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Abstract
Multi-choice questions (MCQ) are a common method for assessing the world knowledge of large language
models (LLMs), demonstrated by benchmarks such as MMLU and C-Eval. However, recent findings indicate
that even top-tier LLMs, such as ChatGPT and GPT4, might display inconsistencies when faced with slightly
varied inputs. This raises concerns about the credibility of MCQ-based evaluations. To address this issue, we
introduced three knowledge-equivalent question variants: option position shuffle, option label replacement, and
conversion to a True/False format. We rigorously tested a range of LLMs, varying in model size (from 6B to 70B)
and types—pretrained language model (PLM), supervised fine-tuning (SFT), and reinforcement learning from
human feedback (RLHF). Our findings from MMLU and C-Eval revealed that accuracy for individual questions lacks
robustness, particularly in smaller models (<30B) and PLMs. Consequently, we advocate that consistent accuracy
may serve as a more reliable metric for evaluating and ranking LLMs.
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1. Introduction

The capacity of world knowledge is an important
indicator for evaluating the performance level of
Large Language Models (LLMs) (Brown et al.,
2020; Touvron et al., 2023). One widely adopted ap-
proach for this is the multi-choice questions (MCQ)
format, whose typical benchmark representatives
are MMLU (Hendrycks et al., 2020), AGIEval(Zhong
et al., 2023), and C-Eval(Huang et al., 2023), etc.
Using this method, an LLM is presented with a
question and four potential answers. If the LLM
chooses the correct option, it is typically interpreted
as the model having the requisite knowledge.

However, recent studies across various contexts
reveal robustness issues in LLMs. They produce in-
consistent answers to altered input. This is evident
in models like ChatGPT (Jang and Lukasiewicz,
2023; Ohmer et al., 2023) and GPT-4 (Zheng et al.,
2023). Consequently, even if an LLM provides a
correct answer in the MCQ paradigm, it’s uncertain
whether the model grasps the content or is swayed
by biases (Chang et al., 2023). See Figure 1 for an
example.

This work spotlights the inconsistency inherent
in the MCQ evaluation framework. Given an orig-
inal question with its corresponding options, we
propose three knowledge-equivalent question vari-
ants by 1) shuffling the option positions, 2) alter-
ing option labels, and 3) transforming the multi-
choice question into a judgment question. We
prompt the LLM to answer these variants, employ-

Figure 1: Llama2 13b generates an inconsistent
answer by shuffling option positions.

ing consistent accuracy as our evaluation metric.
The goal is to discern whether the model’s cor-
rect responses stem from genuine knowledge or
other factors. Moreover, we comprehensively an-
alyze various LLMs, considering their parameter
sizes (ranging from 6 billion to 70 billion) and model
types (including PLM, SFT, and RLHF). Results
from the MMLU and C-Eval benchmarks show that
smaller models and those not enhanced with SFT
or RLHF are more prone to inconsistencies in their
MCQ evaluations. Notably, platypus2-13b, when
assessed in the MMLU task, obtains an accuracy
score of 57.1 for the original MCQ. This sharply
contrasts with its dip to 37.6 when evaluated for
consistency with our tailored variants, leading to a
pronounced shift in its comparative ranking. These
findings suggest that consistent accuracy could
serve as a more reliable metric for evaluating large
language models using MCQs.

In summary, our contributions are as follows:
1. Based on MCQ evaluation, we construct
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three types of easily implementable and re-
producible question variants from the perspec-
tives of option placement, option symbols, and
question format, making the issue of consis-
tency more quantifiable and observable.

2. Our work represents a more comprehensive
analysis and evaluation effort, We conducted
a more extensive analysis using our proposed
consistency metric across three types of mod-
els - PLMs, SFTs, and RLHF - and various
scales.

3. We analyzed the factors influencing model con-
sistency and explored the effects of consis-
tency, such as its impact on rankings in leader-
boards.

2. Related work

LLM evaluation. With the widespread adoption
of LLMs, evaluating their capabilities has become
especially crucial. MCQ Evaluation, as an assess-
ment method, is preferred due to its definitive an-
swers and straightforward evaluation process. Nu-
merous MCQ benchmarks have been introduced to
assess LLMs’ capabilities in various areas: world
knowledge (e.g., MMLU(Hendrycks et al., 2020)
and C-Eval(Huang et al., 2023)), reasoning (e.g.,
GSM(Cobbe et al., 2021) and BBH(Suzgun et al.,
2022)), text toxicity (e.g., Toxigen(Hartvigsen et al.,
2022)), and truthfulness (e.g., TruthfulQA(Lin et al.,
2022)). Among these, our work specifically em-
phasizes MMLU and C-Eval with the multi-choice
question format due to its streamlined nature com-
pared to free-generation evaluation tasks.

Self-consistency issue. An ideal characteristic
of a proficient language understanding model is
consistency, the ability to make uniform decisions
across semantically equivalent contexts, reflecting
its capacity for generalization and comprehension
in the face of semantic variations. But numerous
studies have found inconsistency problem in LLMs
during generation. Elazar and colleagues (Elazar
et al., 2021) observed inconsistency in masked
LLMs when altering sentence structure without
changing meaning and masking the same words.
This issue isn’t confined to masked LLMs, as mod-
els like ChatGPT also face similar problems (Jang
and Lukasiewicz, 2023; Ohmer et al., 2023). Differ-
ently, this work utilized ChatGPT’s robust genera-
tive capabilities to create semantically consistent
sentences for comparison with the original sen-
tences. However, it was found that even when
synonymous sentences were generated by Chat-
GPT itself, its decisions would often change. Even
powerful models like GPT-4 exhibit inconsistency
issues. When tasked with evaluating the quality of

Figure 2: Three proposed methods for constructing
knowledge-equivalent variants of a multi-choice
question.

two sentences, GPT-4 sometimes show a prefer-
ence for the sentence placed in the first position,
regardless of which sentence is positioned there
(Zheng et al., 2023).

Unlike previous studies, we introduced three con-
sistency scenarios that include easily measurable
consistency metrics, allowing for a broader analy-
sis across various models. Considering the size
of parameters and model types, we gained a more
detailed understanding of the inconsistency issue.

3. Approach

To assess the self-consistency of LLMs in multi-
choice questions, we introduce three strate-
gies for crafting equivalent question variants,
as illustrated in Figure 2. For clarity, con-
sider the choices "A. Venus; B. Mars; C.
Jupiter; D. Saturn". Here, ”A, B, C, D” are
defined as the ’option labels’, while the associated
responses, such as ”Venus” and ”Mars”, are termed
the ’option content’.

(1) Option Position Shuffle. Previous research
by (Zheng et al., 2023) indicates a tendency in
GPT-4 to favor the first answer when evaluating the
quality of two responses. We shuffle the order of
choices for each multi-choice question to mitigate
potential positional biases. It’s important to note
that only the option content is altered, leaving the
associated labels intact. In the implementation,
we assign a distinct random seed for each given
question separately to guarantee the same position
change across evaluations of different models.

(2) Option Label Replacement. Given the au-
toregressive generation property of LLMs, the op-
tion label precedes the option content. Yet, it re-
mains uncertain whether different option labels in-
fluence model behavior. To examine this, we re-
place common labels like ”A, B, C, D” with uncom-
mon emoji symbols. Compared to shuffle option
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positions, this method concentrates more on the
effect of option labels.

(3) True/False Question Format. While the
aforementioned methodologies focus on the pre-
sentation of choices, we also explore the ques-
tion’s structure. We posit that if a model genuinely
possesses the knowledge, its response accuracy
shouldn’t waver based on the question format. With
this in mind, we convert the standard multi-choice
format into individual True/False judgment ques-
tions.

(4) Consistency Accuracy Metric Given the
above three question variants, we use the
consistency-accuracy (CA) as the metric, as de-
fined by:

CAV =
1
N

N∑
i=1

C(i)
0

∏
v∈V

C(i)
v , (1)

where V ⊆ [1, 2, 3] denoting the use of which pro-
posed question variants. Ci

0 ∈ [0, 1] indicates
whether the model answer correct in the original
i-th question, which C

(i)
v denotes the result of v-th

question variant. When V = ∅, CAV denotes the
standard accuracy. In contrast, V = [1, 2, 3] de-
notes the most strict accuracy that only the model
gives correct answers in all question variants, it is
considered to own the knowledge truly.

4. Experimental results

While the issue of self-consistency has been ex-
plored in previous research, the specific factors
influencing this for LLMs remain inadequately un-
derstood. We suppose that the model’s param-
eter size and the type of model training—be it a
pretrained language model (PLM), supervised fine-
tuning model (SFT), or reinforcement learning from
human feedback (RLHF)—may be linked to this
issue.

4.1. Setup
To validate it, we run experiments using two pop-
ular benchmarks for assessing world knowledge:
MMLU for English and C-Eval for Chinese. Our
study includes a range of widely recognized open-
source LLM models encompassing various sizes
and types. These models are LLaMA(Touvron
et al.), LLaMA-2-chat(Touvron et al., 2023), Platy-
pus2(Lee et al., 2023; Hu et al., 2022), Orca-
mini-v3(Mukherjee et al., 2023), Vicuna(Zheng
et al., 2023), ChatGLM2(Zeng et al., 2022), Wiz-
ardLM(Xu et al., 2023), Qwen(Bai et al., 2023), and
Baichuan(Baichuan, 2023).

For inference, our approach aligns with the
methodology presented in (Liang et al., 2022), us-
ing a 5-shot in-context learning setting. The models
perform a greedy search across the entire vocab-
ulary, limiting the max-new-tokens parameter to 1.
We utilize vLLM for more efficient inference (Kwon
et al., 2023).

For option position shuffle, there’s no need to
adjust the few-shot prompt; just rearrange the op-
tions for the question being tested. For option label
replacement, we need to synchronize the update of
option symbols [A, B, C, D] in every shot within the
few-shot prompt to emojis or other symbols. For
question format change, each shot in the few-shot
prompt needs to be formatted together, with correct
or incorrect options randomly selected and labeled
correct/incorrect accordingly, then we select the
correct option of the question being tested to ask
the model whether it is correct or incorrect. The
prompt examples we used in experiments can be
seen in Appendices.

4.2. Results and analysis
Table 1 presents the accuracy and consistent ac-
curacy results for various knowledge-equivalent
questions.

4.2.1. Results of accuracy

Primarily, the accuracy for most models tends to
decrease when altering the question format (as
seen in ACC1 and ACC2) compared to the original
multi-choice questions. The decline in accuracy
is more pronounced for option label replacement
than for position shuffle.

Specifically, Baichuan2 13b on the C-Eval task
records ACC and ACC1 values of 59.1 and 57.7,
respectively. However, ACC2 drops sharply to 41.8,
marking a 15.9 point difference from ACC1. On
the other hand, ACC3 for binary questions varies
considerably and doesn’t align closely with ACC.

These findings underscore the sensitivity of
LLMs to input variations, suggesting that accuracy
derived from a single-question format may not com-
prehensively reflect the model’s knowledge capac-
ity.

4.2.2. Results of consistent accuracy

Consider CA[1,2] as an example in terms of accu-
racy consistency. Two distinct patterns emerge:

Firstly, consistency’s markedly improved as pa-
rameter size increases. For context, the CA[1,2] for
LLaMA2 models with 7B, 13B, and 70B parame-
ters are 19.4, 30.3, and 54.2, respectively. This
behavior is echoed in SFT models (e.g., platypus2
and orca-mini-v3) and RLHF models like llama2-
chat. Additionally, on average, SFT and RLHF mod-
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Type Model Size ACC ACC1 CA[1] ACC2 CA[2] ACC3 CA[3] CA[1,2] CA[1,2,3]

Experimental results on MMLU task
PL

M
MPT 7b 30.7 29.3 10.8 29.7 13.7 null null 4.9 null

30b 47.5 46.6 33.6 37.7 26.6 null null 21.2 null

Falcon 7b 26.4 25.0 7 25.1 8.1 10.4 11.3 2.0 0.2
40b 50.0 48.1 36.1 35.7 22.1 24.1 16.8 17.1 7.8

Llama

7b 35.2 33.5 15.8 27.4 10.5 34.6 15.0 5.2 2.9
13b 46.9 46.3 31.8 34.8 21.6 40.9 23.5 16.7 10.4
30b 58.5 56.2 45.3 49.4 39.2 76.7 48.6 32.8 29.1
65b 63.6 61.2 51.5 58.6 51.2 65.4 48.0 43.9 35.3

Llama2
7b 45.8 44.5 30.6 38.4 25.5 56.1 30.3 19.4 13.8

13b 55.7 53.1 41.7 46.5 36.6 33.8 25.2 30.3 17.9
70b 69.1 67.9 59.9 67.0 60.1 82.8 61.9 54.2 50.1

SF
T

ChatGLM2 6b 45.8 45.4 34.1 42.6 33.6 34.3 19.4 27.4 13.3

Platypus2
7b 50.1 48.5 36.8 44.1 35.0 63.4 36.0 27.7 21.6

13b 57.1 55.9 46.6 52.1 42.7 60.7 40.6 37.6 29.4
70b 71.2 70.3 63.8 70.0 65.0 85.5 66.1 60.3 57.4

Orca-mini-v3
7b 51.6 50.2 39.1 46.3 37.6 54.3 35.3 31.0 24.6

13b 55.9 54.7 45.1 52.9 45.8 49.4 36.2 39.0 28.8
70b 70.1 69.1 61.6 69.5 63.4 77.2 61.0 57.7 52.5

Vicuna-v1.5 7b 49.8 49.7 38.1 45.4 36.9 54.5 35.0 30.0 23.1
13b 55.7 55.1 45.5 53.0 43.8 28.3 22.8 38.1 19.1

R
LH

F

Llama2-chat
7b 45.8 46.0 31.5 41.5 33.4 52.6 29.1 24.4 17.9

13b 53.5 52.5 40.9 50.7 43.4 39.4 28.3 35.2 21.9
70b 63.0 61.3 51.7 61.8 54.8 59.7 45.9 47.0 38.1

Experiment results on C-eval task

PL
M

Qwen 7b 59.9 56.8 47.0 24.3 21.8 null null 20.4 null
14b 68.1 66.0 56.6 40.4 38.4 null null 35.3 null

Baichuan2 7b 54.3 54.9 43.0 25.9 21.9 88.5 28.9 19.7 18.1
13b 59.1 57.7 47.3 41.8 28.9 56.3 38.2 25.8 18.5

R
LH

F

Baichuan2-chat 7b 52.7 53.1 41.4 26.2 23.4 52.1 30.3 20.7 12.9
13b 57.2 56.1 45.9 50.4 41.5 61.1 40.0 36.3 26.9

Table 1: consistent accuracy results for MMLU and C-Eval across various knowledge-equivalent question
formats. ACC represents percentage accuracy for the original multi-choice questions, whereas ACC1,
ACC2, and ACC3 indicate accuracy for the three specific proposed variants. Bar lengths show percentages
compared to the original accuracy. The blue, brown, and orange shades correspond to PLM, SFT, and
RLHF model types, respectively.

Figure 3: Comparing the consistent accuracy
across various model types at a 13b parameter
size.

els outperform PLM models in consistency. As
evidence, while the average CA[1,2] of platypus2
and LLaMA2-chat are 41.9 and 35.5 respectively,
LLaMA2 registers a mere 34.6. A detailed com-
parison under the 13b model size is illustrated in

Figure 3.
These findings underscore potential evaluation

pitfalls when using multi-choice questions for LLMs,
particularly for smaller PLM models. Furthermore,
it’s worth noting that certain models, specifically
MPT on MMLU and Qwen on C-Eval, exhibit dif-
ficulties within the few-shot setting, yielding less
meaningful outputs when shifted to a True/False
question format. This inability to adapt might sug-
gest that these LLMs, despite having the same
parameter sizes, may be less proficient than their
counterparts in certain scenarios.

4.2.3. Results of model ranking

Our previous findings show that model accuracy
scores fluctuate significantly when subjected to di-
verse question variants. This fluctuation calls into
question the reliability of current leaderboards that
rely on multi-choice questioning.

As depicted in Figure 4, we illustrate these rank-
ing variations across various model sizes on MMLU
and C-Eval, using metrics like ACC1, ACC2, and
CA[1,2]. Specifically, the 7b and 13b SFT mod-
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Figure 4: Visual representation of ranking shifts among models under varied metrics. Intersecting line
segments signify alterations in rankings.

els are particularly sensitive to minor changes in
option positions or labels. For example, the ini-
tially top-ranking platypus2-13b in the 13b category
slipped two positions due to label alterations or
when assessed with stricter metrics—a trend more
pronounced in C-Eval. In contrast, the 70b models
remain relatively stable in their rankings, with closer
scores among them.

Based on these findings, we advise caution
when selecting models based on evaluation leader-
boards, especially for models with parameters less
than or equal to 13B. This underscores the impor-
tance of using consistency assessment criteria.

5. Conclusion

In this study, we explore the issue of self-
consistency in the multi-choice question format
used for evaluating large language models. We
introduce three knowledge-equivalent question vari-
ants: option position shuffle, option label replace-
ment, and conversion to a True/False question for-
mat from a given multi-choice question. Our ex-
periments span model parameter sizes from 7B
to 70B and encompass various training types, in-
cluding PLM, SFT, and RLHF. Findings from the
MMLU and C-Eval benchmarks reveal that the input
question format significantly impacts accuracy in
multi-choice question assessments. This influence
is particularly noticeable for models with smaller
sizes (less than 30B) and those that are not trained
by supervised fine-tuning. To ensure a more robust
evaluation of model performance, we recommend
adopting consistent accuracy for multi-choice ques-
tions.
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8. Appendices

A. Appendix: Llama Inconsistency Examples with different methods

Figure 5: Example of Option Position Inconsistency on MMLU task

Figure 6: Example of Option Symbol Inconsistency on MMLU task
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Figure 7: Example of Question Format Inconsistency on MMLU task
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