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Abstract
Suicide is a serious public health issue, but it is preventable with timely intervention. Emerging studies have
suggested there is a noticeable increase in the number of individuals sharing suicidal thoughts online. As a result,
utilising advance Natural Language Processing techniques to build automated systems for risk assessment is a
viable alternative. However, existing systems are prone to incorrectly predicting risk severity and have no early
detection mechanisms. Therefore, we propose RISE, a novel robust mechanism for accurate early detection of
suicide risk by ensembling Hyperbolic Internal Classifiers equipped with an abstention mechanism and early-exit
inference capabilities. Through quantitative, qualitative and ablative experiments, we demonstrate RISE as an
efficient and robust human-in-the-loop approach for risk assessment over the Columbia Suicide Severity Risk Scale
(C-SSRS) and CLPsych 2022 datasets. It is able to successfully abstain from 84% incorrect predictions on Reddit
data while out-predicting state of the art models upto 3.5x earlier.
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1. Introduction

Upwards of 700,000 people die due to suicide every
year (WHO, 2021). It is the fourth leading cause
of death among 15-29 year olds and is the second
leading cause of death among 10-14 year olds in
America (CDC, 2021). Suicide is a serious public
health problem but it is preventable with timely in-
tervention and professional help. However, over
two-thirds of individuals who die from suicide do
not seek professional mental health support (Stene-
Larsen and Reneflot, 2019). 39% of those who do
seek professional help, do not disclose suicidal
intent to their therapists (McGillivray et al., 2022).

Previous studies have shown that with
widespread use of social media (Chaffey, 2023),
people with suicidal intent may disclose suicidal
thoughts or seek information for support online
(Fahey et al., 2020; Daine et al., 2013; Colombo
et al., 2016). In addition, studies also suggest
a notable increase in the occurrence of young
individuals expressing suicidal thoughts by posting
suicidal notes on social media platforms (Desmet
and Hoste, 2013; Ji et al., 2020). Therefore, online
expression of suicidal thoughts is an information
rich source for timely detection of suicide risk and
is known to be associated with psychologically
assessed suicide risk (Coppersmith et al., 2018;
Jashinsky et al., 2014). As a result, there has been
a growing interest in using Artificial Intelligence
(AI) based systems for mental health to create
early interventions for patients with chronic mental

Figure 1: We visualize the suicide risk severity of a
sample of Reddit posts for a user from the CSSRS
Dataset with “Attempt (AT)” risk severity and plot it
over time.

health conditions (Roy et al., 2022).
In a safety-critical scenario such as mental health,

technological robustness is extremely important
(Sawhney et al., 2022b), highlighting the need for
safe and responsible AI models for such tasks
(Garg, 2023), such as the ability to abstain from
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making a prediction (Sawhney et al., 2022b). Ad-
ditionally, it is important for an AI model to confi-
dently know as early as possible if a user is at risk
of suicide (Leiva and Freire, 2017; Smys and Raj,
2021), or in the worst case - know very early that
it is uncertain. Existing studies (Van Dijk, 1977;
Sawhney et al., 2021a) also show that in data that
comprises of extensive long-form content, such as
posts on social media, only a handful of key data
points exert the strongest influences on the overall
trend, which is effectively captured by hyperbolic
networks (Agarwal et al., 2022).

As shown in Figure 1, certain key phrases show
strong signs of high suicide risk early on, show-
ing that early detection is of immense significance.
Therefore, models equipped with such capabilities
would need to be endowed with mechanisms that
generate early predictions along the temporal di-
mension (Hochreiter and Schmidhuber, 1997), and
with powerful representational power to capture the
rare, scale-free (Broido and Clauset, 2019) exci-
tations induced by important texts. Motivated by
psychological studies, and building on prior work,
we summarize our contributions as:

• We model the hyperbolic nature of online text
streams using a better suited geometry that
captures the powerlaw dynamics in social me-
dia texts (section 4.1).

• We formulate RISE, a novel risk-averse mech-
anism for early detection of suicide risk by en-
sembling Hyperbolic Internal Classifiers (sec-
tion 4.3) equipped with an abstention mech-
anism (section 4.4) and early-exit inference
capabilities (section 4.6).

• Through ablative (section 6.2), qualitative (sec-
tion 6.4) and quantitative (section 6.1, sec-
tion 6.3) experiments, we demonstrate the abil-
ity of RISE as a robust and efficient approach
for early detection of suicide risk using online
text streams.

2. Related Work

Text stream modelling helps in detecting patterns
from a sequence of textual data such as social
media posts. Analysing such sequences in succes-
sion provides better contextual representation (Hu
et al., 2018) due to the sequential context depen-
dency present in them. While, this has proven to
be effective in the healthcare domain in the past
(Lampos et al., 2010; Paul and Dredze, 2021; Bay-
tas et al., 2017), it comes with its own challenges.
Social theories indicate that only a few texts have a
substantial influence on the overall trend, following
a power-law distribution (Van Dijk, 1977; Gabaix,
2016). These influential texts are rare and exhibit

scale-free properties (Zhao et al., 2010). Modeling
such power-law dynamics is challenging due to their
hierarchical nature (Sala et al., 2018). Hyperbolic
learning has shown promise in capturing power-law
dynamics in various domains, including computer
vision (Khrulkov et al., 2020) and natural language
processing (Tifrea et al., 2019). Recent work (Agar-
wal et al., 2022) leverage the power-law dynamics
of text streams (Gabaix, 2016; Van Dijk, 1977) and
their varying impact on different events through
hyperbolic learning (Sala et al., 2018). When ap-
plied to applications in mental health (Sawhney
et al., 2022a; Agarwal et al., 2022), hyperbolic
learning has significantly advanced state-of-the-
art. In recent years, Natural Language Processing
(NLP) has shown great promise for suicide risk
assessment based on online user behavior (Sawh-
ney et al., 2022a; Ji et al., 2020; De Choudhury
et al., 2016; Coppersmith et al., 2014). Such ap-
proaches have proven useful for the social NLP
research community to analyse and understand as-
sociations between users’ social media posts and
mental health status (Garg, 2023). A drawback of
these methods is that they are inherently designed
to predict even when uncertain, posing a risk for
mental health applications which are safety critical.

Recently, (Sawhney et al., 2022b) explored an
approach for suicide risk assessment from the
perspective of selective classification (Ziyin et al.,
2020), where a model was trained to abstain from
making predictions when not certain. While this en-
ables a human in the loop to interpret the low confi-
dence level of the model and intervene if deemed
necessary, it does not allow the model to generate
early predictions when the confidence is high to
plan interventions in advance. Emerging studies
with early exit mechanisms in pre-trained language
models (Sun et al., 2021; Liao et al., 2021; Xin
et al., 2020) have demonstrated efficiency gains
by introducing internal classifiers at each layer al-
lowing the model to completely rely on the first few
hidden layers of the model to make predictions
whenever possible (Sun et al., 2022; Zhou et al.,
2020). While these studies explore early exiting in
language models, they do not attempt to apply it
to tasks that have a temporal dimension and scale-
free properties. Time-critical tasks like suicide risk
assessment (Leiva and Freire, 2017; Smys and
Raj, 2021) can utilise an early-exiting mechanism
to allow the model to make early predictions and
exit early along the temporal dimension, utilising
a relatively smaller portion of the text sequence
(lesser time-steps) in the process.
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Risk level % Samples
Supportive 20
Indicator 20
Ideation 34
Behaviour 15
Attempt 9

(a) CSSRS Dataset

Risk level % Samples
Low 22
Moderate 37
High 41

(b) CLPsych 2022 Dataset

Table 1: Percentage distribution of user samples
based on risk levels.

3. Datasets and Task

3.1. Datasets
Columbia Suicide Severity Risk Dataset: The
Columbia Suicide Severity Risk Scale (C-SSRS) is
a widely used questionnaire utilized by psychiatrists
to assess the severity of suicide risk (Posner et al.,
2011). Unlike in a clinical setting, on social media
non-suicidal users may also participate in discus-
sions to offer support to others who are deemed
suicidal (Gaur et al., 2021). To address these chal-
lenges, additional classes have been defined in the
C-SSRS scale (Posner et al., 2011). These include
Suicide Indicator and Supportive (Negative class).
As released by (Gaur et al., 2019), this dataset com-
prises Reddit posts from 500 users filtered from an
initial set of 270, 000 users across various suicide-
related subreddits. The users were annotated by
practicing psychiatrists into five risk levels based
on the Columbia Suicide Severity Risk Scale (Pos-
ner et al., 2011). The average pairwise agreement
among the annotators was found to be 0.79, with
a group-wise agreement of 0.73, indicating accept-
able inter-rater reliability.
CLPsych 2022 Dataset, released by (Tsakalidis
et al., 2022) comprises of 6, 195 posts by 185
users from mental health related subreddits (MHS).
These 185 users were filtered from an initial set of
83, 000 users having at least 10 posts on MHS.The
users were classified into four risk severities - no,
low, moderate and high risk by clinical psychology
experts. The no and low risk classes were further
clubbed into one class due to very low number of
samples in the no risk class.

The posts in both these datasets are predom-
inantly in English and the distribution of users
among the risk levels for both datasets is given
in table 1.

3.2. Task
Following (Gaur et al., 2019; Tsakalidis et al., 2022),
we define the task as a multi-class classification
problem to predict Y , referring to the suicidal risk of
the user ui ∈ {u1, u2, ..., uN} in increasing order of
severity risk whose posts Pi = {pi1, pi2, ..., piT } are

in chronological order, with the latest post being
piT . Our aim is to expand the label space to Y ∪
{Abstain (AB)} to allow the model to refrain from
making a prediction when uncertain.

As a result, Y ∈ {Support (SU), Indicator (IN),
Ideation (ID), Behaviour (BR), Attempt (AT), Abstain
(AB)} for the CSSRS Dataset (Gaur et al., 2019)
and Y ∈ {Low (L), Moderate (M), High (H), Abstain
(AB)} for the CLPsych 2022 dataset (Tsakalidis
et al., 2022).

4. Methodology

4.1. Hyperbolic Geometry
The text sequences found in social media datasets
often exhibit tree-like hierarchical structures (Sawh-
ney et al., 2021b). As a result, the utilization of
hyperbolic geometry effectively capture the intrin-
sic properties of such data (Sala et al., 2018).

Indeed, the volume of hyperbolic geometry grows
exponentially, in contrast to Euclidean spaces
where the growth is polynomial (Khrulkov et al.,
2020), enabling hyperbolic spaces to capture the
underlying scale-free properties of streams (Sala
et al., 2018). However, text sequences exhibit a
varying degree of scale-free dynamics, which a
single geometry cannot capture (Gu et al., 2019).
Thus, we seek to learn the optimal underlying ge-
ometry. The hyperbolic space is a non-Euclidean
space with a constant negative curvature c. To
learn the optimal geometry, we aim to learn the
curvature c, which controls the degree of hyper-
bolic properties represented by the space (Gu et al.,
2019). We define hyperbolic geometry following
(Ganea et al., 2018) and generalize Euclidean op-
erations to the hyperbolic space via Möbius opera-
tions given in Ganea et al. (2018).

4.2. Text Embedding Layer
We use Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019) to
encode each text pik referring to kth post of the
ith user to features, m̂i

k = BERT(pik)∈Rd where
d=768, obtained by averaging the token level out-
puts from the final layer of BERT. To apply hyper-
bolic operations over text features m̂i

k, we project
it to the hyperbolic space via the exponential map-
ping expo(·) given by, mi

k=expo(m̂
i
k)

4.3. Hyperbolic LSTM with Internal
Classifiers

Hyperbolic LSTMs have been shown to be effective
in modeling hierarchical structures and capturing
long-range dependencies in sequential data (Nickel
and Kiela, 2017; Ganea et al., 2018). We propose a
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(a) Training

(b) Inference

Figure 2: An overview of the training and inference mechanism of RISE comprising of an abstention
mechanism using Gambler’s Loss, Hyperbolic Internal Classifiers and an Early exit inference mechanism

novel variant called Hyperbolic LSTM with Internal
Classifiers (HLSTM-IC) that combines the effective-
ness of hyperbolic geometry with a classification
head at every time step for early detection of suici-
dal intent.

HLSTM-IC extends the traditional LSTM archi-
tecture by incorporating hyperbolic representations
into the hidden state update and gating mecha-
nisms, similar to previous hyperbolic LSTM ap-
proaches (Nickel and Kiela, 2017; Ganea et al.,
2018). The hidden state update and gating func-
tions are modified to operate in the hyperbolic
space using the Poincaré disk model, which al-
lows HLSTM-IC to capture hierarchical and tree-like
structures in social media posts more effectively.
Using hyperbolic features m, we define the current
hidden state and current memory states of HLSTM-
IC as:

c̃t=σlogo(W
c⊗ht−1⊕U c⊗mt⊕bc)

Ct=it⊙c̃t⊕f t⊙Ct−1 Current memory
ht=ot⊙expo(tanh(Ct)) Current hidden state

(1)

In addition to the hyperbolic LSTM cell, HLSTM-IC
comprises of a multilayer perceptron for classifica-
tion at each time step. The output of the hyperbolic
LSTM cell at each time step is passed through the

MLP, which acts as an internal classifier to make
predictions based on the current state of the se-
quence. The MLP consists of multiple layers of
rectified linear units (ReLUs), followed by a soft-
max activation to obtain the prediction vector ŷt for
timestep t, given as:

ŷt = ft(ht), where
ft(ht) = Softmax(MLP(ht))

(2)

The use of internal classification heads in HLSTM-
IC allows the model to make predictions at each
time step, enabling early exit decisions based on
intermediate predictions, potentially leading to early
detection of suicidal intent for high-risk users.

4.4. Abstention Mechanism

To formulate a more robust and fail-safe model, we
modify the classification heads to make predictions
only when they have a high degree of confidence
(Liu et al., 2019) by augmenting the label space
with an option to abstain.

Classification heads at each time step output
|Y | + 1 logits where Y refers to one of the 5 risk
severities according to C-SSRS. The extra logit
s acts as a selection parameter such that model
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prediction zt, for time step t is given as,

zt = (ft, s) :=

{
Abstain, if s >= α

argmax(ŷt), otherwise
(3)

where α ∈ (0, 1) is the selection threshold.
The selection threshold, α is only used during

inference,

• to determine which step to exit at, discussed
in detail in later.

• to calculate data coverage C, fraction of the
sample space on which predictions are made,
abstaining from predicting 1 − C samples.
These 1 − C samples can then be manually
examined by mental healthcare professionals
to identify suicidal intent.

4.5. Joint Network Optimization using
Ensembling approach

Each internal classification head, (ft, s) is trained
to predict the ground truth. To take full advantage
of this fact (Sun et al., 2021), we construct an en-
semble of these classifiers instead of training them
independently to optimize the network (Sun et al.,
2021; Liao et al., 2021).

To compute the output distribution at time step t,
we aggregate the output distributions of the first t
time steps. We sequentially calculate a weighted
sum at every step ∈ {2, 3, ..., t} using the current
and previous output distribution, and decaying fac-
tor for the time step given as:

γt = β ∗ γt−1 + (1− β) (4)

where β = 0.5 is a constant.
Thus, the modified output of the model at time

step t (Equation 3) is given as:

ẑt = (1−γt)∗argmax(ŷt−1)+γt ∗argmax(ŷt) (5)

where ẑt is the joint output distribution of the first t
internal classifiers.

We can perform an (m+ 1)-class classification
for any m-class classification problem and use the
(m+1)th class as an abstention score (Geifman and
El-Yaniv, 2019, 2017; Liu et al., 2019). Such models
are learnt differently to account for the abstention
option and hence, we use Gambler’s Loss (Liu et al.,
2019) to train our model.

Gambler’s Loss corresponding to a particular
time step t is given as,

Lt = −
|Y |∑
i

yit ∗ log(ẑit ∗ r + s) (6)

where yit is the ground truth for the tth time step
and r is a hyperparameter. A higher value of r

discourages abstention. This allows the gradients
to propagate through s by refraining from assigning
weights to any of the m classes. As a result, s is
learnt directly using Gambler’s Loss and does not
require an extra logit during training which makes
it independent of coverage C.

To maximise the likelihood of ground truth Y , we
train all internal classifiers using loss L, which is
the sum of the losses of internal classifiers, given
as:

L = L1 + L2 + . . . + LT (7)

4.6. Early Exit Inference Mechanism

Early detection of suicidal intent is crucial (WHO,
2021), especially for high-risk users to provide
timely assistance.

Our early-exit inference mechanism employs in-
ternal classifiers. Following Equation 3, our model
makes a prediction at every time step. If the selec-
tion parameter s < α at time step t, the classifier
makes a confident prediction and exits at the cur-
rent time step, concluding the inference process
without the need to go through all time steps (posts).

If our model chooses to abstain, the inference
process propagates forward to the next time step.
If the exit condition is never reached, our model
defaults into the common case of inference in which
the complete forward propagation takes place (i.e.
the model utilises all posts).

At the end of the complete forward pass, if s >
α, our model abstains from predicting the sample.
Such samples belong to the abstention class (1−
C) and can be directly evaluated by mental health
professionals on priority.

5. Experimental Setup

5.1. Training Setup

We have performed all our experiments on a Tesla
GPU. We performed a grid search for all our models
and selected the best values based on the valida-
tion loss. We followed the same preprocessing
techniques as suggested by the dataset authors
(Gaur et al., 2019; Tsakalidis et al., 2022). We ex-
plored the timestep threshold τ ∈ [2, 16] and the
hidden state dimensions in ∈ (64, 128, 256). We
grid searched our learning rates in ∈ (1e− 5, 5e−
4, 1e− 3). We used Riemannian Adam (Bécigneul
and Ganea, 2018) as our optimizer and a train, dev
and test split of 75%, 15% and 10% respectively for
both datasets.
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5.2. Evaluation Metrics
5.2.1. Grade Precision, Recall and F1-Score

We redefine the metrics for evaluating the model’s
performance following (Gaur et al., 2019) in order
to provide a more accurate assessment. False Pos-
itive (FP), represents the ratio of instances where
the predicted suicide risk severity level (yp) is higher
than the actual level (ya) over the size of the test
data (NT ), and False Negative (FN) captures the
ratio of instances where yp is lower than ya over
NT .

FP =
∑N

i=1 I(yp
i >ya

i )

N

FN =
∑N

i=1 I(yp
i <ya

i )

N

(8)

5.2.2. Fail-safe Rejects

Fail-safe Rejects is the fraction of erroneous ab-
stained samples and is given as the ratio of number
of incorrect prediction by the number of samples
abstained:

Fail-safe Rejects =
Pin

Pabstain
(9)

5.2.3. Robustness

Robustness is quantified as the fraction of samples
correctly classified or abstained for direct evaluation
by mental health professionals.

Robustness =
Pcorr+abstain

PT
(10)

5.2.4. Early Detection Efficiency Ratio (EDER)

To quantify how early a model is able to correctly
classify samples, we modify Speed-up Ratio from
(Xin et al., 2020) and formulate EDER. EDER is
defined as the ratio of complete required time steps
for an N -step model to the actually executed time
steps in the forward pass given as:

EDER =

∑N
t=1 N ∗mt∑t
t=1 t ∗mt

(11)

where mt is the number of samples that exit at the
tth time step. A higher EDER corresponds to a
model that can predict the correct class with fewer
time steps, i.e. fewer posts corresponding to each
user.

6. Results

6.1. Performance Comparison
We compare the performance of RISE with other
state-of-the-art methods in Table 2 across two
datasets described in Section 3. Contextual CNN

(Kim, 2014), using a bag-of-posts approach and
SDM (Cao et al., 2019) come out as worst per-
formers. Context Bert (Matero et al., 2019), LSTM
(Hochreiter and Schmidhuber, 1997) and n-BiLSTM
(Zhang and Rao, 2020) show improvements over
Contextual CNN and SDM due to their sequen-
tial nature with n-BiLSTM being the best amongst
the lot, having a 3% and 2% higher F. score than
Contextual CNN for the CSSRS and CLPsych
datasets respectively. SISMO (Sawhney et al.,
2021c) shows a further increment of 1% in F. score
for both datasets as it is able to better model the
ordinal nature of suicide risk labels. MentalBERT
(Ji et al., 2021) demonstrates an additional improve-
ment over SISMO, with a 2% increase in F. score.

RISE significantly outperforms all baselines in-
cluding SASI (Sawhney et al., 2022b) for all cov-
erages with a 3% better F. score on average while
being able to assess risk upto 2.9x and 3.5x ear-
lier for the CSSRS and CLPsych 2022 datasets
respectively. The CSSRS and CLPsych datasets
have an average timeline spanning 44 and 60 days
for each user, users posting once in two days on
average. Therefore, RISE can help identify suicide
risk 30 to 40 days earlier in a real life scenario using
just 15 to 20 days’ posting history (7-10 posts) for a
user on average, making timely intervention. This
demonstrates the ability of RISE as a practical ap-
proach for early suicide risk assessment due to it’s
ability to abstain and use fewer time steps (posts)
to produce state-of-the-art results.

6.2. Ablation Study
We contextualize the impact of various components
of RISE in Table 3 with the help of an ablation ex-
periment on the CSSRS Dataset (Gaur et al., 2019).
All models with the exception of LSTM are run on a
coverage C of 85%. Generally, augmenting LSTM
(Hochreiter and Schmidhuber, 1997) with an ab-
stention mechanism (Liu et al., 2019; Geifman and
El-Yaniv, 2017) leads to an average of 5.5% im-
provement in F. score. Gambler’s Loss (GL) (Liu
et al., 2019) works better than Softmax Response
(SR) (Geifman and El-Yaniv, 2017) as the absten-
tion mechanism outperforming it by 5% on F. score
while being 9% more robust when augmented to
the vanilla LSTM mechanism. Next, we see an av-
erage improvement of 7% in F. score on replacing
the vanilla LSTM with LSTM-IC, while being 2 times
faster. A further improvement of 1% is observed
with the introduction of hyperbolic geometry in the
LSTM architecture as the hyperbolic space better
models the innate power-law dynamics and hierar-
chies in online text streams (Sala et al., 2018).

As a result, our best performing model is a prod-
uct of a better abstention mechanism, internal clas-
sifier’s early exiting abilities combined with the su-
perior ability of hyperbolic spaces to better model
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Model Gr.
Precision

Gr.
Recall

F.
Score Robustness Fail-safe

Rejects EDER

Contextual CNN 0.65 0.52 0.59 - - -
SDM 0.61 0.54 0.57 - - -

Context BERT 0.63 0.57 0.60 - - -
LSTM 0.64 0.59 0.60 - - -

n-BiLSTM 0.65 0.60 0.62 - - -
SISMO 0.66 0.61 0.63 - - -

MentalBERT 0.65 0.62 0.65 - - -

SASI (C 100%) 0.67 0.62 0.66 0.48 - -
SASI (C 85%) 0.69 0.65 0.67 0.61 0.83 -
SASI (C 50%) 0.71 0.69 0.70 0.73 0.65 -

RISE (C 100%) 0.70∗ 0.72∗ 0.71∗ 0.61∗ - 2.8x
RISE (C 85%) 0.70∗ 0.72∗ 0.71∗ 0.67∗ 0.84∗ 2.7x
RISE (C 50%) 0.72∗ 0.73∗ 0.72∗ 0.73∗ 0.77∗ 2.9x

(a) CSSRS Dataset

Model Gr.
Precision

Gr.
Recall

F.
Score Robustness Fail-safe

Rejects EDER

Contextual CNN 0.42 0.42 0.42 - - -
SDM 0.40 0.41 0.41 - - -

Context BERT 0.42 0.44 0.43 - - -
LSTM 0.47 0.44 0.43 - - -

n-BiLSTM 0.48 0.47 0.44 - - -
SISMO 0.49 0.47 0.45 - - -

MentalBERT 0.50 0.50 0.47 - - -

SASI (C 100%) 0.52 0.50 0.52 0.41 - -
SASI (C 85%) 0.54 0.53 0.54 0.58 0.77 -
SASI (C 50%) 0.55 0.57 0.56 0.65 0.61 -

RISE (C 100%) 0.55∗ 0.54∗ 0.54∗ 0.55∗ - 3.3x
RISE (C 85%) 0.57∗ 0.55∗ 0.56∗ 0.60∗ 0.80∗ 3.3x
RISE (C 50%) 0.58∗ 0.59∗ 0.59∗ 0.69∗ 0.74∗ 3.5x

(b) CLPsych 2022 Dataset

Table 2: Performance comparison of RISE with other baseline classifiers. Bold shows the best result. ∗

shows significant (p<0.01) improvement over SASI.

Model Gr.
Precision

Gr.
Recall

F.
Score Robustness Fail-safe

Rejects EDER

LSTM 0.64 0.59 0.60 - - -
LSTM w SR 0.65 0.62 0.63 0.55 0.58 -
LSTM w GL 0.68 0.68 0.68 0.64 0.69 -

LSTM-IC w SR 0.66 0.71 0.69 0.59 0.65 1.9x
HLSTM-IC w SR 0.69 0.69 0.69 0.60 0.64 1.8x
LSTM-IC w GL 0.69 0.71 0.70 0.74 0.77 2.5x

HLSTM-IC w GL
(RISE) 0.70∗ 0.72∗ 0.71∗ 0.67 0.82∗ 2.7x∗

Table 3: Ablation study of RISE with different
model components and geometries on the CSSRS
Dataset (Gaur et al., 2019). Bold shows the best
result. ∗ shows significant (p<0.01) improvement
over LSTM. GL stands for Gambler’s Loss while
SR stands for Softmax Response, both working as
abstention mechanisms.

online text stream (Sala et al., 2018).

6.3. Impact of Varying Time-step
Threshold

We study the variation in RISE’s performance and
efficiency on introducing a Time-step threshold and
varying it’s value in Figure 3 using the CSSRS
dataset. We restrict RISE to propagate through a
minimum number of time steps before considering
an early exit using threshold P . On gradually in-
creasing P , we observe a significant improvement
in performance upto to a certain optimal point sug-
gesting how increasing context helps RISE in cor-
rectly classifying samples. This is followed by slight
dip in performance accompanied by stagnation at
the optimal value of 7. Although EDER rapidly de-
creases uptil this optimal point, RISE is still able
to perform at par with state-of-the-art model like
SISMO (Sawhney et al., 2021c) and SASI (Sawh-
ney et al., 2022b) while being more efficient.

Figure 3: Impact of varying Time-step Threshold
on model performance and efficiency.

6.4. Qualitative Analysis

The effectiveness of RISE lies not just in its risk-
averse nature due to the abstention mechanism
but more importantly in its ability to predict correct
labels with fewer time steps for a high risk user. We
qualitative study the case of five users with their
post samples from the CSSRS dataset as given
in Figure 4. User I shows strong signs of high sui-
cide risk severity early on. As a result, RISE is
confidently able to correctly classify them using just
seven posts (time steps). User II’s low risk sever-
ity is clearly evident in their posts and is correctly
classified by RISE in just nine time steps. The
model makes an erroneous prediction for User III.
However, RISE does not commit to this prediction,
and abstains, indicating the requirement of a pro-
fessional’s immediate intervention. Even though
RISE correctly classifies the suicide risk severity
for User IV, it chooses to abstain. This is possibly
due to RISE following a cautious approach due to
the occurrence of phrases like "I do have a gun"
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Figure 4: We show RISE can be used for efficient prioritization of users during suicide risk assessment
with the help of the CSSRS dataset. For each user, we show the real labels next to predicted labels, while
also indicating whether RISE refrained from making that prediction. We further demonstrate how RISE
predicts correct samples early on without propagating through all time-steps.

repeatedly. There may be cases in which RISE
confidently classifies a high risk user as a low risk
user. Handling such cases is critical and is a current
limitation of RISE.

7. Conclusion

In response to the pressing need for a robust so-
lution for fine-grained suicide risk assessment on
social media platforms, we introduce RISE, an in-
novative framework that integrates selective prior-
itization and early exit inference mechanism into
existing deep learning-based risk assessment tech-
niques. RISE embodies self-awareness by abstain-
ing from making predictions when faced with un-
certainty. It managed to out-perform current state-
of-the-art suicide risk assessment models while
being upto 3.5x faster. Through extensive quan-
titative evaluations conducted on real-world data,
RISE demonstrated its effectiveness by success-
fully avoiding high-risk situations, abstaining from
making upto 84% of incorrect predictions. Further-
more, we provide a detailed qualitative analysis
highlighting the potential application of RISE within
a human-in-the-loop framework, enabling timely
and efficient responses from mental health experts.

8. Ethical Considerations

The research we present raises significant ethi-
cal considerations, particularly regarding the bal-
ance between privacy and effectiveness. Follow-
ing the insights provided by (Coppersmith et al.,
2018), we prioritize adherence to acceptable pri-
vacy practices to avoid coercion and intrusive treat-
ment as outlined by (Fiesler and Proferes, 2018;
Chancellor et al., 2019). The datasets used in this
study are sourced from Reddit, a platform designed
for anonymous posting. However, to ensure addi-

tional privacy safeguards, we employ automated de-
identification techniques using named entity recog-
nition (Zirikly et al., 2019) on the datasets. Fur-
thermore, all examples utilized in this paper are
anonymized, obfuscated, and paraphrased follow-
ing the moderate disguise scheme proposed by
(Bruckman, 2002) and (Benton et al., 2017).

Additionally, it is crucial to prevent overburden-
ing clinicians and human moderators (Chancellor
et al., 2019), considering challenges like "alarm
fatigue" in healthcare, where excessive false posi-
tives can desensitize healthcare providers (Drew
et al., 2014). We also acknowledge the subjective
nature of suicidality (Keilp et al., 2012), where in-
terpretations may vary among individuals on social
media. We do not make any diagnostic claims but
rather aim to prioritize users who should be eval-
uated first by medical professionals as part of a
distributed human-in-the-loop framework (Andrade
et al., 2018).

9. Limitations

We acknowledge the limitation of our work. First,
our model was evaluated only on predominantly En-
glish datasets. The effectiveness of RISE may vary
across different languages and cultural contexts.

We recognize that the analysed data may be in-
fluenced by demographic, expert annotator, and
medium-specific biases (Hovy and Spruit, 2016).
While our work aims to assist in the early detection
of at-risk users and early intervention, it is essential
to carefully plan and execute interventions to avoid
counter-helpful outcomes, such as users migrat-
ing to fringe platforms, which can make providing
assistance more challenging (Kumar et al., 2015).

To maintain user privacy, the annotation of user
data is stored separately from the raw user data on
protected servers, linked only through anonymous
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IDs. Our objective is to develop an assistive tool for
screening suicidal users based solely on observa-
tional capacity. However, we acknowledge that it is
challenging to entirely prevent the misuse of tech-
nology, even when developed with good intentions
(Hovy and Spruit, 2016).
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