
LREC-COLING 2024, pages 1370–1382
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

1370

APOLLO: An Optimized Training Approach for Long-form
Numerical Reasoning

Jiashuo Sun1, Hang Zhang2, Chen Lin1∗, Xiangdong Su3,
Yeyun Gong4, Jian Guo2

1 School of Informatics, Xiamen University
2 IDEA Research, China 3 College of Computer Science, Inner Mongolia University

4 Microsoft Research Asia
gasolsun36@gmail.com, chenlin@xmu.edu.cn

Abstract
Long-form numerical reasoning aims to generate a reasoning program to calculate the answer for a given question.
Previous work followed a retriever-generator framework, where the retriever selects key facts from a long-form
document, and the generator generates a reasoning program based on the retrieved facts. However, they treated
all facts equally without considering the different contributions of facts with and without numerical information.
Furthermore, they ignored program consistency, leading to the wrong punishment of programs that differed from
the ground truth. In order to address these issues, we proposed APOLLO (An optimized training aPproach fOr
Long-form numericaL reasOning), to improve long-form numerical reasoning. APOLLO includes a number-aware
negative sampling strategy for the retriever to discriminate key numerical facts, and a consistency-based reinforce-
ment learning with target program augmentation for the generator to ultimately increase the execution accuracy.
Experimental results on the FinQA and ConvFinQA leaderboards verify the effectiveness of our proposed methods,
achieving the new state-of-the-art.

Keywords:Retrieval-augmented Generation, Long-form Numerical Reasoning, Question Answering

1. Introduction

Long-form numerical reasoning aims to generate
an executable program that answers a specific
question. Unlike conventional numerical reason-
ing tasks (MacKenzie, 2008), long-form numerical
operates on a long document (e.g., max 2, 679 to-
kens in FinQA (Chen et al., 2021b)). Recently,
various benchmarks, such as FinQA (Chen et al.,
2021b) and ConvFinQA (Chen et al., 2022b), have
been proposed to assess the ability of systems to
perform long-form numerical reasoning (Figure 1).
A typical framework to solve this task is

the retriever-generator question-answering frame-
work, which is firstly introduced by Chen et al.
(2021b). This framework consists of two stages:
training a retriever to identify relevant facts (i.e., a
textual fragment or a table column) from the doc-
uments and training a generator to generate the
executable programs with the retrieved facts. Re-
cently, the use of pre-trained masked language
models and ensemble techniques (Wang et al.,
2022b; Zhang et al., 2022b; Wang et al., 2022a)
has led to high accuracy in this task. Zhang and
Moshfeghi (2022) and Andrejczuk et al. (2022)
have designed a novel structure for better handling
long-form data. Li et al. (2023c) has proposed
a dynamic retriever-reranker-generator framework
to enhance each generation step by a dynamic

*Corresponding author, supported by the the Natural
Science Foundation of China (62372390,61972328).

reranking of retrieved facts. Li et al. (2023b) uses
large language models (LLMs) such as gpt-3.5-
turbo (Ouyang et al., 2022) and GPT-4 (OpenAI,
2023) as backbone model and zero-shot to infer-
ence.
However, existing studies ignore two critical as-

pects of long-form numerical reasoning. Firstly,
they neglect the importance of numerical facts and
treat all facts equally. Numerical facts are more im-
portant since they are the direct source of param-
eters in the generated program (as demonstrated
in Figure 1). Secondly, they disregard the issue of
program consistency, where programs can have
different expressions but produce the same re-
sults. As shown in Figure 1, if we use only the
gold program as the ground truth in supervised
training, themodel will wrongly penalize consistent
programs.
In this paper, we improve the performance of

the retriever-generator framework for long-form
numerical reasoning. We propose a number-
aware negative sampling approach for retriever
training to prioritize and differentiate between nu-
merical facts (Section 2.2). At the generator level,
we introduce target program augmentation and
consistency-based reinforcement learning to ex-
plore the space of consistent programs and im-
prove execution accuracy (Section 2.3).
The contributions of this work are as follows:

• We introduce a novel number-aware negative

1371

Figure 1: An example of Long-form Numerical
Reasoning. The parameters in gold program are
directly from the numerical fact (e.g., table column
2 and the textual fragment in green) instead of
the non-numerical fact (e.g., the textual fragment
in red). The answer can be equally generated
from the gold program and the consistent program.
Const_x, #i denotes constant x and the result of
the previous (i+ 1)th operator.

sampling, demonstrating the effectiveness of
this strategy during retriever training for long-
form numerical reasoning tasks.

• We propose consistency-based reinforcement
learning and target program augmentation in
our generator training to increase generated
program accuracy and further improve perfor-
mance.

• Our approaches outperform both prompting-
based and fine-tuning-based methods and
achieve the new state-of-the-art of 72.47 execu-
tion accuracy and 68.01 program accuracy on
FinQA leaderboard, 78.76 execution accuracy
and 77.19 program accuracy on ConvFinQA
leaderboard, respectively.

2. Methodology

In this section, we describe our approach in de-
tail. Similar to Chen et al. (2021b), we utilize the
retriever-generator framework and train each mod-
ule independently. However, our approach differs
from previous work (Zhang et al., 2022b; Zhang
andMoshfeghi, 2022) in twoways: (1) the retriever

Figure 2: The novel hard negative sampling strat-
egy in APOLLO. The facts for four methods are
sampled from the same document in Figure 1.
We compared our sampling method with three fre-
quently conventional methods: Random, BM25
and Self-mining.

is trained using number-aware negative sampling,
and (2) the generator is trained with target pro-
gram augmentation and subsequently refined us-
ing consistency-based reinforcement learning.

2.1. Task Definition
Given a question q and a long-form document
d consisting of textual and structured-table facts,
long-form numerical reasoning aims to generate a
program that can be executed to get the right an-
swer. Since the supporting document is too long to
handle, this task can be decomposed into two sub-
tasks: 1) retrieving the key facts from document d;
2) generating the program based on retrieved facts
and q. The objective can be written as:

P (G|q; d) = P (G|q, F ; d)P (F |q; d) (1)

where G = [w0, w1, ..., wl] donate the golden pro-
gram sequence consisting of l program tokens w,
F = {f1, f2, ..., fm} donates the key fact set where
each fact fi potentially contribute to answer the
question q. In a typical retriever-generator frame-
work (Chen et al., 2021b), the retriever learns to
maximize P (F |q; d), and the generator aims to
maximize P (G|q; d).

2.2. Retriever
The retriever is based on the sequence-pair clas-
sification model Chen et al. (2020). The question
q and each fact fi are concatenated to a BERT
(Devlin et al., 2019) transformer. A pooling layer
followed by a linear layer is adopted to obtain the
score sm for each fact:

sm = WT
l cls(Encoder(concat(q, fi))) (2)

1372

where fi ∈ F and cls() extracts BERT’s hidden
vector at token [CLS], Wl is a projection vector.

Number-aware Negative Sampling The score
sm is used to rank each fact. To compute the
sm accurately, the retriever is trained on both pos-
itive and negative facts. Previous works (Chen
et al., 2021b, 2022b; Wang et al., 2022a) randomly
sample negative facts in the given long-form doc-
ument. However, since numerical reasoning is di-
rectly related to numbers, intuitively, facts without
numbers are less contributing. As shown in Fig-
ure 1, the two green-highlighted facts are both nu-
merical facts, which are the primary source of pa-
rameters in the gold program. In contrast, the red-
highlighted non-numerical fact contributes less to
the gold program and answer. We expect the re-
triever to focus more on numerical facts.
In order to effectively train the retriever, we uti-

lize a number-aware negative sampling strategy,
which involves extracting numerical facts from
negative fact sets within long-form documents
and sampling a subset of these numerical facts.
We subsequently employ this subset as a set of
number-aware negative facts for training the re-
triever, thereby enhancing the retriever’s capacity
to differentiate numerical facts.
Figure 2 illustrates the differences between

number-aware negative sampling and conven-
tional negative sampling strategies, where the
fragments are directly from Figure 1. These con-
ventional strategies include:

• Random: Selecting a random fact from the cor-
pus which aligns with the approaches employed
in prior research (Chen et al., 2022b, 2021b).
However, this technique involves the sampling
of non-numerical negative facts, which does not
guarantee sufficient high-quality negative facts
(The Textual fragment two from Figure 1), con-
sequently leading to a reduction in retriever per-
formance.

• BM25: Selecting the most similar fact returned
by BM25 (Robertson et al., 2009) algorithm.
Although BM25 constructs negative facts that
have a high overlap with the characters in the
question (The Textual fragment three from Fig-
ure 1), they tend to contain few numbers and are
less supportive of generating programs.

• Self-mining: Selecting the highest ranking fact
retrieved by a well-trained retriever. However,
the self-mining strategy is both needs training
and prone to sampling duplicate negative facts
(e.g., from the same table column, the third col-
umn of the table from Figure 1), making the neg-
ative facts less informative in discriminating key
facts.

2.3. Generator
The typical generator consists of a pre-trained en-
coder and a decoder. First, the question and Top-
k retrieved facts are concatenated together to a
BERT encoder to produce token-level contextual-
ized embeddings:

Hc = Encoder(concat(q, Z)) (3)

where Z = {f1, f2, ..., fk} is the Top-K retrieved
facts set. Then, the decoder takes the embedding
Hz as input and decodes the numerical reasoning
program step by step:

P (wt|q) = Decoder(wt−1,H
c) (4)

where wt is generated token in step t.
Cross-entropy loss is adopted to supervise the

generator. In cross-entropy, the expected value
at each position is the corresponding token from
the ground-truth program. However, due to the
program consistency issue, the supervision is
sometimes misleading. For example, in Figure 1,
the ground truth is Multiply(4.7,const_1000), Di-
vide(3794,#0). Then, although Divide(3794, 4.7),
Divide(#0,const_1000) also obtains the correct
execution result, since it does not have an exact
string match, it will be wrongly penalized using
cross-entropy loss.
To accurately compute P (G|q; d) for all consis-

tent programs, we first expand the ground truth set
by target program augmentation. However, there
are an infinite amount of programs for calculating a
correct answer. This paper focuses on regular con-
struction forms for simplicity. Additionally, we also
utilize consistency-based reinforcement learning
to directly optimize for the expected correctness
of the execution result.

Target Program Augmentation In generating
the program, we have ten program computation
operators, including Add, Subtract, Multiply, Di-
vide, and so on. We adopt four target program
augmentation methods: Switch, Add & Subtract,
Multiply & Divide, and Multiply-Divide. These four
methods details are the following:
Switch For the Add and Multiply operators,

the two arguments are interchangeable. Heuris-
tically, for programs with these two operators in
the ground truth, we can swap these two param-
eters to increase the amount of data. Moreover, a
program that has n operators with addition or mul-
tiplication operators can create 2n − 1 more new
samples for training.
Add & Subtract For the same program, the re-

sult does not change after adding and subtracting
a random constant at the end.
Multiply & Divide Similar to the previous con-

struction, the result does not change after multi-
plying and dividing a random constant at the end.

1373

Figure 3: The overall architecture of retriever-generator framework with APOLLO. Fn and Fp denotes
negative facts and positive facts for training, respectively, and F1, F2, F3 represent the retrieved facts. We
use golden program in Figure 1 as an example. The left portion of the figure illustrates the retriever and
encoding process for the generator, while the right portion illustrates the complete process of generat-
ing the ”EOF” token, implementing target program augmentation, and consistency-based reinforcement
learning. The generator first utilizes cross-entropy to supervise the generation of predicted programs,
using both the golden program and programs generated through target program augmentation as ref-
erence. Then, APOLLO samples consistent program and executes with golden program to obtain the
execution and golden results, which are then used in Equation 6 to calculate the consistent reward. This
consistent reward is then employed to update all parameters.

Figure 4: The specific form of four target program
augmentation construction.

Multiply-Divide The same program multiplies
or divides a constant one does not change its re-
sult.
We use golden program in Figure 1 as an exam-

ple to illustrate the specific format of the four target
program augmentation demonstrated in Figure 4.

Consistency-based Reinforcement Learning
Instead of using teacher forcing at each step of
program generation, the next token is obtained by
sampling from the output distribution. At the end of
the generation procedure, the generated program
is executed and compared against the correct an-
swer to determine a reward. Let Gg denote the
program generated by the generator and GT de-
note the ground truth program corresponding to
the question. We define the reward R(Gg, GT) as

R (Gg, GT) =

 −2, U.E.P
−1, E.P but wrong answer
+1, E.P and right answer

(5)
where U.E.P stands for unexecutable program
and E.P stands for executable program. The re-
inforcement learning loss is the negative expected
reward over possible generated program LRL =
−Ew[R(Gg, GT)]. Inspired by Zhong et al. (2017),

1374

we derive the policy gradient for LRL:

∇LRL
Θ = −∇Θ (Ew∼pw

[R (Gg, GT)])

≈ −R (Gg, GT)∇Θ

∑
t

(log pw (wt; Θ)) (6)

where pw denotes the probability of choosing to-
ken wt during decoding time step t. Moreover, we
approximate the expected gradient using a single
Monte-Carlo sample w.
The training process with consistency-based re-

inforcement learning is shown in Figure 3. While
the golden program and the generated program
differ at the character-level, they are identical at
the consistency-level, leading to a positive reward.
However, if only used cross-entropy training, the
predicted program generated by decoding may be
incorrectly penalized.
The detailed training procedure of APOLLO is

shown in Algorithm 10:

Algorithm 1 APOLLO
Require: Retriever Rϕ; Generator Gθ; Training

data C.
1: Fneg ← Number-aware Negative Sampling.
2: T← Target Program Augmentation.
3: while Rϕ not converage do
4: Train Rϕ with Fneg.
5: end while
6: Train the warm-up Gθ with C.
7: while Gθ not converage do
8: Train Gθ with T.
9: Update parameters of Gθ with Eq 6.
10: end while

3. Experiment

In this section, we mainly introduce the datasets
we evaluate in our long-form numerical reasoning
task and the experimental effect of our work to
show the advantages of our methods from an ex-
perimental comparison view.

3.1. Datasets
We conduct evaluation experiments on two
datasets: FinQA (Chen et al., 2021b) and Con-
vFinQA (Chen et al., 2022b).

FinQA FinQA is a dataset of numerical reason-
ing over long-form financial data, containing 8, 281
financial reports, along with their QA pairs and an-
notated numerical reasoning processes by eleven
finance professionals based on the earnings re-
ports of S&p 500 companies (Zheng et al., 2021).
The data is released as training (6, 251), dev
(883), and test (1, 147) following a 75%/10%/15%

split. The long-form financial documents con-
tained heterogeneous data (structured and un-
structured data such as tables and texts) and com-
pounded many financial terms in questions, e.g.,
”Shares vested”, and ”Pre-tax earnings” which is
challenging in this long-form numerical reasoning
task.

ConvFinQA ConvFinQA (Conversational
Finance Question Answering) is a dataset of con-
versational long-form numerical reasoning over
financial data, containing 3, 892 conversations
consisting of 14, 115 questions and annotated
by expert annotators to compose the question
based on the simulated conversing flow. The
data has split into 3, 037/421/434 for train/dev/test
sets. However, the reasoning chains throughout
the conversation pose great challenges for the
models to learn when to refer to or discard the
conversation history and how to assemble the
reasoning path.

3.2. Baselines
We compare our model with several competi-
tive models based on prompting and fine-tuning.
Prompting-based methods: (1) BloombergGPT
(Wu et al., 2023), which is a 50-billion parame-
ter LLM that was purpose-built from scratch for fi-
nance. (2) GPT-3.5-turbo (Ouyang et al., 2022),
which is a 175B parameter LLM trained on diverse
textual data. (3) GPT-4 (OpenAI, 2023), which
is a large-scale multimodal model capable of ac-
cepting image and text inputs and producing text
output. (4) Program-of-Thought (Chen et al.,
2022a), which uses Codex (Chen et al., 2021a)
to generate text and programming language state-
ments, and finally an answer. The GPT-3.5-turbo
and GPT-4 settings are zero-shot, and the results
are directly from (Li et al., 2023b).
Fine-tuning-based methods: (1) FinQANet

(Chen et al., 2021b), which utilizes a retriever-
generator framework to generate programs based
on retrieved facts. (2) NeRd (Ran et al., 2019),
which employs a BERT-based pointer-generator
model to generate symbolic nested programs. (3)
Longformer (Beltagy et al., 2020), which inputs
the entire contents of long-form documents and
generates programs. (4) GPT-2 (Radford et al.,
2019), which uses the GPT-2 model with prompts
to generate programs. (5) T5 (Raffel et al., 2020),
which is similar to GPT-2 and utilizes the T5 model
with prompts to generate programs. (6) CellRe-
triever+UniLM (Wang et al., 2022a), which em-
ploys both cell and row retrievers to retrieve facts
and integrates multiple generators to generate pro-
grams. (7) ELASTIC * (Zhang and Moshfeghi,

*We find a serious data leak and we re-do their ex-

1375

Model FinQA(dev) FinQA(test) ConvFinQA(dev) ConvFinQA(test)
Exe Acc Prog Acc Exe Acc Prog Acc Exe Acc Prog Acc Exe Acc Prog Acc

Prompting
BloombergGPT (Wu et al., 2023) - - - - 43.41 - - -
GPT-3.5-turbo (Ouyang et al., 2022) - - 48.56 - 59.86 - - -
GPT-4 (OpenAI, 2023) - - 68.79 - 76.48 - - -
Program-of-Thought (Chen et al., 2022a) - - 68.10 - 67.30 - - -

Fine-tuning
GPT-2 (Radford et al., 2019) - - - - 59.12 57.52 58.19 57.00
T-5 (Raffel et al., 2020) - - - - 58.38 56.71 58.66 57.05
Retriever+NeRd (Ran et al., 2019) 47.53 45.37 48.57 46.76 - - - -
Longformer (Beltagy et al., 2020) 23.83 22.56 21.90 20.48 - - - -
FinQANet (Chen et al., 2021b) 61.22 58.05 61.24 58.86 68.32 67.87 68.90 68.24
ELASTIC (Zhang and Moshfeghi, 2022) 65.00 61.00 62.16 57.54 - - - -
DyRRen (Li et al., 2023c) 66.82 63.87 63.30 61.29 - - - -
TabT5* (Andrejczuk et al., 2022) - - 70.79 68.00 - - - -
CellRetriever+UniLM* (Wang et al., 2022a) - - 68.00 65.21 - - - -
APOLLO 69.70 65.91 67.99 65.60 76.47 74.14 76.00 74.56
- Ensemble model 72.91 70.83 71.07 68.94 78.46 75.91 78.76 77.19
General Crowd Performance - - 50.68 48.17 - - 46.90 45.52
Human Expert Performance - - 91.16 87.49 - - 89.44 86.34

Table 1: Performance comparisons on the dev set, test set of FinQA and dev set, private test set of
ConvFinQA. The pre-trained models utilized in rows 5 to 11 of the table are all RoBERTa-large, except
for TabT5 and CellRetriever+UniLM, which use T5 and UniLM (Dong et al., 2019) respectively. The
missing data in the table is due to the fact that many works do not report their results. * denotes the
results of ensemble models, since many works only report their ensemble model results.

2022), which utilizes an adaptive symbolic com-
piler to generate programs. (8) Ant Risk AI
(Zhang et al., 2022b), which develops models with
different specialized capabilities and fuses their
strengths to retrieve and generate programs. (9)
TabT5 (Andrejczuk et al., 2022), which uses the
T5 model pre-trained on Wikipedia tables to gen-
erate programs. (10) DyRRen (Li et al., 2023c),
which enhances each generation step through
a dynamic reranking of retrieved facts using a
retriever-reranker-generator framework. (11) Hu-
man performance, which includes both experts
and non-experts in the FinQA and ConvFinQA
datasets. The results are taken from the original
paper (Chen et al., 2021b, 2022b).

3.3. Evaluation Metrics
Retriever In retriever, we use Recall Top-3 and
Recall Top-5 to evaluate our model. This metric
evaluates the retrieval result by determining the
percentage of correct positive predictions out of all
positive predictions. However, since there may be
more than one positive prediction in each sample,
we assume that the first N predictions in the recall
top-N are all positive predictions.

Generator In generator, we use Execution Accu-
racy and Program Accuracy to evaluate our model.
Execution Accuracy evaluates the model by calcu-
lating the accuracy between the predicted program
result and the golden executable result. Program
Accuracy calculates the accuracy of the operators

periment based on their released code.

and operands between the predicted program and
the golden program.

3.4. Implementation Details

Our model is implemented using Pytorch (Paszke
et al., 2019) and Transformer (Wolf et al., 2020),
and then trained on a server with two A100 GPUs
of 40G memory. For retriever, we use RoBERTa-
large and DeBERTa-v3-large as the classifier. We
take the top-3 ranked facts as the retriever results.
Training epochs are set to 10 and batch size for all
datasets is 8. The initial learning rate is set to 9e-
6, and we schedule the learning rate to warm up
at the beginning and gradually decrease the learn-
ing rate during training. For generator, we adopt
RoBERTa-large as the encoder, the initial learning
rate is set to 1e-5 and then adopt learning rate
scheduler. For consistency-based reinforcement
learning, we adopt continual learning to continue
train based on our trained generator. For all mod-
els, the maximum sequence length is set to 512.
Besides, we use Adam as optimizer (Kingma and
Ba, 2015) to update the parameters of the models
and clip the gradient every iteration to prevent gra-
dient explosion as well as applying weight decay
to prevent over-fitting.

3.5. Main Results

Table 1 presents the generator performance of
APOLLO and baselines on FinQA and Con-
vFinQA. APOLLO achieves the highest scores
on both datasets, with 71.07% execution accu-
racy, 68.94% program accuracy on FinQA test

1376

Model Pre-training FinQA(dev) FinQA(test) ConvFinQA(dev)
R@3 R@5 R@3 R@5 R@3 R@5

FinQANet (Chen et al., 2021b) RoBERTa 91.30 93.89 89.82 93.22 88.95 92.74
FinQANet (Chen et al., 2021b) DeBERTa-v3 92.03 95.06 90.37 93.78 89.49 92.91
Ant Risk AI (Zhang et al., 2022b) RoBERTa 91.54 95.11 90.16 94.12 - -
- Ensemble model RoBERTa 92.63 95.89 90.77 94.33 - -
APOLLO RoBERTa 93.58 95.62 91.76 93.95 91.67 94.56
APOLLO DeBERTa-v3 94.22 96.08 92.37 94.49 92.18 95.01
- Ensemble model DeBERTa-v3 95.03 96.54 93.31 94.98 92.40 95.15

Table 2: The experimental results of retriever Recall Top-3 and Top-5 on the dev set and test set in FinQA
and only dev set on ConvFinQA. ConvFinQA only has private test set available currently which dos not
have ground truth for retrieved facts. All pre-training models are large-size models.

Type #N FinQA ConvFinQA
R@3 R@5 R@3 R@5

Random 3 90.37 94.07 89.49 92.91
BM25 3 88.20 92.32 88.21 91.40
Number-aware 3 92.02 94.19 92.18 95.01
Random 2 89.56 93.63 89.27 92.63
Random 4 89.87 93.74 89.15 92.80
Random 5 89.75 93.67 88.91 92.78
BM25 2 88.86 92.81 86.02 88.12
BM25 4 88.35 91.29 87.57 89.11
BM25 5 88.83 92.36 86.37 89.95
Self-mining & R 3 89.47 94.01 88.62 90.82
Self-mining & B 3 84.28 87.24 86.91 88.08
Self-mining & N 3 91.25 93.73 88.31 90.27
Number-aware 2 91.98 94.04 91.87 94.68
Number-aware 4 92.37 94.49 91.92 94.70
Number-aware 5 92.01 94.23 91.91 94.26

Table 3: The results of different negative sam-
pling strategies on test set in FinQA and dev set in
ConvFinQA. Self-mining & R, B, and N denote us-
ing Self-mining with Random, BM25, and Number-
aware negative sampling, respectively. #N: Ratio
of positive and negative samples for training.

Model FinQA ConvFinQA
Exe Acc Prog Acc Exe Acc Prog Acc

Generator 66.95 64.62 75.64 73.13
w/ Switch 67.07 64.62 75.78 73.13
w/ Add & Sub 67.25 64.95 75.82 73.54
w/ Mul & Divide 67.46 65.07 75.95 73.70
w/ Mul-Divide 66.95 64.62 75.64 73.13
w/ RL 67.36 65.14 76.14 73.61
w/ RL & TPA 67.99 65.60 76.47 74.14

Table 4: The performances of APOLLO with
consistency-based reinforcement learning and dif-
ferent target program augmentation methods. RL
& TPA denotes combine two approches, which per-
forms best on both datasets.

set and 78.46% execution accuracy, 75.91% pro-
gram accuracy on ConvFinQA dev set. Moreover,
APOLLO outperforms both prompting-based and
fine-tuning-based methods, achieving a new state-
of-the-art.
Table 2 presents the retriever performances of

APOLLO and baselines on FinQA and ConvFinQA.

Figure 5: Performance comparisons on the private
test set of the FinQA and ConvFinQA. We report
APOLLO, best competitor, Top 5 average and Top
10 average scores on both leaderboard. At the
time of submission (25 Nov. 2022), APOLLO has
achieved state-of-the-art in both leaderboards.

Overall, APOLLO achieves the highest scores on
both datasets. A comparison of APOLLO to the
baseline FinQANet demonstrates a notable advan-
tage, with 2% higher Recall 3 and 0.71% Recall
5 on FinQA, and 2.69% higher Recall 3, 2.1%
Recall 5 on ConvFinQA. However, some works
(Wang et al., 2022b,a; Li et al., 2023c) do not re-
port their retriever performance on dev or test sets
and do not release their source code, so they are
not included in the retriever results table. Addition-
ally, our single model has achieved a significant
improvement over previously published ensemble
models on both the dev and test sets.
In general, APOLLO achieves the best perfor-

mance on both FinQA and ConvFinQA leader-
board of the private test set, shown in Figure 5.

3.6. Ablation Study
APOLLO comprises three crucial components:
number-aware negative sampling in retriever train-
ing; consistency-based reinforcement learning

1377

and target program augmentation in generator
training. To gain a deeper understanding of our
model, we conduct an extensive ablation study to
investigate the impact of these three modules indi-
vidually.

Results of Number-aware Negative Training
Table 3 illustrates the performance of different
methods for constructing negative facts. The
results indicate that our number-aware negative
sampling strategy surpasses random, BM25 and
self-mining on both long-form numerical reasoning
datasets. Furthermore, we experimentally investi-
gate the impact of the ratio of positive to negative
facts on training. We conduct experiments with
positive to negative fact ratios of 3, 4 and 5, and
find that the ratio has a substantial influence on
the results. It demonstrates that the positive and
negative fact ratio has a great influence on training.
The best results for the randommethod, BM25 and
self-mining are obtained with ratio of 3, where the
ratio changes, the performance decreases.

Results of Consistency-based Reinforcement
Learning Training and Target Program Aug-
mentation Table 4 presents the results of utiliz-
ing consistency-based reinforcement learning and
target program augmentation in generator training.
Noteworthily, among the four target program aug-
mentation methods, the Multiply & Divide meth-
ods demonstrated the greatest enhancement on
both datasets. This is due to the operation distri-
butions, where Multiply, and Divide have the to-
tal distributions of 51.11%. These two operations
contribute largely to datasets, and there is also
a high percentage of simultaneous between mul-
tiplication and division in the program, leading to
more stable model convergence. However, the tar-
get program augmentation method in ConvFinQA
receives poor performance compared with FinQA,
which shows that many answers in ConvFinQA are
directly obtained from the original long-form docu-
ment, making the target program augmentation in-
effective. Additionally, the consistency-based rein-
forcement learning method also yielded significant
performance gains on both datasets. Furthermore,
the best results are obtained by combining the two
approaches, with target program augmentation fol-
lowed by reinforcement learning training.

4. Related Work

4.1. Retrieval Augmented Generation
A series of previous works explore a retrieve-
augmented paradigm for text generation (Amini
et al., 2019; Wei et al., 2022; Koncel-Kedziorski
et al., 2016; Wang et al., 2022b; Zhang et al.,

2022a, 2021). Popular datasets include NQ
(Kwiatkowski et al., 2019), TriviaQA (Joshi et al.,
2017), FEVER (Thorne et al., 2018), MS-MARCO
(Nguyen et al., 2016) and the benchmark KILT
(Petroni et al., 2021). The line of this paradigm is,
at first, the retriever retrieved amount of passages
based on the query (Zhang et al., 2023). Secondly,
the generator takes the retrieved passages as in-
put and generates an answer. It is noteworthy that
the retrieval-augmented generation approach fo-
cuses on retrieving passages from a vast repos-
itory of knowledge (typically Wikipedia) as exter-
nal information due to the limited input provided
(mostly only one query). For long-form numerical
reasoning tasks, the model needs to focus on re-
trieving the most critical facts directly from input.

4.2. Numerical Reasoning

MWP Numerical Reasoning MWP (Math Word
Problem) numerical reasoning is a challenging
task that has been introduced for years (Liu et al.,
2020; Sun et al., 2023; Huang et al., 2024). The
task calculates the answer to a short textual
question by generating an arithmetic expression.
There are several benchmark datasets, including
MathQA (Amini et al., 2019) and MaWPS (Koncel-
Kedziorski et al., 2016), which all focus on gen-
erating target programs for math or calculation
problems. The questions in MWP are described
in a controlled manner, exhibiting strong regular-
ity. Therefore, some previous works use template-
based (Wang et al., 2019) or tree-based (Jie et al.,
2022; Li et al., 2023a) methods. However, the
MWP numerical reasoning tasks are mostly gen-
eral and simple, which only contain one short
query and do not need external knowledge and are
far different from the tasks we explore in this paper.

Long-form Numerical Reasoning Long-form
numerical reasoning is more challenging than
MWP. The task is to generate the program for
a specific question based on retrieved facts from
a long-form document. Chen et al. (2021b)
and Chen et al. (2022b) have introduced FinQA
and ConvFinQA, which are complex question-
answering and conversational numerical reason-
ing tasks for financial reports, respectively. Since
long-from numerical reasoning is based on re-
trieval and generation, therefore some works im-
prove them separately. Wang et al. (2022b) has
used DeBERTa (He et al., 2023) to pre-training on
financial data. Zhang et al. (2022b) has proposed
an ensemble approach by developing models with
different specialized capabilities and fusing their
strengths. Wang et al. (2022a) has devised a
cell retriever module to retrieve gold cells to avoid
bringing unrelated cells to the generator. Zhang

1378

and Moshfeghi (2022) has utilized an adaptive
symbolic compiler to generate programs. How-
ever, previous works overlook the significance of
numerical facts and program consistency.

5. Conclusion

We propose an optimized training approach,
APOLLO, for long-form numerical reasoning.
APOLLO enhances the retriever with number-
aware negative sampling strategy to better clas-
sify numerical facts and the generator with
consistency-based reinforcement learning as well
as target program augmentation to generate
more accurate programs. As a result, APOLLO
achieves new state-of-the-art on both FinQA and
ConvFinQA leaderboards, which outperforms all
prompting-based and fine-tuning-based methods.

6. References

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. 2019. Mathqa: Towards interpretable
math word problem solving with operation-
based formalisms. In Proceedings of the 2019
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pages
2357–2367. Association for Computational Lin-
guistics.

Ewa Andrejczuk, Julian Martin Eisenschlos,
Francesco Piccinno, Syrine Krichene, and
Yasemin Altun. 2022. Table-to-text generation
and pre-training with tabt5. In Findings of
the Association for Computational Linguistics:
EMNLP 2022, Abu Dhabi, United Arab Emi-
rates, December 7-11, 2022, pages 6758–6766.
Association for Computational Linguistics.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document trans-
former. CoRR, abs/2004.05150.

Dongmei Chen, Sheng Zhang, Xin Zhang, and
Kaijing Yang. 2020. Cross-lingual passage re-
ranking with alignment augmented multilingual
BERT. IEEE Access, 8:213232–213243.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy

Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes,
Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang,
Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, An-
drew N. Carr, Jan Leike, Josh Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew
Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. 2021a. Evaluating large lan-
guage models trained on code.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022a. Program of thoughts
prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. CoRR,
abs/2211.12588.

Zhiyu Chen, Wenhu Chen, Charese Smiley,
Sameena Shah, Iana Borova, Dylan Langdon,
Reema Moussa, Matt Beane, Ting-Hao Huang,
Bryan R. Routledge, and William Yang Wang.
2021b. Finqa: A dataset of numerical reason-
ing over financial data. In Proceedings of the
2021 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2021, Vir-
tual Event / Punta Cana, Dominican Republic,
7-11 November, 2021, pages 3697–3711. Asso-
ciation for Computational Linguistics.

Zhiyu Chen, Shiyang Li, Charese Smiley, Zhiqiang
Ma, Sameena Shah, and William Yang Wang.
2022b. Convfinqa: Exploring the chain of
numerical reasoning in conversational finance
question answering. In Proceedings of the
2022 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11,
2022, pages 6279–6292. Association for Com-
putational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pages
4171–4186. Association for Computational Lin-
guistics.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, YuWang, JianfengGao, Ming Zhou,

https://doi.org/10.18653/V1/N19-1245
https://doi.org/10.18653/V1/N19-1245
https://doi.org/10.18653/V1/N19-1245
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.503
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.503
http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2004.05150
https://doi.org/10.1109/ACCESS.2020.3041605
https://doi.org/10.1109/ACCESS.2020.3041605
https://doi.org/10.1109/ACCESS.2020.3041605
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.300
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.300
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.421
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.421
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.421
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423

1379

and Hsiao-Wuen Hon. 2019. Unified language
model pre-training for natural language under-
standing and generation. Advances in Neural
Information Processing Systems, 32.

Pengcheng He, Jianfeng Gao, and Weizhu
Chen. 2023. Debertav3: Improving deberta
using electra-style pre-training with gradient-
disentangled embedding sharing. In The
Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

Rikui Huang, Wei Wei, Xiaoye Qu, Wenfeng Xie,
Xianling Mao, and Dangyang Chen. 2024. Joint
multi-facts reasoning network for complex tem-
poral question answering over knowledge graph.
arXiv preprint arXiv:2401.02212.

Zhanming Jie, Jierui Li, and Wei Lu. 2022. Learn-
ing to reason deductively: Math word problem
solving as complex relation extraction. In Pro-
ceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 5944–5955. Associa-
tion for Computational Linguistics.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and
Luke Zettlemoyer. 2017. Triviaqa: A large
scale distantly supervised challenge dataset for
reading comprehension. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 1: Long Pa-
pers, pages 1601–1611. Association for Compu-
tational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In 3rd In-
ternational Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini,
Nate Kushman, and Hannaneh Hajishirzi. 2016.
Mawps: A math word problem repository. In Pro-
ceedings of the 2016 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies, pages 1152–1157.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia
Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob
Devlin, Kenton Lee, et al. 2019. Natural ques-
tions: a benchmark for question answering re-
search. Transactions of the Association for Com-
putational Linguistics, 7:453–466.

Wendi Li, Wei Wei, Xiaoye Qu, Xian-Ling Mao,
Ye Yuan, Wenfeng Xie, and Dangyang Chen.

2023a. Trea: Tree-structure reasoning schema
for conversational recommendation. In Proceed-
ings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1:
Long Papers), pages 2970–2982.

Xianzhi Li, Samuel Chan, Xiaodan Zhu, Yulong
Pei, Zhiqiang Ma, Xiaomo Liu, and Sameena
Shah. 2023b. Are chatgpt and GPT-4 general-
purpose solvers for financial text analytics? A
study on several typical tasks. In Proceed-
ings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing: EMNLP
2023 - Industry Track, Singapore, December 6-
10, 2023, pages 408–422. Association for Com-
putational Linguistics.

Xiao Li, Yin Zhu, Sichen Liu, Jiangzhou Ju,
Yuzhong Qu, and Gong Cheng. 2023c. Dyrren:
A dynamic retriever-reranker-generator model
for numerical reasoning over tabular and textual
data. In Thirty-Seventh AAAI Conference on Ar-
tificial Intelligence, AAAI 2023, Thirty-Fifth Con-
ference on Innovative Applications of Artificial In-
telligence, IAAI 2023, Thirteenth Symposium on
Educational Advances in Artificial Intelligence,
EAAI 2023, Washington, DC, USA, February 7-
14, 2023, pages 13139–13147. AAAI Press.

Daizong Liu, Xiaoye Qu, Jianfeng Dong, and Pan
Zhou. 2020. Reasoning step-by-step: Tem-
poral sentence localization in videos via deep
rectification-modulation network. In Proceed-
ings of the 28th International Conference on
Computational Linguistics, pages 1841–1851.

Donald MacKenzie. 2008. An engine, not a cam-
era: How financial models shape markets. Mit
Press.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng
Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. 2016. Ms marco: A human gener-
ated machine reading comprehension dataset.
In CoCo@ NIPs.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo
Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina
Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul F. Chris-
tiano, Jan Leike, and Ryan Lowe. 2022. Train-
ing language models to follow instructions with
human feedback. In NeurIPS.

Adam Paszke, Sam Gross, Francisco Massa,
Adam Lerer, James Bradbury, Gregory Chanan,

https://openreview.net/pdf?id=sE7-XhLxHA
https://openreview.net/pdf?id=sE7-XhLxHA
https://openreview.net/pdf?id=sE7-XhLxHA
https://doi.org/10.18653/V1/2022.ACL-LONG.410
https://doi.org/10.18653/V1/2022.ACL-LONG.410
https://doi.org/10.18653/V1/2022.ACL-LONG.410
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.18653/V1/P17-1147
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://aclanthology.org/2023.emnlp-industry.39
https://aclanthology.org/2023.emnlp-industry.39
https://aclanthology.org/2023.emnlp-industry.39
https://doi.org/10.1609/AAAI.V37I11.26543
https://doi.org/10.1609/AAAI.V37I11.26543
https://doi.org/10.1609/AAAI.V37I11.26543
https://doi.org/10.1609/AAAI.V37I11.26543
https://doi.org/10.48550/arXiv.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html

1380

Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. 2019. Pytorch: An imper-
ative style, high-performance deep learning li-
brary. Advances in neural information process-
ing systems, 32.

Fabio Petroni, Aleksandra Piktus, Angela Fan,
Patrick S. H. Lewis, Majid Yazdani, Nicola De
Cao, James Thorne, Yacine Jernite, Vladimir
Karpukhin, Jean Maillard, Vassilis Plachouras,
Tim Rocktäschel, and Sebastian Riedel. 2021.
KILT: a benchmark for knowledge intensive lan-
guage tasks. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2021, On-
line, June 6-11, 2021, pages 2523–2544. Asso-
ciation for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David
Luan, Dario Amodei, Ilya Sutskever, et al. 2019.
Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, Peter J Liu, et al. 2020.
Exploring the limits of transfer learning with a
unified text-to-text transformer. J. Mach. Learn.
Res., 21(140):1–67.

Qiu Ran, Yankai Lin, Peng Li, Jie Zhou, and
Zhiyuan Liu. 2019. Numnet: Machine reading
comprehension with numerical reasoning. In
Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing, EMNLP-IJCNLP
2019, Hong Kong, China, November 3-7, 2019,
pages 2474–2484. Association for Computa-
tional Linguistics.

Stephen Robertson, Hugo Zaragoza, et al. 2009.
The probabilistic relevance framework: Bm25
and beyond. Foundations and Trends® in Infor-
mation Retrieval, 3(4):333–389.

Jiashuo Sun, Yi Luo, Yeyun Gong, Chen Lin, Ye-
long Shen, Jian Guo, and Nan Duan. 2023. En-
hancing chain-of-thoughts prompting with itera-
tive bootstrapping in large language models.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and verification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT
2018, New Orleans, Louisiana, USA, June 1-6,
2018, Volume 1 (Long Papers), pages 809–819.
Association for Computational Linguistics.

Bin Wang, Jiangzhou Ju, Yunlin Mao, Xin-Yu Dai,
Shujian Huang, and Jiajun Chen. 2022a. A nu-
merical reasoning question answering system
with fine-grained retriever and the ensemble of
multiple generators for finqa. arXiv preprint
arXiv:2206.08506.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing
Xu, Lianli Gao, Bing Tian Dai, and Heng Tao
Shen. 2019. Template-based math word prob-
lem solvers with recursive neural networks. In
Proceedings of the AAAI Conference on Artifi-
cial Intelligence.

Yanbo J Wang, Yuming Li, Hui Qin, Yuhang Guan,
and Sheng Chen. 2022b. A novel deberta-
based model for financial question answering
task. arXiv preprint arXiv:2207.05875.

Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. 2022. Chain-
of-thought prompting elicits reasoning in large
language models. In Advances in Neural In-
formation Processing Systems 35: Annual Con-
ference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

ThomasWolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, et al. 2020. Transformers: State-
of-the-art natural language processing. In Pro-
ceedings of the 2020 conference on empirical
methods in natural language processing: sys-
tem demonstrations, pages 38–45.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravol-
ski, Mark Dredze, Sebastian Gehrmann, Prab-
hanjan Kambadur, David S. Rosenberg, and
Gideon Mann. 2023. Bloomberggpt: A
large language model for finance. CoRR,
abs/2303.17564.

Hang Zhang, Yeyun Gong, Xingwei He, Dayiheng
Liu, Daya Guo, Jiancheng Lv, and Jian Guo.
2023. Noisy pair corrector for dense retrieval.
arXiv preprint arXiv:2311.03798.

Hang Zhang, Yeyun Gong, Yelong Shen,
Weisheng Li, Jiancheng Lv, Nan Duan, and
Weizhu Chen. 2021. Poolingformer: Long
document modeling with pooling attention. In
International Conference on Machine Learning,
pages 12437–12446. PMLR.

Hang Zhang, Yeyun Gong, Yelong Shen,
Jiancheng Lv, Nan Duan, and Weizhu Chen.
2022a. Adversarial retriever-ranker for dense
text retrieval. In The Tenth International

https://doi.org/10.18653/V1/2021.NAACL-MAIN.200
https://doi.org/10.18653/V1/2021.NAACL-MAIN.200
https://doi.org/10.18653/V1/D19-1251
https://doi.org/10.18653/V1/D19-1251
http://arxiv.org/abs/2304.11657
http://arxiv.org/abs/2304.11657
http://arxiv.org/abs/2304.11657
https://doi.org/10.18653/V1/N18-1074
https://doi.org/10.18653/V1/N18-1074
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2303.17564
https://doi.org/10.48550/arXiv.2303.17564
https://openreview.net/forum?id=MR7XubKUFB
https://openreview.net/forum?id=MR7XubKUFB

1381

Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Jiaxin Zhang and Yashar Moshfeghi. 2022. ELAS-
TIC: numerical reasoning with adaptive sym-
bolic compiler. In Advances in Neural Infor-
mation Processing Systems 35: Annual Con-
ference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Renhui Zhang, Youwei Zhang, and Yao Yu. 2022b.
A robustly optimized long text to math models
for numerical reasoning on finqa. arXiv preprint
arXiv:2207.06490.

Xinyi Zheng, Douglas Burdick, Lucian Popa,
Xu Zhong, and Nancy Xin Ru Wang. 2021.
Global table extractor (gte): A framework for
joint table identification and cell structure recog-
nition using visual context. In Proceedings of the
IEEE/CVF winter conference on applications of
computer vision, pages 697–706.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement
learning. CoRR, abs/1709.00103.

A. Appendix: Operator Definition

Following by Chen et al. (2021b), we define all the
operations in Table 5, which illustrates the specific
operators and their operands. The first four op-
erators account for the largest distribution (about
94.29%) of the entire dataset. The operation divi-
sion has the highest frequency, as calculating ra-
tios are common in financial analysis. Moreover,
none is a placeholder indicating that does not in-
put another operand.

B. Appendix: Examples of Target
Program Augmentation

In Section 2.3, we give a few examples of specific
construction forms of target program augmenta-
tion, and to demonstrate that our method can gen-
erate programs more diversity.

Specific Constructed Form We take a slightly
more complex program as an example to explain
exactly howwe build target program augmentation.
The four target program augmentation constructed
forms are illustrated in Table 6.

Diversity of Program Generation Most of the
models trained by cross-entropy which can only
generate programs with fixed templates, but since
both FinQA and ConvFinQA are from real finance
domain, our target program augmentation and re-
inforcement learning training is necessary for gen-
erate programs with more flexible. We trained sev-
eral models with different hyper-parameters using
our method and compared their outputs to ground-
truth. The results are shown in Table 7, which in-
dicates that our model doesn’t rely on templates,
but generates more diverse and consistent identi-
cal programs.

http://papers.nips.cc/paper_files/paper/2022/hash/522ef98b1e52f5918e5abc868651175d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/522ef98b1e52f5918e5abc868651175d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/522ef98b1e52f5918e5abc868651175d-Abstract-Conference.html
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103

1382

Name Operands Output Description
Add (number1,number2) number add two numbers
Subtract (number1,number2) number substract two numbers
Multiply (number1,number2) number multiply two numbers
Divide (number1,number2) number divide two numbers
Exp (number1,number2) number calculate exponent:
Greater (number1,number2) bool return number1>number2
Table-sum (table-header,none) number the summation of one table row
Table-average (table-header,none) number the average of one table row
Table-max (table-header,none) number the maximum number of one table row
Table-min (table-header,none) number the minimum number of one table row

Table 5: The operators and operands defined by (Chen et al., 2021b)

Methods Programs
Original Add(101, 96), Multiply(Const_10, 105), Add(#0, #1), Divide(#2, Const_3)

Switch

Add(96, 101), Multiply(Const_10, 105), Add(#0, #1), Divide(#2, Const_3)
Add(101, 96), Multiply(105, Const_10), Add(#0, #1), Divide(#2, Const_3)
Add(96, 101), Multiply(105, Const_10), Add(#0, #1), Divide(#2, Const_3)
Add(101, 96), Multiply(Const_10, 105), Add(#1, #0), Divide(#2, Const_3)
Add(96, 101), Multiply(Const_10, 105), Add(#1, #0), Divide(#2, Const_3)
Add(101, 96), Multiply(105, Const_10), Add(#1, #0), Divide(#2, Const_3)
Add(96, 101), Multiply(105, Const_10), Add(#1, #0), Divide(#2, Const_3)

Add & Subtract Add(101, 96), Multiply(Const_10, 105), Add(#0, #1), Divide(#2, Const_3), Add(#3, Const_7), Subtract(#4, Const_7)
Multiply & Divide Add(101, 96), Multiply(Const_10, 105), Add(#0, #1), Divide(#2, Const_3), Multiply(#3, Const_4), Divide(#4, Const_4)
Multiply-Divide Add(101, 96), Multiply(Const_10, 105), Add(#0, #1), Divide(#2, Const_3), Multiply(#3, Const_1)

Table 6: The specific form of four Target program augmentation construction.

Programs
Multiply(4.7, 1000), Divide(3794, #0) (Original)
Divide(3794, 4.7), Divide(#0, 1000) (RL)
Multiply(1000, 4.7), Divide(3794, #0) (Switch)
Multiply(4.7, 1000), Divide(3794, #0), Add(#1, Const_6), Subtract(#2, Const_6) (Add & Subtract)
Multiply(4.7, 1000), Divide(3794, #0), Multiply(#2, Const_4), Divide(#3, Const_4) (Multiply & Divide)
Multiply(4.7, 1000), Divide(3794, #0), Multiply(#1, Const_1) (Multiply-Divide)

Table 7: Experiment of the programs generated by our model after reinforcement learning and target
program augmentation training. Our model can generate programs with more diversity.

	Introduction
	Methodology
	Task Definition
	Retriever
	Generator

	Experiment
	Datasets
	Baselines
	Evaluation Metrics
	Implementation Details
	Main Results
	Ablation Study

	Related Work
	Retrieval Augmented Generation
	Numerical Reasoning

	Conclusion
	References
	Appendix: Operator Definition
	Appendix: Examples of Target Program Augmentation

