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Abstract
Fact-checking is the task of verifying the factuality of a given claim by examining the available evidence. High-quality
evidence plays a vital role in enhancing fact-checking systems and facilitating the generation of explanations that
are understandable to humans. However, the provision of both sufficient and relevant evidence for explainable
fact-checking systems poses a challenge. To tackle this challenge, we propose a method based on a Large Language
Model to automatically retrieve and summarize evidence from the Web. Furthermore, we construct RU22Fact, a
novel multilingual explainable fact-checking dataset on the Russia-Ukraine conflict in 2022 of 16K samples, each
containing real-world claims, optimized evidence, and referenced explanation. To establish a baseline for our
dataset, we also develop an end-to-end explainable fact-checking system to verify claims and generate explanations.
Experimental results demonstrate the prospect of optimized evidence in increasing fact-checking performance
and also indicate the possibility of further progress in the end-to-end claim verification and explanation generation tasks.

Keywords: fact-checking, evidence, explainability, large language models

1. Introduction

As information quickly spreads through social me-
dia, fake news become an urgent social issue and
even a means of warfare. For example, conspir-
acy theories about Ukrainian and US bioweapons
research during the Russian-Ukrainian conflict
emerged (Bacio Terracino and Matasick, 2022).
To combat fake news, automated fact-checking be-
comes an essential task, which aims to verify the
factuality of a given claim based on the collected
evidence. Figure 1 (a) illustrates a real-world claim1

that has been verified using a search engine as a
basis.

Traditional fact-checking systems follow a
pipeline approach that involves an evidence docu-
ment retrieval module and a claim verification mod-
ule (Kotonya and Toni, 2020a; Vlachos and Riedel,
2014). Although most researchers assume that
evidence has been properly identified and focus on
subsequent steps (Krishna et al., 2022; Liu et al.,
2020; Nie et al., 2019), it is crucial to recognize the
significant role of evidence in fact-checking (Schus-
ter et al., 2020).

In fact-checking, it is natural to verify the claim
in all the collected documents (Xiong et al.; Khat-
tab et al., 2021), resulting in a substantial memory
footprint due to storage requirements. To tackle
this concern, Thorne et al. (2018) proposes the ex-
traction of evidence documents from Wikipedia that
are relevant to a claim, followed by the selection

∗*Corresponding authors
1https://tass.com/defense/1589173

Figure 1: An example of fact verification, based
on two different pieces of evidence. (a) a return
from a search engine (e.g., Google), and (b) a reply
generated by LLMs (e.g., New Bing).

of the most pertinent sentences from these doc-
uments to produce the evidence. However, the
crowd-sourced claims from this study introduce
lexical biases, such as the excessive presence
of explicit negation and unrealistic misinformation.
Recent research retrieves real-world claims from
fact-checking websites and considers search snip-
pets (Gupta and Srikumar, 2021; Augenstein et al.,
2019) or retrieved documents (Hu et al., 2023) pro-
vided by search engines as evidence to mitigate
this issue. Nonetheless, as depicted in Figure 1
(a), search snippets often fail to give sufficient infor-
mation to verify the claim (Hu et al., 2023), and the
retrieved documents frequently contain a substan-

https://tass.com/defense/1589173


14216

tial amount of irrelevant information. The substan-
dard content retrieved by search engines forces the
need for an evidence extractor before the fact verifi-
cation stage, which would result in error-cascading
concerns. However, providing sufficient and rele-
vant evidence for the fact-checking system is an
unresolved challenge.

In response to the aforementioned challenge,
we consider introducing Large Language Models
(LLMs) given their excellent performance in natu-
ral language understanding (Bubeck et al., 2023;
OpenAI, 2023). As illustrated in Figure 1 (b), LLMs
have more potential to produce more relevant and
sufficient information than search snippets. We
propose an LLMs-driven method to automatically
retrieve and summarize documents from the Web
to produce precise evidence with less noise, and
refer to the evidence obtained through this method
as optimized evidence. On this basis, we con-
struct RU22Fact, a novel multilingual explainable
fact-checking dataset. It contains 16,033 exam-
ples, each containing real-world claims, optimized
evidence, and referenced explanations about the
Russia-Ukraine conflict in 2022. We build an ex-
plainable fact-checking system to establish the
baseline performance and experimental results
show that there is room for future improvements in
this end-to-end fact-checking and explanation gen-
eration task. Experimental results demonstrate the
prospect of optimized evidence in increasing fact-
checking performance, while there is a challenge to
solve the problem of generating end-to-end claim
verification and explanations2. Our main contribu-
tions are summarized as follows:

• We propose an LLMs-driven method to auto-
matically acquire sufficient and relevant evi-
dence from the web. To our knowledge, we
are the first to explore optimized evidence in
the fact-checking system.

• We construct RU22Fact, a novel multilin-
gual explainable fact-checking dataset. This
dataset includes optimized evidence to sup-
port end-to-end claim verification and human-
understandable explanation generation.

2. Related Work

2.1. Fact-Checking System
Normally, when verifying a claim, systems often
operate as a pipeline consisting of an evidence
document retrieval module, and a claim verifica-
tion module (Kotonya and Toni, 2020a; Vlachos
and Riedel, 2014). Most existing methods follow
this framework and mainly focus on the last stages

2Data are available at https://github.com/
zeng-yirong/ru22fact.

(Liu et al., 2020; Krishna et al., 2022; Nie et al.,
2019). However, we argue that an optimized evi-
dence document is also critical to building a fact-
checking system. At present, there are two main
ways to carry out evidence document retrieval. The
first is to extract evidence documents related to a
claim by entity link (Thorne et al., 2018), or by TF-
IDF (Hanselowski et al., 2018) from the knowledge
base (e.g., Wikipedia) or fact-checking websites,
and then select the most relevant sentences from
the documents to produce evidence (Wan et al.,
2021; Aly and Vlachos, 2022). Nevertheless, the
source of evidence limits its broad application. The
second is to regard search snippets returned by
search engines as evidence (Gupta and Srikumar,
2021; Hu et al., 2023). Although it can verify claims
from various sources under real-world scenarios,
the low-quality evidence from the search snippet
limits the performance of the fact-checking system.
Different from these methods, we proposed an au-
tomated LLMs-based evidence document retrieval
method to produce optimized evidence for building
a better fact-checking system.

2.2. Fact-Checking Dataset
We group existing fact-checking datasets into two
categories: synthetic and real-world. Synthetic
datasets (e.g., Fever (Thorne et al., 2018), Fever-
ous (Aly et al., 2021), Hover (Jiang et al., 2020)),
consider Wikipedia as the source of evidence and
annotate the sentences of articles as evidence. Al-
though these datasets have made a significant con-
tribution to fact-checking, crowd-sourced claims
from this line of work are written with minimal edits
to reference sentences, leading to strong lexical
biases. Thus, real-world efforts (Hanselowski et al.,
2019; Kotonya and Toni, 2020b) extract summaries
accompanying fact-checking articles about claims
as evidence. Nevertheless, using fact-checking ar-
ticles restricts evidence to a single source, and they
are not available during inference, which is not ideal
for developing automated fact-checking systems.
To address this issue, some researchers regard
search snippets (Gupta and Srikumar, 2021; Au-
genstein et al., 2019) or retrieved documents (Hu
et al., 2023) returned by search engines as evi-
dence. However, the low-quality content returned
by search engines limits the performance of the
system. For explainability in the dataset, most exist-
ing methods are dedicated to producing extractive
explanations (e.g., explanations for veracity predic-
tions about inputs to the system (Lu and Li, 2020;
Wu et al., 2020)), which is unfriendly to humans.
Recent researchers have formulated the explana-
tion generation task as an abstract summarization
problem for human understanding (Liu and Lapata,
2019; Kotonya and Toni, 2020b; Yao et al., 2022).

As shown in Table 1, in this paper, we construct a

https://github.com/zeng-yirong/ru22fact
https://github.com/zeng-yirong/ru22fact
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Dataset Evi. Exp.
Synthetic

Fever (Thorne et al., 2018) Wiki. Ex.
Feverous (Aly et al., 2021) Wiki. Ex.
Hover (Jiang et al., 2020) Wiki. Ex.

Real-world
MultiFC (Augenstein et al., 2019) FCA Ex.
PubH (Kotonya and Toni, 2020b) FCA Ab.
EFact (Hu et al., 2023) SE Ex.
XFact (Gupta and Srikumar, 2021) SE Ex.
RU22Fact LLMs Ab.

Table 1: Comparison of Fact-Checking Datasets.
”Evi.” and ”Exp.” are abbrs for Evidence and Ex-
planation. ”Ex.”, ”Ab.”, and ”Wiki.” are abbrs for
”Extractive explanation”, ”Abstract summarization”
and ”Wikipedia”. ”FCA” and ”SE” are abbrs for fact-
checking articles and search engines.

fact-checking dataset, containing real-world claims,
high-quality evidence, and referenced explanations,
generating explanations as an abstract summariza-
tion task.

3. Evidence Analysis

To explore the critical role of evidence in fact-
checking, we conducted both manual analysis and
experimental analysis.

In experimental analysis, we conducted an ex-
ploratory experiment. XFact (Gupta and Sriku-
mar, 2021) is a multilingual fact-checking dataset
and contains evidence consisting of documents re-
trieved by a search engine, which sometimes fails to
provide sufficient information for fact-checking. To
produce optimized evidence for claims in XFact, we
retrieve and summarize documents from the Web
for each claim by LLMs. Then we extend XFact
with optimized evidence and verify claims based
on the evidence from search engines or optimized
evidence. We implement the following experiment
according to Gupta and Srikumar (2021).

1. Attention-based Evidence Aggregator
(Attn-EA): Aggregation of evidence using
an attention-based model that operates on
evidence documents retrieved by a search
engine. For comparison, we utilize opti-
mized evidence for attention-based evidence
aggregator (+OE) .

2. Augmenting metadata (+Meta): Concate-
nate additional key-value metadata with the
claim text by representing it as a sequence.
We also implement an optimized evidence-
based evidence aggregator enhanced by meta-
data (+ Meta + OE).

The results are shown in Table 2, from which
we can find that the model with optimized evi-

Model α1 α2 α3

Attn-EA 38.9 15.7 16.5
Attn-EA+Meta 41.9 15.4 16.0
Attn-EA+OE 40.37 17.29 18.90
Attn-EA+Meta+OE 42.71 17.14 19.59

Table 2: Average F1 scores of the model. α1 ,α2

and α3 is the different test sets in XFact. α1 is dis-
tributionally similar to the training set, α2 is out-of-
domain test set and α3 is the zero-shot test set.(%)

Evidence Sufficiency Relevance
Original Evidence 2.35(0.53) 3.02(0.57)
Optimized Evidence 3.51(0.50) 4.28(0.63)

Table 3: The manual evaluation of original evidence
and optimized evidence. Sufficiency and Rele-
vance represent the average scores of 100 sam-
ples. Kappa values are represented in brackets.

dence achieves better performance compared to
the model with retrieved documents by a search
engine. This indicates that optimized evidence
can provide more sufficient and relevant evidence
for fact-checking to improve its performance, and
demonstrates the prospect of optimized evidence
to solve the fact-checking problem.

In manual analysis, we conducted a manual eval-
uation of the following aspects of evidence: 1) suf-
ficiency: there is sufficient information in the evi-
dence to verify the claim; 2) relevance: each sen-
tence in the evidence relates to the claim. Each
aspect is given a score of 1 to 5. We compared the
original evidence and the optimized evidence in ex-
tended XFact and randomly sampled 100 samples
for manual evaluation. We utilize Fleiss’ Kappa
(Fleiss, 1971) to assess the inter-annotator agree-
ment. The result is shown in Table 3, it shows
that the optimized evidence obviously outperforms
the original evidence in these two aspects, which
indicates that the optimized evidence is better at
fact-checking.

4. Dataset Construction

In this section, we introduce the whole procedure
of dataset construction. We construct a multi-
lingual explainable fact-checking dataset, named
RU22Fact, of 16k real-world claims related to the
2022 Russia-Ukraine conflict, including conflict cov-
erage, energy crisis, and related stories (e.g., hu-
manitarianism, conspiracy theory, politics). To com-
bat fake news about the Russia-Ukraine conflict in
different countries and languages, the proposed
dataset contains four languages: English, Chinese,
Russian, and Ukrainian. An example dataset entry
is shown in Table 4.
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Claim 1,000,000 Ukraine soldiers wiped
out.

Evidence I found a claim on social media
that 1,000,000 Ukraine soldiers were
wiped out. However, according to
a fact-check by PolitiFact, this claim
has no official backing. United States
and European officials estimate that
as many as 120,000 Ukrainian sol-
diers have died or been injured in the
war.

Explanation United States and European offi-
cials estimate as many as 120,000
Ukrainian soldiers have died or been
injured in the war. We find no basis
for a ”1 million” estimate.

Label Refuted
Date May 25, 2023
Claimant Facebook posts
Language English

Table 4: A example from RU22Fact. Labels and
explanations are provided during training but need
to be inferred during evaluation.

4.1. Data Collection
To obtain sufficient claims related to the Russia-
Ukraine conflict, we collect claims from two
sources: fact-checking websites (e.g., Politifact3,
Chinafactcheck4, Lenta5) and credible news re-
lease websites (e.g., CNN6, People’s Daily On-
line7, TASS8). We consider websites that included
Russian-Ukrainian conflict-related claims and even-
tually choose ten fact-checking websites and six
news release websites, shown in Table 5

As a starting point, we first query the Russia-
Ukraine conflict topic for each website. For web-
sites without such a topic, we search for rele-
vant content using keywords related to the Russia-
Ukraine conflict. We scrape fact-checked claims
from fact-checking websites and headline claims
from news release websites, then take the fact-
checking justification from fact-checking websites
as referenced explanations for the veracity label
of the claim. For headline claims, we summarize
the news article by LLMs and check them manu-
ally to be referenced explanations. All claims were
published between February 2022 and June 2023.
In addition to the claim and referenced explana-
tions, we crawl metadata related to each claim
such as claimant and date of the claim. Initially,
we scraped 39K claims, amounting to 9,037 fact-

3https://www.politifact.com
4https://chinafactcheck.com/
5https://lenta.ru/
6https://edition.cnn.com/
7http://www.people.com.cn/
8https://tass.com/

checked claims from fact-checking websites, and
30,412 news headline claims from news release
websites.

4.2. Data Processing
Dataset Filtering. There are two major chal-
lenges in using the crawled data directly: 1) stan-
dardizing the labels and 2) cleaning the claims
and explanations in the dataset. The initial data
contains 46 labels. Referring to Hanselowski
et al. (2019), we review the rating system of the
fact-checking websites along with some examples
and manually mapped these labels to three cate-
gories, including Supported, Refuted, and NEI (Not
Enough Information). For headline claims from
news release websites, we assume that they are
verified and labeled these Supported due to rep-
utable sources, and each claim is assigned one
of the three label categories. In data cleaning, we
filter out claims longer than 50 characters to avoid
multiple statements in a claim, and we also filter out
shorter than 5 words in English, Russian, Ukrainian
and 5 characters in Chinese to provide complete
semantics in a claim. We remove explanations that
are less than the length of the claim because it is
difficult to provide qualified explanations. To allevi-
ate label leakage in some claims, we remove the
claims that contain unique keywords associated
with the label.

Optimizing Evidence. To provide both sufficient
and relevant evidence that differs from prior works,
we propose an LLMs-driven method to automati-
cally retrieve and summarize documents from the
Web to produce optimized evidence. The detailed
description is shown in section 5.1.

4.3. Task Definition
As we have automatically retrieved and summa-
rized documents to produce optimized evidence,
We introduce an end-to-end fact-checking ap-
proach to verify the claim, instead of a pipeline,
taking into consideration the potential issue of error
cascading in the pipeline. Specifically, we explore
two subtasks in the proposed dataset, end-to-end
claim verification, and explanation generation.

• Claim Verification: The Claim Verification
task is to predict the label (Supported, Refuted,
or NEI) of the claim based on the provided evi-
dence.

• Explanation Generation: Given an input
claim and optimized evidence, as well as the
label, the goal of Explanation Generation is
to generate a short paragraph to explain the
ruling process and justify the label.

https://www.politifact.com
https://chinafactcheck.com/
https://lenta.ru/
https://edition.cnn.com/
http://www.people.com.cn/
https://tass.com/
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Source Type Website Quantity Language Total

Fact-checking website

politifact.com 2,782 English

6,035

snopes.com 806 English
factcheck.afp.com 175 English
stopfake.org/en 300 English
stopfake.org/uk 1,082 Ukrainian
lenta.ru 259 Russian
factcheck.kz 58 Russian
factpaper.cn 167 Chinese
chinafactcheck.com 389 Chinese
vp.fact.qq.com 17 Chinese

News release website

edition.cnn.com 3,890 English

9,998
bbc.com 739 English
tass.ru 2,000 Russian
pravda.com.ua 2,430 Ukrainian
people.com.cn 702 Chinese
xinhuanet.com 237 Chinese

Table 5: The distribution of data sources for the RU22Fact.

Language Train Dev Test Total

English 6,082 867 1,741 8,690
Chinese 1,055 152 305 1,512
Russia 1,621 231 465 3,399
Ukrainian 2,458 350 704 2,430
Total 11,217 1,600 3,216 16,033
#Support Labels 10,081
#Refuted Labels 4,651
#NEI Labels 1,301

Table 6: Statistics of RU22Fact.

As a result, we collected 16,033 samples cov-
ering four languages: English, Chinese, Russian,
and Ukrainian. We split the whole dataset into train-
ing, development, and test sets. Detailed statistics
of the dataset are illustrated in Table 6. Each entry
consists of a real-world claim, optimized evidence,
referenced explanation, and meta-data (e.g., date,
claimant).

5. Fact-Checking System

In this section, we describe the explainable fact-
checking system we built. The framework is illus-
trated in Figure 2, which consists of three compo-
nents: Evidence Optimization, Claim Verification,
and Explanation Generation. Next, we will describe
the details of each component.

5.1. Evidence Optimization
We propose an LLMs-driven method to automati-
cally retrieve and summarize retrieved documents
from the Web to produce optimized evidence con-
sisting of some sentences. Specifically, it first
queries the search engine by a claim and then
scratches the retrieved documents. Aiming to make

full use of worthy information and remove irrele-
vant information, subsequently, designing a prompt
carefully to summarize the retrieved documents by
a single LLM. In practice, we utilize an LLM that
can connect to the Internet, such as New Bing9 or
Spark10, which can retrieve and summarize docu-
ments from the Web, and finish all processes in a
single step, taking into account possible error cas-
cades. We query LLM with a carefully designed
prompt, such as ”Please list five relevant news and
provide detailed sources and content:{claim}” . We
provide up to five pieces of evidence for each claim
in RU22Fact.

5.2. Claim Verification
Based on the optimized evidence, we further de-
sign a claim verification module to predict the truth-
fulness of each input claim. Given an input claim
C and its text evidence E = {s1, s2, ..., sl}, where
sk denotes the k-th sentence in evidence, we uti-
lize a text encoder to encode the claim and sen-
tences in the evidence. We feed claim C and
sentences E independently to the text encoder
and utilize the representations of CLS tokens as
their contextual representations: XC ∈ RD and
XE = {xs1 , xs2 , ..., xsl} ∈ RD×L, where D denotes
the embedding size and L is the sentence number
in the evidence. We then pair each sentence with
the input claim and detect the stance of the sen-
tence towards the claim. As Figure 2 shows, we
first compute an attention distribution between the
claim and the sentence by using XC as query, sk
as key and value, to compute cross attention and
obtain the stance representation Xsk2C .

Xsk2C = Attention(sk, XC).

9https://www.bing.com/new
10https://xinghuo.xfyun.cn/spark

https://www.bing.com/new
https://xinghuo.xfyun.cn/spark
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Figure 2: Overview of system framework. It consists of an auto evidence optimization module, a claim
verification module, and an explanation generation module.

We further obtain the stance representation
Hsk2C of sentence sk towards claim XC by con-
catenating Xsk2C and sk, feeding them to a linear
layer:

Hsk2C = Linear(Xsk2C : sk),

where [:] denotes concatenation operation. In the
end, we average the overall stance representation
and then feed the result to a linear classifier to
predict the label with a cross-entropy objective.

5.3. Explanation Generation
To generate a human-understandable explanation
for fact-checking prediction, we generate explana-
tions as abstractive summarization and utilize a
conditional text generator to generate an explana-
tion by considering the input claim, the predicted
label, and the evidence. Further, we incorporate a
truthfulness reward based on a classification layer
and then optimize the generation model with rein-
forcement learning to ensure the generated expla-
nation is consistent with the label (Yao et al., 2022).
As depicted in Figure 2. Specifically, given an input
claim C, label y, and evidence E = {s1, s2, ..., sl},
we concatenate them into an sequence X. Then
we feed X as input to conditional text generator
and optimize generator for generating explanation
S = {s1, s2, ...sq} close to the referenced explana-
tion S̃ = {s̃1, s̃2, ..., s̃q}. We take the gold label as
input during training and the predicted label during
evaluation. The training objective is to minimize
the following negative log-likelihood:

Lg = −
∑
i

log(p (s̃i | s̃1:i−1, X;ϕ)).

To ensure the generated explanation is consis-
tent with the label of the claim, we introduce a

truthfulness reward. Specifically, we pre-train a
truthfulness classification model, which takes the
generated explanation as input and outputs a confi-
dence score for each candidate’s label. In practice,
we take BERT (Devlin et al., 2019) as a classifier.

p(ỹ | S) = Softmaxi (classifierθ(S)) .

We take the difference between the confidence
score of the correct answer and the wrong answer
as reward Rcls and apply it to policy learning.

Rcls = p (ỹC | S)−
∑

ỹj ̸=ỹC

p (ỹj | S) ,

where ỹC is the gold label of C, ỹ and ỹj is the
predicted label.

6. Experiment

We conduct experiments to evaluate the perfor-
mance of two tasks: Claim Verification and Explana-
tion Generation in the proposed dataset RU22Fact.

6.1. Claim Verification
We adopt three different text encoders: 1) Multi-
lingual BERT (FCSmBert), a multilingual variant
of BERT (Devlin et al., 2019). 2) XLM-RoBERTa
(FCSXLM−R), a multilingual version of RoBERTa
pretrained on CommonCrawl data containing 100
languages (Conneau et al., 2019). 3) DistilBERT
(FCSdBert), a distilled version of the BERT based
multilingual model (Sanh et al., 2019).

To analyze the proposed dataset, we adopt the
following different settings to conduct claim veri-
fication experiments in the fact-checking system,
FCS: 1) only consider the claim without evidence,
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FCSclaim; 2) only consider evidence without claim,
FCSevidence; 3) consider the claim with random evi-
dence, FCSre. Random evidence denotes random
sampling evidence for each claim in RU22Fact. We
utilize FCSmBert as the text encoder for these set-
tings.

The experimental result is assessed against pre-
cision (Pr), recall (Rc), and macro F1 metrics. The
result is shown in Table 7. The performance of
FCSclaim performs worse than FCSmBert, indicat-
ing that the claim lacks sufficient information for
claim verification. FCSre performs worse than
FCSmBert and similarly to FCSclaim, indicating
there is no obvious bias in the evidence. When
using random evidence, the model tends to focus
on the claim rather than the evidence. FCSevidence

performs better than FCSclaim and similarly to
FCSmBert, indicating there is more useful infor-
mation in the optimized evidence than in the claim.

According to the results, we find that FCSmBert

achieves similar performance compared to
FCSdBert and FCSXLM−R, with a macro F1
score of approximately 60%. However, there is
still room for further improvement in the proposed
dataset RU22Fact. The challenges include low
resource language processing, and the label
distribution is uneven.

Settings Pr Rc F1
FCSclaim 65.71 59.01 57.93
FCSevidence 68.07 62.33 59.68
FCSre 55.33 59.84 57.35
FCSXLM−R 57.56 63.57 59.91
FCSdBert 74.30 63.49 60.40
FCSmBert 58.31 62.91 60.56

Table 7: Performance of Claim Verification. The
claim and evidence are concatenated and input into
the text encoder in FCS, FCSXLM−R, FCSdBert,
FCSmBert represent three different text encoders
used in the fact-checking system (FCS). (%)

6.2. Explanation Generation
We adopt two different conditional text generators
in this section: 1) Bart-large-cnn (FCSbart) (Lewis
et al., 2019), a transformer encoder-decoder model
with a bidirectional encoder and an autoregressive
decoder, fine-tuned on CNN Daily Mail (See et al.,
2017). 2) T5-base (FCSt5), a Text-to-Text Transfer
Transformer model, which is a versatile and efficient
pre-trained model for various natural language pro-
cessing tasks (Raffel et al., 2020). We also add
GPT-3.5-turbo-0613 (GPT3.5, an AI chat mode
based on the GPT-3.5-series model that generates
responses based on user input (OpenAI, 2022),
as the interpreter generator for comparison. We
fine-tune FCSbart and FCSt5 to generate the ex-

Settings Rouge1 Rouge2 RougeL BLEU
FCSbart 34.17 16.28 32.08 9.56
FCSt5 32.24 15.17 30.47 8.92
GPT3.5 36.56 18.90 34.10 17.05

Table 8: ROUGE and BLEU scores for generated
explanation via our explainable fact-checking sys-
tem. (%)

planation in the fact-checking system, and prompt
GPT3.5 to generate the explanation. We use two
methods for evaluating the quality of explanations
generated: automated evaluation and qualitative
evaluation.

6.2.1. Automated Evaluation

We evaluate the generated explanation by ROUGE
(Lin, 2004) and BLEU (Papineni et al., 2002), and
use the F1 values for ROUGE-1, ROUGE-2, and
ROUGE-L.

The results are shown in Table 8. From the re-
sults, we find that fine-tuned FCSbart performs bet-
ter than FCSt5 in the fact-checking system, and
GPT3.5 achieves the best performance because
part of the referenced explanation in the dataset
comes from itself.

6.2.2. Qualitative Evaluation

Evaluation using ROUGE and BLEU does not
present a complete picture of the quality of these
explanations, therefore, we introduce three desir-
able coherence properties for machine learning
explanations and evaluate the quality of the gener-
ated explanations against them (Kotonya and Toni,
2020b). More about these three coherence proper-
ties is shown in Appendix A.

• Strong Global Coherence. It holds for a gen-
erated fact-checking explanation, every sen-
tence in the explanatory text must entail the
claim.

• Weak Global Coherence. It holds for a gen-
erated fact-checking explanation, no sentence
in the explanatory text should contradict the
claim (by entailing its negation).

• Local Coherence. The generated explanation
satisfies local consistency if each sentence in
the explanatory text does not contradict each
other.

We employ human evaluation to assess the qual-
ity of the referenced explanation and the gener-
ated explanations for these properties. We ran-
domly sampled 100 samples from the test set of
RU22Fact, and five annotators to evaluate them
according to these three properties.
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Method SGC WGC LC

Human
Referenced Explanation 58.23 96.63 93.38
FCSbart 43.97 92.08 90.14
FCSt5 40.29 91.62 90.47
GPT3.5 53.29 95.73 90.52

BERT;MNLI
Referenced Explanation 37.72 60.17 60.36
FCSbart 45.52 59.94 53.02
FCSt5 46.64 58.77 49.79
GPT3.5 37.18 59.74 54.84

RoBERTa;MNLI
Referenced Explanation 24.13 94.96 90.03
FCSbart 20.26 93.31 87.51
FCSt5 19.46 94.26 85.41
GPT3.5 21.78 94.65 88.56

Table 9: The results of the qualitative evaluation in
three properties, strong global coherence (SGC),
weak global coherence (WGC), and local coher-
ence (LC) properties. (%)

Also, we conduct a computational evaluation of
the three properties using NLI (natural language
inference (Dagan et al., 2022)). In practice, we use
two pretrained NLI models: BERT trained in MNLI
(the multi-genre natural language inference corpus
(Williams et al., 2018)) and RoBERTa trained in
MNLI.

The results of the qualitative evaluation are
shown in Table 9. The referenced explanation
achieves almost the best results on three proper-
ties and three NLI models, which implies that the
referenced explanation is of higher quality than oth-
ers. RoBERTa trained in MNLI performs better than
BERT trained in MNLI, which means RoBERTa is
a better approximation of these three properties.
NLI models are reliable approximations of weak
global coherence and local coherence, and they
seem to be a poor approximation for strong global
coherence.

7. Conclusion

In this paper, we first analyze the challenge
of providing sufficient and relevant evidence for
fact-checking, and then propose an LLMs-driven
method to automatically retrieve and summarize
documents from the Web to produce optimized evi-
dence. An analytical experiment indicates that opti-
mized evidence can provide more sufficient and rel-
evant information for building a better fact-checking
system. Furthermore, we construct a novel multi-
lingual explainable fact-checking dataset named
RU22Fact, including real-world claims, optimized
evidence, and referenced explanation. To establish
the baseline performance, we build an explainable

Figure 3: An example of information leakage, and
the red box indicates label leakage.

fact-checking system based on RU22Fact. Exper-
imental results demonstrate the prospect of opti-
mized evidence to increase fact-checking perfor-
mance including claim verification and explanation
generation.

8. Limitations

Several limitations should be considered in this
paper, though this paper provides a step forward
in fact-checking.

• Information Leakage: There is possible in-
formation leakage when retrieving documents
from the web. To alleviate this problem, we
add some restrictions to a prompt, such as
”Be careful to give only objective facts and
do not verify them”. Nevertheless, It some-
times fetches snippets of fact-checking arti-
cles if the claim comes from a fact-checking
website, which can also lead to information
leakage. An example is shown in Figure 3,
there is a label leakage in the red box.

• Low-resource Languages: The dataset pro-
posed in this work covers claims related to the
Russia-Ukraine conflict of 2022, a worldwide
topic that is not limited to high-resource lan-
guages. However, our work covers only four
languages and has less data in non-English
languages, which limits fact-checking in low-
resource languages.

• Domain Generalization: In this article, our
data set is a topic related to the Russia-Ukraine
conflict. It might not work well in the same
way for other topics, and it requires further
research.
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Appendix

Appendix A. Coherence Property
Figure 4 demonstrates the three coherence prop-
erties schematically in graphical form. Figure 5
demonstrates examples of the three coherence
properties.
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Figure 4: Schematic representations of strong global coherence, weak global coherence and local
coherence. ”Neu.”, ”Ent.” and ”Con.” are abbrs for neutral, entails and contradicts. In each column, the
upper part means coherence cannot be satisfied, and the lower part means coherence is satisfied.

Figure 5: Examples of strong global coherence, weak global coherence and local coherence.
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