HANS (McCoy et al., 2019) that do
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Two men on bicycles competing in a race ? <mask> , People are riding bikes .

That is always the danger with <mask> , Rita.

That is always the danger with the , Rita.That is always the danger with you , Rita.

Two men on bicycles competing in a 
race ? No , People are riding bikes . 

Two men on bicycles competing in a 
race ? Yes , People are riding bikes . 

(A)

(B)

Figure 2: (A) An example of our exploratory experiments conducted in the single-sentence mask filling
scenario. (B) An example of our exploratory experiments conducted in the NLI scenario.

not contain effective superficial cues. This indi-
cates that in previous works, the semantic informa-
tion in the embeddings of PLMs has not been fully
utilized.

2.3. Contrastive learning
Recently, contrastive learning has also been
widely applied in NLP tasks. By combining certain
data augmentation strategies, it has improved the
text representation capability by reducing the dis-
tance between text representations that have the
same semantics in the semantic space. This ap-
proach has shown promising results in many low-
resource NLP scenarios (Abaskohi et al., 2023; Xu
et al., 2023; Jian et al., 2022; Giorgi et al., 2021;
Yan et al., 2021; Gao et al., 2021b). Abaskohi et al.
(2023); Xu et al. (2023); Jian et al. (2022) combine
PF models with contrastive learning framework to
handle NLU tasks. However, previous methods
mostly relied on intra-class or inter-class contex-
tual embeddings and did not explore the relation-
ship between the [MASK] token and answers in
the feature embedding space within the PF mod-
els.

3. Exploration of the Feature
Embedding Space

Unlike previous methods that investigate self-
similarity and intra-sentence similarity (Xiao et al.,
2023; Ethayarajh, 2019; Cai et al., 2021), we
specifically investigate the cosine similarity be-
tween word embeddings of different words at the
same position in the same context for the PF
model. We prepare sentence triplets as shown in
the Figure 2, where each triplet consists of a com-
plete and correct sentence sco, a sentence smc ob-
tained by replacing one token in sco with a [MASK]

token, and a sentence sic obtained by replacing the
[MASK] token in smc with an incorrect word that
does not fit the context. These sentences are then
fed into the same MLM to obtain the word embed-
dings rco, rmc and ric at the masked positions. Tak-
ing rco, rmc as examples:

rico = MLM(sico); rimc = MLM(simc), (1)

where MLM(·) denotes the function that maps si to
the word embedding ri at the masked position in
the last layer of MLM. Then we calculate the cosine
similarity eco, ecc and eic between rco and rmc, rco
and ric, rmc and ric, respectively. In summary, for
each dataset, we compute the average values of
eco, ecc and eic, denoted asEco, Ecc andEic. Taking
Eco as an example:

eico = cos(rimc, r
i
co)

Eco =
1

k

k∑
i=1

eico,
(2)

where k denotes the number of samples in the
dataset and cos(·) denotes the function for com-
puting cosine similarity.

First, we conducted experiments in a single-
sentence mask filling scenario (Figure 2(A)).
Specifically, we select every premise and hypoth-
esis sentence from the MNLI-matched and SNLI
dev datasets as sco in the aforementioned triplet
at first. Then, following the rules mentioned
above, we replace a randomly chosen token in sco
with a [MASK] token to obtain smc, and then re-
place the [MASK] token in smc with another ran-
domly chosen token from the vocabulary to ob-
tain sic. Finally, we calculate cosine similarities
for each triplet, resulting in the sets of similarities
(e1co, e

2
co, · · · , ekco) ∈ Eco, (e1cc, e

2
cc, · · · , ekcc) ∈ Ecc

and (e1ic, e
2
ic, · · · , ekic) ∈ Eic, k denotes the number
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Figure 3: The figure presents the experimental results of constructing triplets using the MNLI-matched
and SNLI dev datasets and calculating the average feature embedding similarities within the triplets.

of samples in the dataset. And we compute the
average of the sets of similarities Eco, Ecc and Eic.
The two experimental settings in this case are as
follows:

• Hypotheses: Constructing triplets based on
all hypotheses from the MNLI-matched and
SNLI dev datasets.

• Premises: Constructing triplets based on all
premises from the MNLI-matched and SNLI
dev datasets.

The above experiments are based on filling ran-
domly masked words in single sentences using an
MLM, which is straightforward for PLMs (Devlin
et al., 2019). To better validate our findings, we
introduced a more challenging NLI scenario as a
comparison (Figure 2(B)). For each premise and
hypothesis pair in the MNLI-matched and SNLI
dev datasets, we use a template to construct a
PF model input of NLI task (Schick and Schütze,
2021; Gao et al., 2021a), which corresponds to the
smc mentioned earlier. Following the same rules,
we construct a sentence triplet for comparison. In
the triplet, the contextually aligned sentence, de-
noted as sco, replaces the [MASK] token with the
correct answer, while the non-contextual sentence,
denoted as sic, replaces the [MASK] token with an
answer corresponding to one of the other labels.
Next, we input the triplet into prompt-based NLI
models under three different experimental settings:
zero-shot, few-shot, and full data. In this case, we
have the following three experimental settings:

• Zero-shot NLI: Conducting zero-shot exper-
iments using the PF method on the MNLI-
matched and SNLI dev datasets.

• Few-shot NLI: Conducting few-shot experi-
ments using the PF method on the MNLI-
matched and SNLI dev datasets, the model

was trained on 16 samples per class from the
MNLI or SNLI train datasets.

• Full-data NLI: Conducting full-data experi-
ments using the PF method on the MNLI-
matched and SNLI dev datasets, the model
was trained on the entire MNLI or SNLI train
datasets.

We have made three observations (Figure 3):

• The feature embeddings of PF models exhibit
anisotropy across different experimental set-
tings. This is demonstrated by the high cosine
similarity of the feature embeddings found in
all scenarios.

• In all NLI scenarios, we found that Ecc is the
highest among the three averages. Therefore,
we conclude that compared to the special to-
ken [MASK], the embeddings of correct and
incorrect answers have a higher cosine simi-
larity.

• In the zero-shot NLI scenario, not only the per-
formance of the model is poor (Schick and
Schütze, 2021), but also the mean of similarity
Eco (Eco) is greater than the mean of similarity
Eic (Eic). This is the only case where Eco is
greater than Eic.

Based on our experimental findings, we pro-
pose a contrastive learning framework based
on answers and [MASK] token to alleviate
the anisotropy in the feature embedding space.
Among them, we treat all candidate answers as
one category and minimize their intra-class dis-
tance, while treating the [MASK] token as another
category and maximizing its inter-class distance
from the candidate answers. Additionally, we intro-
duce a counter-intuitive supervised signal based
on feature embedding distances, where the an-
swer with the farthest feature embedding distance
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from the [MASK] token is determined as the output
of the model.

4. Approach

In this section, we present the method we have pro-
posed. Given an NLU dataset X , a prompting tem-
plate P, and a set of answers (z1, z2, · · · , zn) ∈ Z
corresponding to different labels Y, our objective is
to first construct sentence n+1-tuples using P on
X . Each n+1 tuple consists of n sentences con-
structed using answers from Z and one sentence
constructed using the [MASK] token. We then reg-
ularize the feature embedding space for Z based
on our proposed contrastive learning framework
and finally use the feature embedding distance be-
tween the [MASK] token and the answers in Z
as the supervised signal for the model. We be-
gin by presenting our approach for regularizing the
feature embedding space and the data augmen-
tation strategies. Subsequently, we introduce the
counter-intuitive supervised signal based on the
feature embedding distance.

4.1. Regularization of the Embedding
Space

4.1.1. Contrastive Learning Framework

We propose a Contrastive Learning framework
based on the [Mask] token and Answers (CLMA)
to assist in regularizing the feature embedding
space. Based on the experimental conclusions
mentioned earlier, we argue that all the answers
should have relatively closer distances in the fea-
ture embedding space because they at least con-
form to the syntactic structure of the context. On
the other hand, we expect the [MASK] token,
as a special token, to have relatively farther dis-
tances from the answers in the feature embed-
ding space. Specifically, we utilize the method de-
scribed in § 3, for an n-way NLU task, we can ob-
tain smc with a [MASK] token and sco with the an-
swer corresponding to the correct label, along with
(s1ic, s

2
ic, · · · , s

n−1
ic ) ∈ Sic, composed of answers cor-

responding to n−1 incorrect labels. Subsequently,
we feed the aforementioned n+1 sentences into
the same MLM and obtain the feature embeddings,
rmc, rco, (r1ic, r

2
ic, · · · , r

n−1
ic ) ∈ Ric at the masked

position in smc, sco and Sic, respectively. Here
rmc, rco ∈ R1×d ,Ric ∈ R(n−1)×d and d refers to
the hidden dimension. Finally, we calculate the Eu-
clidean distance dco between rmc and rco, as well
as (d1cc, d

2
cc, · · · , dn−1

cc ) ∈ Dcc between rco and Ric:

dco = dis(rmc, rco)

Dcc = (dis(rco, r
1
ic), · · · , dis(rco, r

n−1
ic )).

(3)

In the aforementioned equation, dis(·) repre-
sents a text distance calculation function of Eu-
clidean distance. Next, we employ the contrastive
learning approach by utilizing dco and Dcc to com-
pute the InfoNCE loss (Kong et al., 2020). This al-
lows us to minimize the distance between Ric and
rco while simultaneously maximizing the distance
between rmc and rco:

Lcl = −log exp(dco/τ)∑n
1exp(di/τ)

. (4)

In this context, n refers to the number of label
categories and the total number of feature embed-
ding distances in dco and Dcc.

4.1.2. Data Augmentation

In this section, we introduce a data augmentation
strategy specifically designed to maintain the diver-
sity of the anchor sample smc when constructing
them for contrastive learning (Khosla et al., 2020).
Specifically, for premises and hypotheses labeled
as ‘‘entailment”, we simply set both sentences as
either the premise sentence or the hypothesis sen-
tence and then incorporate them into the template.
We do not use data augmentation methods such
as Cutoff (Shen et al., 2020) or Token Shuffling
(Lee et al., 2020). The reason for this is that we
are concerned that these random data augmen-
tation strategies may alter the semantic relation-
ship between the two sentences, thus introducing
additional noise to the model. For premises and
hypotheses labeled as ‘‘non-entailment” (McCoy
et al., 2019), we apply the Cutoff method for data
augmentation on the premise. Similarly, because
any random data augmentation applied to the hy-
pothesis could potentially alter the semantic rela-
tionship between the premise and hypothesis. In
order to avoid introducing additional noise, we do
not apply any data augmentation to the hypothe-
ses, and then incorporate them into the template.
This way, we obtain the anchor sample smc.

4.2. Counter-intuitive Supervised
Signals

We also propose a Supervised Signal based on
feature embedding Distance (SSD), which allows
the supervised signal to better align with the train-
ing objective during the regularization of the em-
bedding space. Based on the experimental conclu-
sions from the previous sections, we believe that
the answer, which has a greater embedding dis-
tance from the [MASK] token in the same context,
is the answer that the model supposed to output.
Specifically, for each pair of premise and hypoth-
esis sentences, without performing data augmen-
tation, we directly place them into the template to
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generate the input smk for PF model. Then, follow-
ing the method described earlier (§ 3), we replace
the [MASK] token with the answers corresponding
to each category label, and construct input sen-
tences (s1ans, s

2
ans, · · · , snans) ∈ Sans for the same

PLM. After obtaining the word embedding rmk for
the [MASK] token and (r1ans, r

2
ans, · · · , rnans) ∈ Rans

for the answers, we directly calculate the embed-
ding distance (d1ans, d

2
ans, · · · , dnans) ∈ Dans between

rmk and Rans:

dans =Concat(dis(rmk, r
1
ans)

: dis(rmk, r
n
ans)).

(5)

Then the objective can be expressed as follow-
ing:

Lsup = CrossEntropy(dans, y), (6)
where y denotes the correct label.

4.3. Joint Training
We jointly train the model with the above two objec-
tives Lcl and Lsup on NLU datasets. α is a hyper-
parameter to balance two objectives (Yan et al.,
2021):

Ltotal = αLcl + (1− α)Lsup. (7)

Algorithm 1: Our Method
1 MaxStep = The number of training steps;
2 Sample: Randomly sampling function;
3 Train_Set: Training set;
4 DA: Data augmentation;
5 LM: Language model;
6 CL: Contrastive loss;
7 DIS: Euclidean distance;
8 SUP: Cross Entropy loss;
9 for i in MaxStep do

10 smk,Sans, y = Sample(Train_Set);
11 smc, sco,Sic = DA(smk,Sans);

// CLMA
12 rmc, rco,Ric = LM(smc, sco,Sic);
13 Lcl = CL(rmc, rco,Ric);

// SSD
14 rmk,Rans = LM(smk,Sans);
15 Lsup = SUP(DIS(rmk,Rans), y);

// Joint Training
16 Ltotal = αLcl + (1− α)Lsup;
17 Ltotal.backward();
18 optimizer.step();
19 end

5. Experiments

To validate the effectiveness of our method 1, we
conduct few-shot NLU experiments.

5.1. Setups

5.1.1. Dataset

Following previous works (Xu et al., 2023;
Kavumba et al., 2022; Gao et al., 2021a; Utama
et al., 2021; McCoy et al., 2019), we validate
our method on multiple NLU datasets, including
MRPC (Dolan and Brockett, 2005), QQP 1, MNLI,
SNLI, HANS, QNLI (Rajpurkar et al., 2016), RTE
(Dagan et al., 2006). Among them, MRPC and
QQP belong to short text matching (STM) tasks,
while MNLI, SNLI, HANS, QNLI, and RTE are re-
lated to NLI tasks.

Following Xu et al. (2023), for each dataset,
we maintain 16 samples per label in the training
set. All experimental results are derived from the
means of five different training sets.

5.1.2. Baselines

To demonstrate our performance, we consider the
following methods as strong baselines:

• FT: fine-tuning based on the task-specific
head.

• PF (Liu et al., 2023): prompt-based fine-
tuning using manual templates and answers.

• LM-BFF+SupCon (Jian et al., 2022): it is a
contrastive learning framework that combines
contrastive loss with the standard masked lan-
guage modeling loss in prompt-based few-
shot learners.

• CP-Tuning (Xu et al., 2023): it is an
end-to-end contrastive prompt tuning frame-
work,without any manual engineering of task-
specific prompts and verbalizers.

• PF+CLMA: it employs PF to replace the SSD
that we proposed. The aim is to validate the
effectiveness of the supervision signal we in-
troduced.

• Chatglm2-6B2: it is an open-source bilin-
gual Chinese-English dialogue large lan-
guage model based on GLM (Du et al., 2022).

• InternLM-7B3: it is a multilingual language
model with progressively enhanced capabili-
ties.

In the aforementioned prompt-based fine-tuning
scenarios, we use the same templates and answer
keys as Gao et al. (2021a) (Table 2).

1https://www.quora.com/q/quoradata/
2https://github.com/THUDM/ChatGLM2-6B
3https://github.com/InternLM/InternLM
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Few-Shot STM (acc/F1) Few-Shot NLI (acc) Migrate to HANS (acc)
Backbone Method MRPC QQP MNLIm MNLImm SNLI HANS QNLI RTE MNLI-HANS SNLI-HANS

ALBERT

FT 62.03 / 70.69 67.36 / 73.31 58.47 58.85 62.48 66.25 54.57 50.90 50.69 54.27
PF 65.80 / 75.82 73.24 / 78.23 58.24 59.75 71.71 69.24 59.93 59.93 51.01 60.27

CP-Tuning† 63.52 / - 71.05 / - - - - - 62.02 61.92 - -
PF+CLMA 66.90 / 77.26 75.1 / 80.12 57.94 59.74 74.79 67.39 61.08 59.57 51.22 58.91

OURS 65.51 / 74.28 74.74 / 79.58 65.94 63.94 78.96 71.15 62.58 64.26 52.52 64.72

RoBERTa

FT 69.86 / 78.08 60.51 / 63.50 57.52 59.15 72.57 64.06 70.84 69.31 50.00 50.15
PF 71.36 / 79.70 67.21 / 70.86 74.16 75.06 78.59 64.48 71.43 68.95 53.16 56.76

LM-BFF+SupCon† - / 77.80 74.00 / - 72.40 74.20 79.60 - 71.10 71.80 - -
CP-Tuning† 72.60 / - 73.56 / - - - - - 69.22 67.22 - -
PF+CLMA 70.72 / 79.05 69.53/ 72.35 69.88 70.47 80.30 73.06 69.92 71.48 50.10 52.32

OURS 74.90 / 82.92 72.55 / 75.59 75.45 75.81 81.41 74.53 72.82 72.20 66.39 58.81

Chatglm2-6B‡ 73.82 / 80.39 75.33 / 82.72 64.79 66.26 72.77 66.43 66.89 76.17 - -
InternLM-7B‡ 67.94 / 73.58 80.34 / 85.59 65.91 66.73 72.05 63.41 62.47 80.51 - -

Table 1: The table displays our experimental results. The left half of the table presents the few-shot
experimental results on STM and NLI tasks, while the right half shows the performance of models trained
on MNLI or SNLI and directly transferred to HANS for evaluation. Methods with † indicate that we directly
report the scores from the corresponding paper. Method with ‡ indicate a zero-shot experimental setup.

Tasks Template Answer Keys
STM <S1> [MASK], <S2> Yes, No
NLI <S1> ? [MASK], <S2> Yes, Maybe, No

Table 2: The templates and answer keys used in
our experiments. Among them, ‘‘Maybe” is used
only in three-way NLI tasks.

5.1.3. Hyperparameters

In the experiment, the ratio of feature cutoff is set
to 0.2 , as suggested in Shen et al. (2020), and the
batch size is set to 16 in most of our experiments.
We use the RMSprop optimizer and set the learn-
ing rate and the ratio of warm-up to 5e-6 and 10%
respectively. We evaluate the impact of tempera-
ture on the performance of our model and select
0.1 as the temperature in most of our experiments.
Finally, we train the model for 1000 steps and eval-
uate the model every 100 steps during training.

5.2. Results

5.2.1. Few-Shot NLU

We compare the performance of models using
RoBERTa-large (Liu et al., 2019) and ALBERT-
xxlarge (Lan et al., 2020) as PLMs in the few-
shot experimental setting. The experimental re-
sults are shown in Table 1. In our experiments, the
prompt-based models outperformed the FT mod-
els on most datasets, demonstrating the effective-
ness of the PF method in few-shot experiments.
Furthermore, large language models, with the ad-
vantages of a greater number of model parameters
and more training data (Du et al., 2022), possess
stronger logical reasoning capabilities. Despite be-
ing in a zero-shot experimental setting, their perfor-
mance on QQP and RTE datasets still surpasses
the few-shot experimental results of mainstream
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Figure 4: The performance (acc) of evaluating the
FT model, PF model, and our model on the HANS
dataset under different labels and syntactic heuris-
tics. These models are all trained on the SNLI
dataset under a few-shot experimental setting.

methods. Lastly, compared to mainstream meth-
ods in a few-shot experimental setting and large
language models in a zero-shot experimental set-
ting, our method achieves optimal results on the
vast majority of datasets. Additionally, the compar-
ative results with the PF+CLMA method prove the
necessity of the SSD we proposed.

5.2.2. Migrate to HANS dataset

To verify the robustness of our model, we transfer
the best-performing models trained on MNLI and
SNLI directly to the HANS test dataset to evalu-
ate their ability to recognize deep semantic clues
(Kavumba et al., 2022). The experimental results
are shown in the right half of Table 1. Our method
outperforms other approaches when transferred to
the HANS dataset. Specifically, compared to the
PF method, our approach achieves an average
performance improvement of 5.31%. This demon-
strates that our method enhances the ability of tra-
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Method MNLIm MNLImm SNLI MNLI-HANS SNLI-HANS

Full Implement. 75.45 75.81 81.41 66.39 58.81

w/o. CLMA 73.21 74.53 80.08 64.57 55.83
w/o. SSD 64.69 66.80 53.13 51.07 51.91

Table 3: Ablation study regarding model performance. ‘‘Full Implement.” refers to the full implementation
of our method.

MNLI SNLI

DataSet Eco Ecc Eic Eco Ecc Eic

Full Implement. 0.8930 0.9409 0.9235 0.8692 0.9489 0.9200

w/o. CLMA 0.8860 0.8858 0.9390 0.8787 0.8646 0.9290
w/o. SSD 0.8511 0.9397 0.8559 0.9290 0.9999 0.9017

Table 4: Ablation study on alleviating anisotropy in the feature embedding space. ‘‘Full Implement.” refers
to the full implementation of our method.

ditional PF models to grasp deep semantic cues.
In Figure 4, we present the transfer performance

of the FT model, PF model, and our method on
the HANS dataset. We evaluate the performance
of the three models considering various labels and
syntactic heuristics. Consistent with previous stud-
ies (McCoy et al., 2019), we observe that all mod-
els trained on the SNLI dataset exhibit superior
performance on ‘‘entailment” labeled data and un-
derperform on ‘‘non-entailment” labeled data in the
HANS dataset evaluation. Compared to the other
two methods, our approach achieves comparable
performance on the ‘‘entailment” label while also
achieving relatively good performance on the ‘‘non-
entailment” label. It only performs slightly worse
than the PF model under the ‘‘Constituent” syntac-
tic heuristic.

5.2.3. The Regularized Feature Embedding
Space

We conduct a similar exploration as described in
(§ 3), investigating the regularized feature embed-
ding space using our proposed method. The ex-
perimental results shown in Table 4 demonstrate
that our method effectively reduces the similarity
between answers in the feature embedding space,
as well as the similarity between the [MASK] token
and answers, thus alleviating the anisotropy of the
feature embedding space.

5.3. Ablation Study
We conduct an ablation study to investigate the
characteristics of the main components in our
method, including CLMA and SSD. Table 3 reports
the accuracy on MNLI-match, MNLI-mismatch,
SNLI, and the corresponding evaluation accuracy
on the HANS task. From the table, we can observe

a performance drop when removing these compo-
nents. Specifically, when only SSD are retained,
the model trained on MNLI and SNLI exhibits a
substantial decrease in evaluation performance on
HANS, demonstrating the effectiveness of our pro-
posed contrastive learning framework in capturing
deep semantic clues. Similarly, when SSD are
removed, the performance of the model also de-
clines, validating the effectiveness of our proposed
feature embedding distance-based supervised sig-
nal.

Table 4 displays the roles of CLMA and SSD in
alleviating the anisotropy of the feature embedding
space. Among them, SSD can effectively reduce
the cosine similarity Ecc, while CLMA can effec-
tively decrease the cosine similarities Eco and Eic.

Furthermore, by analyzing the results of the ab-
lation studies, we find that when only CLMA or
SSD is retained, anisotropy in the feature embed-
ding space of the model might even decrease, but
the performance of the model worsens. This indi-
cates that a reduction in anisotropy in the feature
embedding space is not always directly correlated
with an improvement in model performance.

6. Conclusions

We begin by exploring the connection between an-
swers and the [MASK] token within the feature em-
bedding space of the PF model, leading us to for-
mulate our hypothesis. Based on our experimen-
tal findings, we introduce a contrastive learning
framework that utilizes answers and the [MASK]
token to alleviate anisotropy in the feature embed-
ding space. Subsequently, we propose a novel,
counter-intuitive, supervised signal that hinges on
the distance within the feature embedding space.
Our experiments demonstrate the effectiveness
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of our approach for few-shot NLU tasks, particu-
larly in capturing deep semantic clues. Finally,
further experimental results verify that, although
our model enhances performance while alleviat-
ing anisotropy in the feature embedding space, the
reduction of anisotropy and the improvement of
model performance are not positively correlated.

7. Limitations

We have listed some limitations: (a) Our method
requires multiple forward passes with PLM at each
training step to obtain the feature embeddings.
This to some extent leads to a loss in model run-
time speed, which is an area for future optimization.
(b) In our experiments, we followed previous re-
lated work and focused solely on the NLU task. We
did not evaluate the performance of our method on
tasks such as question-answering, text classifica-
tion. This is also a subject for future research.
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