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Abstract
End-to-end (E2E) task-oriented dialogue (ToD) systems are prone to falling into the so-called ‘likelihood trap’,
resulting in generated responses that are dull, repetitive, and often inconsistent with dialogue history. Comparing
ranked lists of multiple generated responses against the ‘gold response’ (from evaluation data) reveals a wide
diversity in response quality, with many good responses placed lower in the ranked list. The main challenge,
addressed in this work, is then how to reach beyond greedily generated system responses, that is, how to obtain and
select such high-quality responses from the list of overgenerated responses at inference without the availability of
the gold response. To this end, we propose a simple yet effective reranking method that aims to select high-quality
items from the lists of responses initially overgenerated by the system. The idea is to use any sequence-level
(similarity) scoring function to divide the semantic space of responses into high-scoring versus low-scoring partitions.
At training, the high-scoring partition comprises all generated responses whose similarity to the gold response is
higher than the similarity of the greedy response to the gold response. At inference, the aim is to estimate the
probability that each overgenerated response belongs to the high-scoring partition, given only previous the dialogue
history. We validate the robustness and versatility of our proposed method on the standard MultiWOZ dataset: it
improves a state-of-the-art E2E ToD system by 2.0 BLEU, 1.6 ROUGE, and 1.3 METEOR scores, achieving new
peak results. Additional experiments on the BiToD dataset and human evaluation further ascertain the generalisability
and effectiveness of the proposed framework.
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1. Introduction

Task-oriented dialogue (ToD) systems (Williams
and Young, 2007; Young et al., 2013) have received
increasingly intensified research interest, as they
can assist humans with or automate many tasks
effectively, thereby contributing to technological
expansion and inclusion (Raux et al., 2003; El Asri
et al., 2017; Budzianowski et al., 2018; Laranjo
et al., 2018). The natural language generation
(NLG) module, also dubbed response generation,
is a critical component of any ToD system. Besides
the necessary requirement to maintain semantic
coherence during conversation, NLG also impacts
user experience and satisfaction with a system.

Enabled by the recent advances in pretrained
language models (PLMs) (Radford et al., 2019;
Raffel et al., 2020), now a de facto approach to
NLG is fine-tuning autoregressive language mod-
els on a domain-specific dialogue dataset (Lin
et al., 2020; Peng et al., 2022). However, this
approach still suffers from several crucial issues.
1) Standard autoregressive models over-rely on
local context (Khandelwal et al., 2018; Sun et al.,
2021), whereas many desirable properties of a dia-
logue response, such as consistency or coherence,
can be captured only when taking into account dia-
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logue history (Zaib et al., 2021). 2) Autoregressive
LMs make predictions conditioned on the ground
truth during training but on their own predictions
during decoding, creating a disparity known as ‘ex-
posure bias’ (Bengio et al., 2015; Ranzato et al.,
2016; Du and Ji, 2019). 3) Finally, decoding di-
alogue responses from PLMs can easily fall into
the so-called ‘likelihood trap’ (See et al., 2019a;
Zhang et al., 2021); here, high-likelihood (i.e., low-
perplexity) sequences produced by greedy decod-
ing or beam search tend to be dull and repetitive
(See et al., 2019b). Truncated sampling methods,
such as top-k (Fan et al., 2018), nucleus (Holtz-
man et al., 2020), and typical sampling (Meister
et al., 2022) also tend to produce text with inconsis-
tencies, hallucinations, factual errors, or common-
sense issues (Massarelli et al., 2020; Dou et al.,
2022; Krishna et al., 2021; Dziri et al., 2022).

To tackle these issues, we propose a post-
generation reranking method for ToD. The focus
is on end-to-end (E2E) ToD systems, where NLG
is modelled as a sequence-to-sequence problem.
In particular, an E2E ToD system utilises a neu-
ral model such as T5 (Raffel et al., 2020) or
BART (Lewis et al., 2020) to generate a surface
form response conditioned on dialogue history and
other context (e.g. dialogue domain ontology).

The method, illustrated in Figure 1, reranks a set



13971

U: Hi! I am looking for a nice restaurant.
S: What type of food would you prefer?
U: I do not have any preference.

Dialogue Context/History

End-to-end System

S1: What price range do you prefer?

Overgenerated Responses

S2: Is there anything else I could help you?

S3: Do you have any requirements in price?

S4: Any preference in food type?

Ssearch: Do you have any other requirements?

Greedy Search Response

Response Reranker
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""

Response Reranking

Figure 1: An illustration of our proposed reranking
method. S: System; U: User. A reranking model is
trained to rank a set of overgenerated responses
from an end-to-end ToD system solely based on
dialogue context/history. According to a predefined
scoring function (e.g., cosine similarity, BLEU), a
good candidate should have a score higher than
that of the greedy search response. After reranking,
the output of the base ToD E2E system is steered
towards higher-quality responses.

of responses generated by any E2E ToD system
solely based on the preceding dialogue context.
Inspired by prior work on conversational represen-
tation learning (Mehri et al., 2019; Humeau et al.,
2020; Vulić et al., 2021b), we fine-tune any input
PLM (e.g., BERT, RoBERTa) into a conversational
encoder that learns fine-grained interactions be-
tween target responses and dialogue context.1 The
method is designed as a two-stage approach, see
Figure 3 later. In Stage 1 we adaptively fine-tune
the input PLM according to a specified scoring
function (e.g., cosine similarity, BLEU) and then
use it to divide the semantic space (i.e., corre-
sponding sets of generated responses) into high-
scoring and low-scoring partitions based on their
similarity to the gold response (according to the
scoring function). Subsequently, in Stage 2 such
a specialised dialogue encoder allows reranking
the generated responses based on discriminative
classification or similarity-based retrieval, without
leveraging the gold response. In turn, this enables
us to run reranking without gold responses at infer-
ence.

In our main experiments on the standard Multi-
WOZ 2.0 dataset (Budzianowski et al., 2018), we
run the proposed method on top of the state-of-
the-art (SotA) MinTL E2E ToD system (Lin et al.,
2020), and achieve consistent gains with differ-
ent underlying PLMs: relying on cosine similar-
ity as the scoring fuction, our rerankers achieve

1Unlike prior work, we do not use any task anno-
tation directly for fine-tuning (e.g., prior work relied on
intent labels to specialise PLMs towards particular intent
detection tasks).

new SotA results of 20.0 (↑2.0) BLEU, 32.8 (↑1.6)
ROUGE, and 36.9 (↑1.3) METEOR on MultiWOZ.
Further, using the actual evaluation metric also as
the scoring criterion in Stage 2, we can push per-
formance to 20.3 (↑2.3) BLEU, 33.6 (↑2.4) ROUGE,
and 40.0 (↑4.4) METEOR. Ablation studies, addi-
tional experiments on the BiToD dataset (Lin et al.,
2021), and human-based evaluation further ver-
ify the usefulness of the proposed method. The
code is available online at https://github.com/
cambridgeltl/response_reranking.

2. Related Work

We focus on improving NLG performance of E2E
ToD systems (Wen et al., 2017; Bordes et al., 2017;
Lei et al., 2018; Lin et al., 2020), proposing a post-
generation reranking method which operates on
the E2E system’s outputs.
Post-Generation Reranking. It has been well-
studied in the Machine Translation (MT) commu-
nity. Noisy Channel Modelling (Ng et al., 2019; Yee
et al., 2019) is a widely used reranking scheme for
NMT, parameterising the noisy channel probability
with a seq2seq model. Rerankers have also been
implemented with an RNN language model (Gul-
cehre et al., 2017), an energy-based model (Bhat-
tacharyya et al., 2021), and masked language mod-
els (Salazar et al., 2020; Liu and Liu, 2021).

In dialogue, reranking methods were mostly in-
vestigated for open-ended systems, aiming to in-
crease their response diversity (Sordoni et al.,
2015; Li et al., 2016; Shao et al., 2017), to im-
prove conversational ‘engagingness’ by integrating
human feedback (Gao et al., 2020), and to en-
hance fluency and semantic correctness (Baheti
et al., 2020). However, post-generation rerank-
ing has not been as widely explored in the ToD
context. Compared to open-ended systems, gen-
erated outputs from ToD systems are highly se-
mantically similar, adding a substantial challenge
to reranking, reaching beyond simple topic shifts
of the responses. Notably, rerankers based on
convolution (Wen et al., 2015), RNN (Dušek and
Jurčíček, 2016), RoBERTa (Harkous et al., 2020),
and cross-attention (Juraska and Walker, 2021)
were proposed, which all crucially assume access
to the ground truth dialogue act representation,
while we do not assume its availability.
Response Selection for ToD. These methods re-
trieve a set of response candidates and subse-
quently select the most likely one (according to a
matching function) as a final response (Ritter et al.,
2011). Different matching models have been pro-
posed to measure the matching degree between
a dialogue context and a response candidate, and
rank the candidates accordingly (Wu et al., 2017;
Zhou et al., 2018; Weston et al., 2018; Lu et al.,

https://github.com/cambridgeltl/response_reranking
https://github.com/cambridgeltl/response_reranking
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2019; Gu et al., 2019; Su et al., 2021; Henderson
et al., 2020; Humeau et al., 2020, among others).
Unlike prior work, which typically ranks a set of
predefined system response candidates, our post-
generation reranking method combines generation-
based and retrieval-based methods. Moreover,
while previous work (e.g. Weston et al., 2018; Di-
nan et al., 2019; Kim et al., 2020) augmented the
dialogue context with retrieved knowledge before
generation, our method is a post-generation rerank-
ing method. In particular, our rerankers operate
on a set of over-generated (and thus semantically
close) responses; we thus need to capture very
subtle nuances between different response candi-
dates.
Contrastive Learning for NLG. Contrastive learn-
ing (CL) (Chopra et al., 2005; Schroff et al., 2015;
Chen et al., 2020; He et al., 2020) has been widely
used in NLP for word-level (Mikolov et al., 2013;
Vulić et al., 2021a; Liu et al., 2021b) and sentence
representation learning (Reimers and Gurevych,
2019; Wu et al., 2020; Meng et al., 2021; Liu et al.,
2021a; Gao et al., 2021). Beyond representation
learning, other work applies CL to open-ended text
generation (Krishna et al., 2022; Su et al., 2022).
However, as posited by Krishna et al. (2022), such
a method may not be directly applicable to other
generation tasks with a more constrained output
space (e.g. NLG for ToD). For constrained gener-
ation tasks, Liu and Liu (2021) apply CL to post-
generation reranking for abstractive summarisa-
tion, and An et al. (2022) use CL for five generation
tasks, but none of them relates to dialogue.

3. Post-Generation Response
Reranking

Motivation: An Oracle Experiment. In the ‘oracle’
experiment, where we assume the availability of
the ground truth response, we first focus on examin-
ing the diversity of candidate responses generated
by the underlying E2E ToD model, which would
outline the potential of post-generation reranking.
We rerank the set of 20 ‘oversampled’ responses
from an E2E ToD system, using their sentence-
level BLEU-based similarity to the ground truth. As
revealed by Figure 2, when generating the 20 re-
sponses with the nucleus sampling method (Holtz-
man et al., 2020), we can find responses in those
sets that are of much higher-quality (as measured
by BLEU) as well as of much lower-quality than
the standard greedy response. It is possible to
improve BLEU up to 16.2 points if we always select
the best response (according to BLEU) from the
20-response set.

The crucial issue is that at real-world ‘non-oracle’
inference we cannot leverage such ground truth
responses. Oservations from the oracle experi-
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Figure 2: Corpus BLEU scores for MinTL on the
MultiWOZ dev set in the ‘oracle’ experiment. Nu-
cleus top-p sampling with different p values. Max
(Min) performance is achieved by reranking 20
overgenerated samples based on their sentence
BLEU score with the ground truth response and
selecting the response with the maximum (or mini-
mum) score. Greedy search is the standard decod-
ing strategy. See also §4 for the short descriptions
of different methods.

ment indicate that: (i) there is ample room for im-
provement in NLG via reranking offering empirically
driven motivation for our novel reranking methods,
while (ii) we need to disentangle the critical de-
pendency on the ground truth response from the
reranking process.

Response Reranking: Preliminaries. The task
is similar to response selection (Wu et al., 2017;
Henderson et al., 2019; Humeau et al., 2020,
among others). Given a dataset with n exam-
ples D = {D(1),D(2), · · · ,D(n)}, each example
D(i) ∈ D contains the pair (c(i), r(i)), where c(i)

is the dialogue context and r(i) is the response;
c(i) and r(i) denote their respective representa-
tions/embeddings. During training, the task is to
learn a scoring function s(·, ·) that assigns a match-
ing score for any context–response pair. At in-
ference, response reranking involves a dialogue
model PMLE(r | c) and an evaluation metric M(·, ·).
Given the context c, we sample a set of responses
R = {r1, r2 . . . rj} from PMLE(r | c). The task of
a response reranker is to assign a score s(·, ·) for
each context–response pair and select a response
based on this score, e.g. argmaxr∈R s (c, r). Re-
sponse reranking is tasked to improve the evalua-
tion score M(c, r).

3.1. Methodology

An effective response reranker for ToD should cap-
ture subtle differences among a set of highly sim-
ilar candidates generated by a fine-tuned E2E
ToD model. This setup is considerably more
difficult than selecting the best response from
randomly sampled confounders from a dialogue
dataset (Henderson et al., 2019; Gunasekara et al.,
2019). In a preliminary experiment, we followed
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Input PLM

Stage 1:
Response Selection 

Fine-tuning

Stage 2:
Classification-based 

Fine-tuning

Stage 2:
Contrastive
Fine-tuning

Classification-based 
Reranking

Similarity-based 
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Figure 3: An overview of the two-stage reranking
process. Stage 1 fine-tunes any input PLM into
a response selection model with in-domain data.
Stage 2 further fine-tunes the Stage 1 model into a
response reranking model, more sensitive to fine-
grained interaction between dialogue context and
candidate responses.

the standard response selection setup (Wu et al.,
2017; Zhou et al., 2018; Gu et al., 2019) and aimed
at distinguishing between the ground truth positive
example from randomly sampled negatives. We
found out that those baselines perform well on the
response selection task but achieve near-random
performance in our response reranking task fo-
cused on highly semantically similar candidate re-
sponses. Therefore, in what follows, we propose a
novel fine-tuning framework to deal with the much
more challenging (re)ranking scenario.
Method in a Nutshell. We train a generative E2E
dialogue model PMLE(r | c) on a dialogue dataset
D. Subsequently, for each training example (c, r)
in the training set, we sample a set of responses
R = {r1, r2 . . . rj} from PMLE(r | c), where j de-
notes the number of over-generated responses.
For each rk ∈ R, we calculate its score based
on a scoring function sk = s(rk, r), where r is
the representation of the ground truth response.
Unless stated otherwise, the default scoring func-
tion is defined as the cosine similarity based on
a general-purpose sentence encoder.2 We then
cluster the sampled responses R, based on their
respective scores and a defined thresholding pro-
cedure (see §3.3), into a high-scoring set Rhigh

and a low-scoring set Rlow. During training, the
reranking model aims to directly capture the dis-
tinction between Rhigh and Rlow. At inference,
the reranking model scores and ranks a candidate
response rk based on the probability that the gen-
erated response is drawn from the high-scoring set,
namely P (rk ∈ Rhigh | c). Again, we stress that
our reranking model does not require access to the
ground truth during inference. Instead, the condi-
tional probability serves as a ‘proxy’ function, indi-
cating the likelihood that the candidate is indeed
a valid response. This way, we make a transition

2We use the all-mpnet-v2 (Reimers and Gurevych,
2019) as a robust, efficient and high-performing choice.

from ‘oracle’-based training with ground truth to the
‘non-oracle’ inference.

Following Vulić et al. (2021b), we propose a
two-stage fine-tuning procedure, with two types
of reranking models in the second stage: a
classification-based model and a similarity-based
model, as illustrated in Figure 3. The framework
can be applied on top of any input (Transformer-
based) encoder e = encθ(t) parameterised by θ,
which encodes textual input t into a sentence em-
bedding. Unless stated otherwise, we use BERT(-
base) (Devlin et al., 2019) as our default encoder.

3.2. Stage 1: Response Selection

In Stage 1, we conduct adaptive fine-tuning in the
response selection task (Vulić et al., 2021b), which
transforms the input PLM into a text encoder that
is better aligned with the end-task (Ruder, 2021) of
response reranking. We rely on a standard cross-
encoder architecture that directly models the in-
teraction between the context and the candidate
responses. Each data example is a tuple (c, r, l),
where l ∈ {0, 1} is a binary label indicating if r is
the ground truth response to c. In fact, for each
dialogue (c(i), r(i)) ∈ D , we construct a positive
example (c(i), r(i), 1). We then randomly sample a
set of Nr negative responses Ri,− per each posi-
tive response r(i) from other tuples following prior
work on response selection: for each r(j) ∈ Ri,− it
holds i ̸= j, and we construct final negative sam-
ples as follows: (c(i), r(j), 0).

The goal of Stage 1 is to fine-tune the in-
put PLM/encoder into a statistical model parame-
terised by θ to compute Pθ(l|c, r). Given a training
example (c, r, l), the model is trained to predict the
correct label by encoding the concatenation of a
context response pair [c, r]. To this end, the rep-
resentation of the “[CLS]” token is subsequently
projected down to two logits and passed through a
softmax layer to form a Bernoulli distribution indi-
cating the positive (1) or the negative (0) label.

3.3. Stage 2: Response Reranking

Each data entry for response reranking in Stage 2
is again a tuple (c, r, l), where l ∈ {0, 1} is a binary
label. We construct those data entries as follows.
First, for each dialogue item (c, r) ∈ D, we gen-
erate a set of responses R = {r1, r2 . . . rj} and a
greedy search response rsearch. We then calcu-
late a pair-wise score sk between each generated
response rk ∈ R and the ground truth response r,
relying on some scoring function (e.g., cosine sim-
ilarity between their sentence embeddings). Sim-
ilarly, we calculate a score ssearch for the greedy
search response rsearch. The score ssearch is used
as a local threshold value that splits the set of gen-
erated responses into positive (i.e., ‘high-quality’)
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and negative (‘low-quality’) responses as follows.
If sk ≥ ssearch, we add the generated response

rk to the high-quality set Rhigh; if sk < ssearch, we
add rk to the set Rlow.3 Since the cardinality of the
two sets may differ, we downsample the larger set
to the size of the smaller one: min(|Rhigh|, |Rlow|).
Following that, for each rk ∈ Rhigh, we construct
a positive example for fine-tuning (c, rk, 1); for
each rk ∈ Rlow, we construct a negative exam-
ple (c, rk, 0). We construct such examples from
the entire training set, and they are then used for
two types of reranking: classification-based and
similarity-based, described in what follows, with
additional illustrations in Figure 6 in Appendix A.
Classification-Based Reranking. This procedure
is identical to Stage 1. However, the reranking
models now learn to rerank overgenerated (and se-
mantically similar) responses according to positive
and negative examples corresponding to respec-
tive sets Rhigh and Rlow. Given a training example
(c, r, l), the encoder first encodes the [c, r] and the
contextualised representation of the “[CLS]” token
is subsequently used to compute Pθ(l|c, r) as in
Stage 1 using the standard cross-encoder architec-
ture (e.g. Wolf et al., 2019; Urbanek et al., 2019).
At inference, given c and a set of generated re-
sponses R, we rank and select the final response
based on its score: argmaxr∈R P (l = 1|c, r).
Similarity-Based Reranking. Similarity-based
classification has demonstrated promising results
in intent detection for ToD (Zhang et al., 2020a;
Vulić et al., 2021b) and other NLP tasks (Sarwar
et al., 2022; Kassner and Schütze, 2020), partic-
ularly when data is scarce. We thus also propose
a similarity-based reranker in Stage 2, based on
contrastive fine-tuning and KNN retrieval.

The aim is to fine-tune the input encoder so that
it encodes all context-response pairs from Rhigh

into coherent clusters, clearly separated from low-
scoring pairs from Rlow. Here, we utilise the la-
bel l during training only implicitly, allowing us to
formulate reranking as a sentence similarity task.
In particular, for a training example (c, r, l), the
encoder first encodes [c, r], where the encoding
e = encθ([c, r]) is created via mean-pooling over
the constituent subwords’ embeddings.

We use the standard Triplet Loss (Schroff et al.,
2015). For any pair of examples within a batch
(encθ([c

(i), r(i)]), l(i)) and (encθ([c
(j), r(j)]), l(j)),

the encoder parameters θ are optimised (i) to re-
duce the cosine distance between encodings of

3There are other options to split the candidate re-
sponses into the sets Rhigh and Rlow (e.g., selecting the
top N% responses for Rhigh). However, our proposed
method is hyperparameter-free and is also conditioned
on the score of the greedy response; greedy search is
the default decoding strategy of many standard E2E ToD
systems (Lin et al., 2020).

the pairs with the same label l(i) = l(j), and (ii)
to increase the distance otherwise. After Stage
2, response scoring in the specialised encoder
space encS2 is then performed via similarity-based
KNN inference (Zhang et al., 2020a; Vulić et al.,
2021b), using a subset of training examples as
anchors. For all anchors (c(i), r(i), l(i)), we com-
pute their encodings e(i) = encS2

([c(i), r(i)]) in ad-
vance. For any candidate-response pair, we obtain
its encoding e = encS2([c, r]). We retrieve a set
of k nearest anchors from the full set of anchors.
The scoring function s(·, ·) is defined as the pro-
portion within the k nearest anchors with a posi-
tive label. We select the final response as follows:
argmaxr∈R s(c, r).

4. Experimental Setup

Our main experiments focus on the standard multi-
domain MultiWOZ ToD dataset (Budzianowski
et al., 2018): in particular on its 2.0 version.
Baseline E2E System. The underlying E2E ToD
system is MinTL (Lin et al., 2020), as a publicly
available SotA model. It jointly learns dialogue
state tracking and response generation with pre-
trained seq2seq models.4 However, we note that
the proposed reranking method can be applied
to any E2E dialogue system with autoregressive
response generation (e.g., Wen et al., 2017; He
et al., 2022).
Evaluation Metrics. Following the standard Multi-
WOZ setup, we use the corpus BLEU score (Pap-
ineni et al., 2002) as our primary evaluation metric,
and all the scores are computed with delexicalised
utterances based on the DAMD system (Zhang
et al., 2020b).5 We also report ROUGE-L (Lin,
2004) and METEOR (Banerjee and Lavie, 2005)
as two other standard NLG evaluation metrics.
Input PLMs for Reranking. Our method can be
implemented with any Transformer-based (Vaswani
et al., 2017) PLM. To analyse the impact of the
input PLM (see Figure 3), we experiment with sev-
eral popular PLMs: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and their distilled
versions (Sanh et al., 2019). We additionally
experiment with supervised sentence encoders:
SimCSE (Gao et al., 2021) and other popular

4MinTL (Lin et al., 2020) was the SotA system for
E2E NLG on the MultiWOZ leaderboard until the re-
cently published GALAXY system (He et al., 2022)
surpassed its performance by a 0.2 BLEU score.
See the MultiWOZ leaderboard at https://github.com/
budzianowski/multiwoz.

5In the case of delexicalised dialogues, all the slot val-
ues in the context and responses are replaced a prede-
fined placeholder (e.g. [value_name] is an [value_price]
[value_food] restaurant on the [value_area] . do you
need to know more ?).

https://github.com/budzianowski/multiwoz
https://github.com/budzianowski/multiwoz
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encoders from the sentence-transformers (i.e.,
SBERT) repository (Reimers and Gurevych, 2019).
Table 8 in the appendix lists all the input models
we use along with their checkpoints from the Hug-
gingFace repository (Wolf et al., 2020).
Hyperparameters and Optimisation. The default
decoding strategy for MinTL is the greedy search.
In our reranking experiments, unless stated other-
wise, we over-generate 20 responses with nucleus
sampling (Holtzman et al., 2020) from the top-0.7
portion of the probability mass, a standard choice.

We implement all reranking models via the
SBERT repository (Reimers and Gurevych, 2019),
which is built on top of the HuggingFace reposi-
tory (Wolf et al., 2020). Table 6 in the appendix lists
the search set of hyperparameters (which differ
from the default SBERT-suggested values), along
with the finally set values. The grid search was
conducted on the dev set, based on BLEU.6

Model Variants and Baselines. We experiment
with several model variants enabled by the pro-
posed two-stage pipeline (see Figure 3):
PLM+S1+S2. This variant refers to the full
pipeline, where PLM is any input PLM from Ta-
ble 8. Stage 1 (S1) fine-tuning can be based on ei-
ther lexicalised dialogues (S1:lex) or delexicalised
(S1:delex) dialogues. After S1, we can further
fine-tune the ‘S1’ encoders via the classification-
based or the similarity-based approach: S2:class
and S2:sim. For instance, the configuration
BERT+S1:delex+S2:sim denotes the use of BERT
as the input PLM, with delexicalised dialogues in
Stage 1, and similarity-based Stage 2.
PLM+S2. This group is fine-tuned only relying on
Stage 2 approaches, skipping Stage 1.
PLM+S1. This group is fine-tuned only for re-
sponse selection with in-domain data, ignoring S2.
PLM. This variant refers to using out-of-the-box
sentence encoders in the response reranking task.
Since classification-based reranking requires a
fine-tuned task-specific classification head, we only
run our experiments with similarity-based rerank-
ing.

We also compare against two standard decod-
ing strategies. 1) Greedy. Greedy search has
been widely used as the default decoding strategy
NLG, also by the base MinTL system (Lin et al.,
2020).7 2) Sampling. As mentioned, we apply nu-

6128 is the maximum batch size with BERT base and
RoBERTa for Stage 2 fine-tuning. Following Reimers
and Gurevych (2019); Vulić et al. (2021b), we use the
AdamW optimiser (Loshchilov and Hutter, 2019) in the
default SBERT setting: the learning rate is 2e-5; warmup
of 0.1 and linear decay; the weight decay rate is 0.01. We
rely on the triplet loss variant of Hermans et al. (2017):
this is BatchAllTripletLoss in the SBERT repo; see the
documentation and the paper for further details.

7Greedy search and beam search are used as the de-

Selection Reranking

Variant R@1 B R M

Random Sampling 5.0 15.8 27.3 31.0
Greedy – 18.0 31.2 35.6
BERT – 17.0 29.4 33.6
SimCSE – 16.7 29.0 33.2
all-mpnet – 16.0 27.6 31.8
BERT+S1:delex 51.0 16.7 39.3 33.8
BERT+S1:lex 77.2 17.1 29.7 34.3
DRoB+S1:delex 48.0 16.6 29.0 33.4
DRoB+S1:lex 74.4 16.6 29.6 34.5

Table 1: Performance of representative out-of-the-
box sentence encoders and response selection
models on the standard Response Selection task
(R@1 = Recall@1), and on the final Response
Reranking task, relying on the MultiWOZ test set.
Similarity-based reranking without S2 fine-tuning
is reported. B=BLEU; R=ROUGE; M=METEOR;
DRoB=DistilRoBERTa. Additional results (incl.,
classification-based reranking) with more input
models are available in Table 10 in Appendix C.

cleus sampling (Holtzman et al., 2020) to sample
responses from the top-0.7 portion of the probabil-
ity mass.

5. Results and Discussion

Before delving into the main results, we investi-
gated the capability of standard response selection
techniques from the literature to select the best
response from the ‘overgenerated set’, with the
scores summarised in Table 1: they reveal that the
standard approaches are inadequate for our task,
all scoring below the Greedy baseline.

5.1. Main Results

The main results are summarised in Table 2.
They suggest that our classification-based reranker
yields 20.0 BLEU, outperforming the stronger
Greedy baseline by 2.0 points. Similar gains are
achieved by our similarity-based variant. The com-
parison of results in Tables 2 and 1 further indicates
the inadequacy of standard response selection
methods in the reranking task, and the importance
of Stage 2 fine-tining: our two-stage reranking
framework provides consistent and robust gains
over the baselines across the board. Delving
deeper into the model performance through ab-
lation experiments, reported in Table 3, isolates
the critical components responsible for the strong
performance.

fault decoding methods for many SotA E2E systems (Lin
et al., 2020, 2021; He et al., 2022) as they typically
outperform sampling algorithms in terms of BLEU. This
finding has also been corroborated by our ‘oracle’ exper-
iment; see Figure 2.
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Variant BLEU ROUGE METEOR

Baselines

Sampling 15.8 27.3 31.0
Greedy 18.0 31.2 35.6

BERT Classification-based

+S2 19.4 32.1 36.4
+S1:delex+S2 19.3 32.3 36.3
+S1:lex+S2 19.3 32.1 36.2

quora-distilroberta Classification-based

+S2 19.6 32.0 36.1
+S1:delex+S2 20.0 32.8 36.9
+S1:lex+S2 19.8 32.6 36.7

BERT Similarity-based

+S2 18.6 30.8 34.8
+S1:delex+S2 19.6 32.0 36.5
+S1:lex+S2 19.1 31.7 36.0

Table 2: Reranking performance with selected
model variants based on 20 over-generated re-
sponses from MinTL. Full results with other PLMs
and variants are available in Table 11 in Ap-
pendix C.

Variant BLEU

Classification-based

quora-distilroberta+S1:delex+S2 20.0
- self-generated positives 13.7 (↓6.3)
- multiple positives 19.1 (↓0.9)
- cross-encoders (+ bi-encoders) 15.4 (↓4.6)

Similarity-based

BERT+S1:delex+S2 19.6
- self-generated positives 15.2 (↓4.4)
- multiple positives 19.2 (↓0.4)

Table 3: Ablations on the two best-performing
reranking models. We can replace cross-encoders
in the classification-based model with the bi-
encoder architecture: it encodes contexts and re-
sponses separately sharing the encoder’s weights;
it was trained via the Softmax loss (Reimers and
Gurevych, 2019).

Self-Generated Positives: Previous work (Kr-
ishna et al., 2022) utilises self-generated sen-
tences only to construct negative examples for con-
trastive learning. Put simply, the model in prior
work is trained to select the provided ground truth
among self-generated examples. However, for our
response reranking task, we need to select the
best response from a set where all the items are
self-generated. The results suggest that, modelling
self-generated responses as positives in S2 (i.e.,
creating the set Rhigh) is crucial for the reranking
effectiveness. The performance degrades consid-
erably for both S2 variants without self-generated
positives in S2. The results further suggest that
incorporating multiple positive pairs into the same
batch yields slight performance gains for both S2
variants.

S2 Scoring↓ / Evaluation→ BLEU ROUGE METEOR
Greedy 18.0 31.2 35.6
Similarity 19.3 32.3 36.3
BLEU 20.3 33.2 37.2
ROUGE 20.7 33.6 37.6
METEOR 18.2 33.4 40.0

Table 4: Reranking performance of
BERT+S1:delex+S2 with Classification-based S2;
the scores with Similarity-based S2 are similar,
see Table 12 in Appendix C. For the models
with ROUGE and METEOR as scoring functions,
we perform model selection based on the best
ROUGE and METEOR performance, respectively.
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Figure 4: Impact of the candidate set size for
reranking during (Top) inference and (Bottom)
training on the final BLEU performance. The plots
focus on the best-performing model variants from
Table 2.

Cross-Encoders: Encoding context-response
pairs with cross-encoders instead of using bi-
encoders (Humeau et al., 2020; Henderson et al.,
2020) leads to better performance. Cross-
encoders are able to capture finer-grained interac-
tions between the context and the response (Gei-
gle et al., 2022), which is pivotal for the response
reranking task dealing with subtle variations in the
semantically close candidate responses.8 Further,
cross-encoders also enable our similarity-based
reranking models.

5.2. Further Analysis

We now analyse other important aspects of the
proposed reranking framework, running a series of
side experiments, with additional analyses of (ar-
guably) lower importance available in Appendix C.
Impact of the Input Encoder. Figure 5 shows the
reranking performance with different encoders. In-
terestingly, the distilled PLMs achieve performance

8Cross-encoders usually perform better than bi-
encoders with the caveat of reduced efficiency (Urbanek
et al., 2019), but they are typically used exactly in rerank-
ing contexts (Geigle et al., 2022; Li et al., 2022) similar
to ours.
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Figure 5: Reranking performance for different
input PLMs trained with the entire fine-tuning
pipeline (PLM+S1:delex+S2). Full results are in
Appendix C.

which is on-par with larger models; see also Fig-
ures 8-9 in Appendix C. Further, sentence en-
coders such as SimCSE and quora-distilroberta
do not yield any gains over the other encoders.
Evaluation Metrics as Scoring Functions. Ta-
ble 4 and Table 12 in Appendix C indicate that the
gains are consistent across all three automatic eval-
uation metrics. Moreover, using any of the three
metrics as the scoring function s in S2–dividing
generated samples into the sets Rhigh and Rlow

(see §3.3)—yields gains on all the other metrics
as well. Naturally, higher scores per each evalua-
tion metric are typically achieved when the same
metric is used as the scoring function in S2. How-
ever, such a setup might provide artificially inflated
metric-specific performance; a better indicator of ef-
fectiveness and robustness is the evaluation metric-
agnostic model variant used throughout the paper
(i.e., the row Similarity in Table 4), which relies on
the standard cosine similarity to do partitioning in
Stage 2.
Impact of the Candidate Set Size. Figure 4 plots
the reranking performance conditioned on a vary-
ing number of overgenerated responses during
inference.9 The curves indicate that 1) both rerank-
ing variants already outperform the Greedy search
baseline and achieve SotA performance when the
candidate set spans only three candidates; 2) after
the sharp increase in performance for the sizes 1-
10, further increase in the candidate set size offers
diminishing returns as performance saturates. In
addition, Figure 4 (bottom) demonstrates that the
reranking models outperform the Greedy baseline
with only two overgenerated responses for training.
Another ToD Dataset. To test the generalisability
of the proposed method, we also run experiments
on the English portion of the BiToD dataset (Lin
et al., 2021). The experimental setup is described
in Appendix D, while the results are summarised
in Table 5. Our reranking framework again yields

9The number of overgenerated samples for infer-
ence is critical for real-world applications: inference time
scales linearly with this number; see more in the Limita-
tions section.

Variant B R M

Beam Search 45.8 45.5 50.7
Sampling 43.0 42.9 48.4

BERT+S1:delex+S2:class 46.3 45.9 51.4
BERT+S1:delex+S2:sim 45.9 45.4 51.3

Table 5: Reranking performance based on 20 over-
generated responses on English BiToD. B=BLEU;
R=ROUGE; M=METEOR.

gains over the baselines, verifying its robustness,
but the gains are now less pronounced. Delving
deeper into the roots of this result, we attribute
this to BiToD’s data properties combined with the
baseline system: mT5 (Xue et al., 2021), resulting
in the lack of syntactic and semantic variability in
MinTL’s generated outputs on BiToD. On average,
there are only 10.4 unique utterances within the set
of 20 overgenerated items, compared to 17.8 for
MultiWOZ, with cases where all the 20 generated
responses are identical, which leaves meagre or
no room for further improvement via reranking.

Human Evaluation. User satisfaction is always
the ultimate goal of developing ToD systems (Ji
et al., 2022). We thus additionally evaluate with
human subjects, with the details on the setup
in Appendix E. We follow suggestions from prior
work (Fomicheva et al., 2021), and conduct com-
parative ‘A/B’ tests with 6 subjects, each scoring
100 dialogues. Each test item contains a dia-
logue context and three randomly ordered outputs
from greedy search, classification-based reranker,
and similarity-based reranker; the human partic-
ipant’s task is to indicate pairwise preferences
among the three outputs. The results indicate:
(i) a 49.5% (0.5% less) preference for classifica-
tion-based reranker over the greedy search (0.28
Fleiss’ Kappa); (ii) a 57.8% preference for similari-
ty-based reranker over the greedy search base-
line (0.26); (iii) a 55.8% preference for similar-
ity-based reranker over the classification-based
reranker (0.16). Overall, we see a slight prefer-
ence towards similarity-based rerankers.10 How-
ever, we did not observe a strong inter-annotator
agreement, as measured by Fleiss’ Kappa (Fleiss,
1971), as the scoring task is considered highly sub-
jective, and most responses are similar and difficult
to distinguish, even for humans (e.g., see an exam-
ple in Figure 10). This evaluation difficulty again
reflects the difficulty of our proposed reranking task
as a particularly challenging modelling scenario for
neural models.

10Following Welleck et al. (2020), we run 2-sided bino-
mial tests indicating the significance of the human pref-
erence. See detailed results in Table 14 in Appendix E.
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6. Conclusion

We proposed a novel post-generation reranking
method applicable to any end-to-end (E2E) task-
oriented dialogue (ToD) system. The reranking
is formulated as a two-stage conversational fine-
tuning procedure that transforms any input pre-
trained LM into a specialised in-domain reranker
which can operate on the sets of generated re-
sponses from the E2E ToD system. Combined
with a strong E2E ToD system, our reranking
models improved E2E dialogue generation per-
formance on standard ToD benchmarks, and
achieved new state-of-the-art results on the Multi-
WOZ benchmark, complemented with favourable
human evaluation. Our method operates at in-
ference time, showing adaptability to the rapidly
evolving paradigms of ToD systems. A promising
avenue for future research is to explore its inte-
gration with large language models and in-context
learning within ToD systems.

7. Limitations

One limitation of the proposed reranking is of prac-
tical nature and concerns its dependence on two
expensive operations: overgeneration and rerank-
ing. In theory, the time complexity of overgener-
ation scales linearly with the number of outputs,
similarly to the beam size for beam search. In
practice, we observe that, with the HuggingFace
implementation (Wolf et al., 2020), sampling 10 re-
sponses doubles the time consumption compared
to sampling a single response. In addition, unlike
beam search, this over-sampling can easily be par-
allelised for real-world applications. Our method
improves the baseline even if we only generate
three responses during inference (see Figure 4).
Reranking is less time-demanding, and it takes ∼2
minutes on a single GPU (see Appendix B) for the
full MultiWOZ test set with 20 candidates. In fu-
ture work, we will explore more parameter-efficient
methods for over-generation.

Our proposed reranking method is versatile and
opens up many further extensions and experimen-
tation beyond the scope and confines of this paper.
For instance, we might incorporate the ordering
of the self-generated responses and replace the
current contrastive loss functions with other recent
effective contrastive losses (Zhou et al., 2020; Liu
and Liu, 2021). Furthermore, this paper only ex-
plores out-of-box dialogue generation models with-
out further fine-tuning. However, as the compari-
son of absolute gains on MultiWOZ versus BiToD
indicates, increasing response diversity leads to
a better reranking model and better performance.
In future work, we will put more effort on diversify-
ing the set of overgenerated responses in order to

harvest more benefits of reranking.
The current work is also limited only to experi-

ments with the English language, also due to the
lack of suitable ToD training data for other lan-
guages (Razumovskaia et al., 2022). The recent
release of the Multi3WOZ dataset (Hu et al., 2023)
expands the linguistic scope, additionally support
model training for Arabic, French, and Turkish. With
this new resource, we also plan to extend our
model to languages beyond English, as well as
other dialogue-generation tasks (e.g. open-domain
dialogue generation).

Finally, our work again outlines the complexity
and limitations of current evaluation protocols for
E2E ToD and ToD in general, as well as the impor-
tance of reporting multiple automatic and human-
based evaluation metrics.

8. Ethics Statement

The experimental study obtained full Ethics Ap-
proval from the University of Cambridge in advance.
Our participants were recruited within the univer-
sity who volunteered to join our experiment. They
are students and academic staff who are proficient
in English. The consent is obtained by signing a
consent form. In addition, our models leverage
two data sources: the MultiWOZ dataset and the
pre-training data of each PLM employed in this
study. Particularly, this dataset consists solely of
hypothetical dialogues in which the domains and
content have been restricted and predefined, min-
imising the risk of personal data being present. On
the other hand, it is important to acknowledge that
although these PLMs are publicly available, there
exists a potential risk of privacy violations (Brown
et al., 2022; Carlini et al., 2021).
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Figure 6: Different reranking variants in Stage 2.

A. Reranking Variants in Stage 2

Figure 6 illustrates the two proposed approaches
for Stage 2 fine-tuning, with detailed descriptions
available in the main paper (see §3.1).

B. Experimental Details

We run all our experiments on a single RTX 24 GiB
GPU.

Table 6 lists the search set of our model hy-
perparameters. Unless mentioned otherwise, all
the hyperparameters are set to the default val-
ues provided in the SBERT repository. For the
classification-based response reranking training,
the batch size is 64. For similarity-based reranking
training, the batch size is 128. Both batch size val-
ues are determined as the maximum values based
on our hardware (see above).

Table 8 lists all the PLMs we used in this work,
along with their respective checkpoints in the Hug-
gingface repository.

Table 9 shows time consumption of our proposed
ranking models for fine-tuning and inference. The
time consumption is measured based on five inde-
pendent runs for the BERT-based models on the
MultiWOZ dataset.

Impact of Random Initialisation. For our best-
performing models, we ran five independent runs
with different random seeds. The main finding is
that the scores exhibit small-to-negligible variance
across different runs. Namely, our best-performing
classification-based model achieves the BLEU
score of 19.96 ± 0.16, and our similarity-based
model achieves the BLEU score of 19.59± 0.09.

C. Additional Results on MultiWOZ

To solidify our findings in this paper, we list addi-
tional experimental results which offer further em-

Hyper-parameter Value

Stage 1: Response Selection

batch size 64
context window {1, 2, 3, 4, 5}
max sequence length 128
training epoch {1, 2, 3, 10}
candidate size 20*

Stage 2: Response Reranking

batch size {64, 128}
context window {1, 2, 3, 4, 5}
max sequence length 128
training epoch 5
BatchAllTripletLoss margin 5

Table 6: Model hyper-parameters. (*)For each
dialogue (c(i), r(i)) ∈ D, the candidate size for re-
sponse selection training is 20. In other words,
there are 1 positive response r(i) and 19 nega-
tive responses Ri,−. For each r(j) ∈ Ri,− it holds
i ̸= j.

Hyper-parameter Value

Stage 1: Response Selection

batch size 64
context window 3
max sequence length 128
training epoch 10
candidate size 20

Stage 2: Response Reranking

batch size {64, 128}
context window 3
max sequence length 128
training epoch 5
BatchAllTripletLoss mergin 5

Table 7: BiToD experiments: model hyperparame-
ters.

Model HuggingFace Checkpoint

BERT bert-base-uncased
RoBERTa roberta-base
DistilBERT distilbert-base-uncased
DistilRoBERTa distilroberta-base
SimCSE princeton-nlp/sup-simcse-bert-base-uncased
MiniLM sentence-transformers/all-MiniLM-L12-v2
all-mpnet-v2 sentence-transformers/all-mpnet-base-v2
quora-distilroberta cross-encoder/quora-distilroberta-base

Table 8: Input PLMs.

pirical support for our main claims:

Table 10 shows the results of standard response
selection techniques from the literature (i.e., effec-
tively running only S1 in our pipeline) to select the
best response from the sets of overgenerated can-
didates. All the model variants score lower than
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Setup Time

Stage 1: Response Selection

Training per epoch 29:18
Inference (full test) 1:58

Stage 2: Response Reranking

Training per epoch 27:10
Inference with 5,000 anchors (full test) 2:20
Inference with 10,000 anchors (full test) 4:52

Table 9: Time consumption of our proposed meth-
ods. It was computed as an average of 5 runs on
a machine with a 16-core vCPU and a single RTX
24 GiB GPU.

the standard Greedy search baseline in the rerank-
ing task despite the fact that S1 in-domain fine-
tuning increases their response selection capabil-
ities (e.g., compare their R@1 scores versus the
random baseline). Moreover, the results indicate
that selecting an utterance based on delexicalised
dialogue contexts is harder than with lexicalised
dialogues.

Figure 8 and Figure 9 demonstrate the reranking
performance with different input PLMs, measured
by the ROUGE and METEOR score, respectively
(see also §5.2).

Table 11 provides the results with different input
PLMs in our comparison with the full fine-tuning
pipeline. From this table, sentence encoders do
not provide advantages over PLMs. Table 11 can
been seen as an expanded version of Figure 5,
Figure 8, and Figure 9.

Table 12 displays reranking performance of the
BERT+S1:delex+S2 model variant with different
scoring functions in Stage 2 for partitioning re-
sponses into the sets Rhigh and Rlow. Due
to a high similarity between patterns observed
with Classification-based and Similarity-based S2
reranking, we show only a Classification-based
partition of the full table in the main paper: Table 4.

Table 13 provides the results with the
BERT+S1:delex+S2 model variant with varying
dialogue history/context size. Both classification-
based and similarity-based rerankers utilise the
historical dialogue context and require at least
2 preceding historical utterances to be effective.
However, there is no discernible correlation
between the reranking performance and the
dialogue context size further beyond. In other
words, by increasing or decreasing the number
of the input historical utterances, the reranking
performance does not catastrophically degrade,
when more than two historical utterances are
available.

10 100 500 1000 5000
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Figure 7: Performance with
BERT+S1:delex+S2:sim using different val-
ues for the total number of anchors and the
number of nearest anchors k.
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Figure 8: Reranking performance (ROUGE scores)
for different input PLMs trained with the entire fine-
tuning pipeline (PLM+S1:delex+S2)..
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Figure 9: Reranking performance (METEOR
scores) for different input PLMs trained with the
entire fine-tuning pipeline (PLM+S1:delex+S2).

Similarity-Based Stage 2. There are two key
hyper-parameters: the total number of anchors,
and the number of nearest anchors k used to score
each test example. Figure 7 plots their impact on
the final BLEU scores, indicating that the approach
is fairly robust to different tested values. Note that
the time consumption scales linearly with the an-
chor pool size (see also Table 9 in Appendix B).

D. Experimental Setup on BiToD

BiToD (Lin et al., 2021) is a bilingual (English and
Chinese) multi-domain dataset for end-to-end task-
oriented dialogue modelling. For our experiments,
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Response Selection Classification-based Reranking Similarity-based Reranking
Variant R@1 BLEU ROUGE METEOR BLEU ROUGE METEOR

Random Baseline

Random Sampling 5.0 15.8 27.3 31.0 15.8 27.3 31.0

Sentence Encoders

BERT n/a n/a n/a n/a 17.0 29.4 33.6
SimCSE n/a n/a n/a n/a 16.7 29.0 33.2
quora-distilroberta n/a n/a n/a n/a 15.9 27.7 32.0
all-mpnet n/a n/a n/a n/a 16.0 27.6 31.8

Response Selection Models

BERT+S1:delex 51.0 16.2 29.0 34.2 16.7 39.3 33.8
DistilRoBERTa+S1:delex 48.0 16.1 38.9 33.7 16.6 29.0 33.4
quora-distilroberta+S1:delex 50.5 16.3 28.8 33.6 16.6 29.1 33.9
BERT+S1:lex 77.2 14.5 28.8 33.2 17.1 29.7 34.3
DistilRoBERTa+S1:lex 74.4 15.0 27.7 32.4 16.6 29.6 34.5
quora-distilroberta+S1:lex 74.9 15.2 27.9 32.8 16.2 28.6 33.2

Table 10: Response selection and response reranking performance on the MultiWOZ test set with
standard response selection models and out-of-box sentence encoders. n/a = non-applicable.

Classification-based Reranking Similarity-based Reranking
Variant BLEU ROUGE METEOR BLEU ROUGE METEOR

PLMs

BERT+S1:delex+S2 19.3 32.3 36.3 19.6 32.0 36.5
DistilBERT+S1:delex+S2 19.8 32.6 36.7 19.5 32.3 36.7
RoBERTa+S1:delex+S2 19.7 32.5 36.8 15.9 28.5 33.1
DistilRoBERTa+S1:delex+S2 19.5 32.4 36.7 19.2 32.0 36.8
BERT+S1:lex+S2 19.3 32.1 ↓ 36.2 ↓ 19.1 ↓ 31.7 ↓ 36.0 ↓
DistilBERT+S1:lex+S2 19.7 ↓ 32.4 ↓ 36.5 ↓ 19.8 32.1 ↓ 36.5 ↓
RoBERTa+S1:lex+S2 19.9 32.7 36.7 ↓ 19.0 31.7 36.3
DistilRoBERTa+S1:lex+S2 19.4 ↓ 32.1 ↓ 36.3 ↓ 18.6 ↓ 31.8 ↓ 37.1

Sentence Encoders

MiniLM+S1:delex+S2 19.9 32.4 36.5 19.0 32.0 37.1
all-mpnet+S1:delex+S2 19.7 32.4 36.5 18.9 32.1 36.9
SimCSE+S1:delex+S2 19.3 32.0 36.0 19.4 32.1 36.7
quora-distilroberta+S1:delex+S2 20.0 32.8 36.9 19.1 31.4 35.9
MiniLM+S1:lex+S2 19.3 ↓ 31.9 ↓ 35.9 ↓ 18.9 ↓ 31.4 ↓ 35.8 ↓
all-mpnet+S1:lex+S2 19.6 ↓ 32.3 ↓ 36.5 18.8 ↓ 31.5 ↓ 35.8 ↓
SimCSE+S1:lex+S2 19.5 32.4 36.5 19.0 ↓ 31.4 ↓ 35.7 ↓
quora-distilroberta+S1:lex+S2 19.8 ↓ 32.6 ↓ 36.7 ↓ 18.3 ↓ 31.3 ↓ 35.9

Table 11: Response reranking models trained with the full fine-tuning pipeline with different input PLMs. ↓
denotes a lower performance compared to the counterpart model trained with delexicalised dialogues.

S2 Scoring↓ / Evaluation→ Classification-based Reranking Similarity-based Reranking

BLEU ROUGE METEOR BLEU ROUGE METEOR

Greedy 18.0 31.2 35.6 18.0 31.2 35.6
Similarity 19.3 32.3 36.3 19.6 32.0 36.5
BLEU 20.3 33.2 37.2 19.6 32.4 36.5
ROUGE 20.7 33.6 37.6 19.8 32.6 36.4
METEOR 18.2 33.4 40.0 17.2 32.5 39.1

Table 12: Reranking performance of the BERT+S1:delex+S2 model variant with different scoring functions
in Stage 2 for partitioning responses into the sets Rhigh and Rlow. For the models with ROUGE and
METEOR as scoring functions, we perform model selection based on the best ROUGE and METEOR
performance, respectively.

we only use the English partition of the whole
dataset, which contains 2,952/295/442 dialogues

for training/validation/testing. BiToD covers five do-
mains: attraction, hotel, restaurant, weather, and



13989

Context Size Classification-based Reranking Similarity-based Reranking

BLEU ROUGE METEOR BLEU ROUGE METEOR

1 16.7 29.8 34.5 16.7 29.7 34.5
2 19.2 32.4 36.7 18.8 32.3 37.2
3 19.3 32.3 36.3 19.6 32.0 36.5
4 19.5 32.4 36.6 19.2 31.5 35.7
5 19.4 32.3 36.2 19.6 32.1 36.2

Table 13: Reranking performance of the BERT+S1:delex+S2 variant with different context window sizes.
The context window size is the number of historical dialogue utterances for the reranking models. We
choose the same window size for fine-tuning at Stage 1, and note that the default context window size for
the MinTL model is 3.

metro. We use the provided baseline system im-
plemented with the mT5 model (Xue et al., 2021).
We follow the default training script, only reducing
the batch size due to hardware constraints (from 8
to 2).

We follow the setup from §4 for our reranking
experiments. Following the baseline system, we
only train our reranking model with lexicalised di-
alogues. Table 7 lists the chosen and search set
of our model hyperparameters. We searched the
k ∈ {10, 100, 500, 1000, 5000} for KNN regression
and the number of anchors n ∈ {5000, 10000}. In
addition, for BiToD we remove the downsampling
step in Stage 2, which led to better empirical re-
sults.

E. Human Evaluation

We invited six human participants to join our hu-
man evaluation experiments.11 Each annotator
answered 100 questions indicating preferences
over different model outputs. Those questions are
formalised as A/B tests. Recently, comparative
evaluation measurements have been shown to be
more robust in human evaluation (Fomicheva et al.,
2021). As demonstrated by Figure 10, given a dia-
logue context, the human evaluators are instructed
to select better responses from pairs of responses
generated from different models. We have com-
pared among outputs from our classification-based
models (quora-distilroberta), similarity-based mod-
els (BERT), and the greedy search baseline (best
performing models in Table 2). The ordering of the
tasks and models is completely randomised.

Table 14 shows full evaluation results. In addi-
tion, Table 15 shows some example dialogues in
the MultiWOZ test set, where the similarity-based

11The relevant departmental ethics committee has ap-
proved this experimental study. Our participants were
recruited within the university who volunteered to join
our experiment. They are students and academic staff
who are proficient in English. The consent is obtained
by signing a consent form.

reranked response is strongly preferred.
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Method A vs Method B # of A # of B % of A % of B Total # Fleiss’ Kappa

Classification-based vs Greedy 297 303 49.5 50.5 600 0.28
Similarity-based vs Greedy 347 253 *57.8 *42.2 600 0.26
Similarity-based vs Classification-based 335 265 *55.8 *44.2 600 0.16

Table 14: Number (#) and percentage (%) of preferred responses during human A/B testing. Fleiss’
Kappa is listed as a measure of inter-annotator agreement. * denotes statistical significance (2-sided
binomial test, p < .05).

Example 1

History

......
S: i would recommend christ ’s college . it is free to visit .
U: could i have their postcode please ?
S: christ ’s college ’s post code is cb23bu
U: thank you , that is all the information i need

Ground Truth S: you are welcome , please contact us if we can help you with anything else .

Greedy S: the postcode is [value_postcode] . is there anything else i can help you with ?

Classification-based S: you are welcome . have a great day!

Similarity-based S: ok, you are welcome . have a great day!

Example 2

History

U: i am planning a trip in cambridge
S: great ! is there a certain restaurant you are looking for ?
U: moderate price in the east . and i need the phone number , address , and food type
S: i have the curry prince which is indian food . would you like that 1 ?
U: yes . that would be fine . what is the address and phone number ?

Ground Truth S: the address is [value_address] and the phone number is [value_phone] . would you like me to make a reservation for you ?

Greedy S: [value_name] is an [value_food] restaurant in the [value_area] . their address is [value_address] . their phone number is [value_phone] .

Classification-based S: the address is [value_address] and the phone number is [value_phone] .

Similarity-based S: the address is [value_address], and the phone number is [value_phone] .

Example 3

History

......
U: thank you . can you also book a taxi for me ?
S: sure , i need to know destination and where you need picked up . i also need the time and number of people .
U: i also need a taxi from the church so i can get to the restaurant on time ."

Ground Truth S: i will work on getting that booked for you .

Greedy S: i can help with that . where will you be departing from ?

Classification-based S: your taxi has been booked . it will be a [value_car] and the contact number is [value_phone] . is there anything else i can help you with ?

Similarity-based S: your taxi is booked . it will be a [value_car] and the contact number is [value_phone] .

Example 4

History

......
S: tr8259 will arrive in cambridge at 10:23 . would you like me to book a ticket for you on that train ?
U: not yet . first i would like to get price and departure time .
S: it will depart at 07:40 and it will cost 60.08 pounds . do you need help with anything else ?
U: and i need a place to stay

Ground Truth S: okay there are [value_choice] options . do you have a price preference or area

Greedy S: i am sorry, but i don’t have any [value_type] that meet your criteria . would you like to try a different price range or area ?

Classification-based S: okay, what area would you like to stay in ?

Similarity-based S: i can help you with that . what area of town are you wanting to stay in ?

Table 15: Selected example dialogues and corresponding responses where all five evaluators prefer the
similarity-based reranked output compared to the greedy search output. S: system, U: user.
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Figure 10: Human evaluation: an example task for human-based A/B testing.
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