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Abstract
We aim to generate lyrics for Mandarin songs with a good match between the melody and the tonal contour of the
lyrics. Our solution relies on mBart, treating lyrics generation as a translation problem, but rather than translating
directly from the melody as is common, we generate from scansion as an intermediate contour representation that
can fit a given melody. One of the advantages of our solution is that it does not require a parallel melody-lyrics
dataset. We also present a thorough automatic evaluation of our system against competitors, using several new
evaluation metrics. These measure intelligibility, fit to melody, and use proxies for quantifying creativity (variation,
semantic similarity to keywords, and perplexity). We compare different implementations of scansion to competitor
systems. Our best system outperforms all others in lyric-melody fit and is in the top group of systems for two of the
creativity metrics (variation and perplexity), overshadowing two large language models (LLM) specialised to this task.

Keywords: lyrics generation, creativity, tone-melody match, evaluation metrics

1. Introduction

Some lyrics are easy to sing and to remember be-
cause the words follow the melody. We aim to
generate lyrics of this type. Lyrics generation is
often modelled on poetry generation, but it comes
with an additional challenge: the number of syl-
lables required is variable as it depends on the
number of notes in the song, in contrast to poem
generation, where a fixed number of syllables is pre-
scribed. End-to-end lyrics generation architectures
often find it hard to produce the correct number
of syllables, as well having problems with melody–
lyrics fit; additionally, they require a large parallel
lyrics-melody dataset.

Our approach, which takes phonetic knowledge
and songwriting theory into consideration, is based
on the concept of scansion. Scansion is a graphical
analysis method for deciding the stress pattern of
words in lyrics or poetry. It is widely used in classi-
cal poetry writing (Greene and Cushman, 2016). A
poet selects a metrical pattern before composition.
For example, iambic pentameter represents a met-
rical pattern consisting of five feet per line, where
each foot contains an unstressed syllable followed
by a stressed syllable. In return, when people read
a poem it is scansion that allows them to identify
the poem’s metrical pattern.

Consider the following example of scansion, rep-
resenting the first line in When I Consider How My
Light Is Spent by John Milton (1608-74).

× / × / × / × / × /
When I | con sid | er how | my light | is spent

Here, “ / ” and “ x ” represent stressed and
unstressed syllables respectively; lines are seg-

mented into feet1 by vertical bars “ | ”.

Figure 1: An example of lyrics-melody matching in
a Mandarin song.

We are the first to expand the concept of scan-
sion to tonal languages such as Mandarin and Can-
tonese. This enables us to generate Mandarin
lyrics that have a provably better match between
melody and tone contour. We do this by correlating
two notions of scansion: one representing melody
(called M-Scansion) and one representing lyrics
(called L-Scansion).

Early Mandarin lyricists paid little attention to
aligning tone contours to melodic contours, maybe
because Chinese pop music emerged much ear-
lier than the adoption of Mandarin as an official
language in 1956 (You and Li, 2015; Yu, 2007).
Although many of today’s Mandarin lyrics do not ex-
hibit a good match to the contour of their melodies,
a rising number of young songwriters produce a
new style of lyrics that reverses this tradition by fit-
ting lyrics more closely to the melody (Wee, 2007).

1Feet are the fundamental units of poetry composition.



14371

Close contour matching between the melody and
the pitch of the tones also has the advantage of
avoiding Mondegreen, a phenomenon where parts
of a lyrics are misheared and misinterpreted as a
near-homophone with a different meaning. An ex-
ample of a good lyrics-melody match is given in
Fig.1. Contour of melody (M-scansion) is indicated
by green arrows; the change of relative pitch of
tone of Hanzi (L-scansion) is indicated by purple
arrows.

Except intelligibility and good lyrics–melody fit,
there are other positive properties we would like our
lyrics to have. The first of these is that lyrics should
not be boring, cliched or predictable. Searching for
objective metrics for this notion, we present three
proxy metrics. When the lyrics generator operates
on a set of melodies, it should produce a set of
lyrics which display some internal variation from
each other. The lyrics should also “respond” to
keywords, which are given to our system along
with the melody, as is common practice in lyrics
and poetry generation. The purpose of using such
keywords is to control the atmosphere or general
theme of the resulting lyrics. We therefore also
present a metric of semantic similarity between
the keywords and the resulting lyrics. And as a
general proxy for creativity, one might also employ
information-theoretic metrics of surprise.

In this paper, our contributions are fourfold.

• First, we present a scansion-based lyrics gen-
erator that outputs lyrics according to given
melodies without requiring a parallel melody-
lyrics dataset. M-scansion is calculated on the
melodies, resulting in a pseudo melody that
can be input to a fine-tuned mBART model.
Internally, fine-tuning happens with a parallel
dataset which we created from lyrics alone, as
these are plentiful.

• Our method of creating this parallel corpus also
relies on scansion and is our second contribu-
tion. We create the parallel dataset of pseudo
melodies and lyrics by applying L-scansion to
pre-existing lyrics to finetune a mBART model.

• We test four M-scansion methods based on
neumes, cosine similarity, Hidden Markov
Model and GPT2. The latter two methods rely
on a parallel dataset of melodies and lyrics la-
beled in Mandarin, which is not available. We
identify Cantonese songs from an unlabeled
parallel dataset by analyzing the contours be-
tween Cantonese tones and melodies, and
map the the pairs of absolute melody and tone
pitches of lyrics from 6 relative pitches in Can-
tonese to 3 and 5 relative pitches in Mandarin.

• Fourth, we also present new automatic metrics
for lyrics-specific evaluation: intelligibility, con-

tour violation and variation. After defining the
metrics, we compare system-created against
human-created lyrics in these metrics, includ-
ing two LLM-based baselines.

We release all code and corpora to the research
community.

2. Related Work

2.1. Datasets
Parallel lyrics-melody public datasets are scarce
(Ju et al., 2022). One possible solution is to uti-
lize a combination of melody transcription (Yang
et al., 2017; Román et al., 2018; Nishikimi et al.,
2019), lyrics recognition (Zhang et al., 2022), and
techniques for automatic alignment of lyrics to au-
dio (Hosoya et al., 2005; Dabike and Barker, 2019;
Suzuki et al., 2019) to reduce the expenses asso-
ciated with creating large parallel datasets (Watan-
abe and Goto, 2020). Our method models the re-
lationships between melody and lyrics explicitly,
based on knowledge from phonetics and musicol-
ogy, which the above methods do not.

2.2. Lyrics Generation
Lyrics generation has been explored in a wide
range of languages such as English (Manjava-
cas et al., 2019; Sheng et al., 2021), Japanese
(Watanabe et al., 2017, 2018), Greek (Lampridis
et al., 2020), and Portuguese (Oliveira et al., 2007;
Oliveira, 2015). In the domain of Mandarin lyrics
generation, many models follow the sequence-to-
sequence (Seq2seq) machine translation model
for classical poetry generation (He et al., 2012; Yi
et al., 2017). In this method, the generators use the
one line of a poem as the source language for the
next line, which is regarded as the target language.

As aligned lyrics-melody datasets are hard to
come by, methods were developed which require
only lyrics to train lyrics generation models. Li
et al. (2020) introduced a generator called SongNet
with sets of symbols such as format and rhyme,
intra-positions, and segment symbols to generate
Songci, which is a classical poetry sung in a collec-
tion of melody templates in historical China. Their
work was extended by Liu et al. (2022) by adding
word granularity and reverse order embeddings.
The latter method is designed to model rhyme more
explicitly. It has also been applied for the genera-
tion of Mandarin Rap lyrics (Xue et al., 2021). Giv-
ing the systems a set of keywords as input is a
common method to “set the theme" of the lyrics.
Zhang et al. (2020) expanded this input by allowing
passage-level text as “keywords”.

Systems using parallel datasets include the sys-
tem by Lu et al. (2019), who trained a Seq2seq
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model based on Recurrent Neural Networks (RNN)
with 50,000 songs with both lyrics and music nota-
tion. They used existing melodies to generate lyrics
in the evaluation, which might have a potential in-
fluence on subject rating. Another Seq2seq model
is iComposer (Lee et al., 2019), which is available
online. It is based on Long Short-Term Memory
(LSTM) and was trained to generate lyrics and
melody bidirectionally, using 1,000 aligned lyrics
and songs. The model generates a sequence of
pitch and duration of notes from lyrics, but does
not use any duration information during generation.
Similarly, the model is trained on absolute rather
than relative pitch, which can cause problems with
some input melodies. During inference, if the input
pitch is not located in the model’s expected range,
the model fails to generate any lyrics. In addition,
as the model operates on only one sentence of
melody at a time, no thematic connection among
adjacent lines can be established.

2.3. Automatic metrics for lyrics
generation

Choi (2018) outlined computational approaches
such as traditional text metrics like word frequency,
familiarity and concreteness to evaluate the com-
plexity and imagery of lyrics. The study however
concluded that concreteness is not a good metric
as it is always low in certain types of lyrics (e.g.,
those of love songs and those containing many fig-
urative expressions). Therefore, the method might
work better with additional data such as topics and
genres of songs. Due to the paucity of human eval-
uation results on lyrics, Choi (2018) proposed a
method called Lyric Topic Diversity Score (LTDS)
which utilizes users’ interpretations of lyrics to eval-
uate the complexity of lyrics. The method is based
on the assumption that if a lyric shows a large vari-
ation of topics, then it is more difficult to understand
by listeners.

Li et al. (2020) introduced a set of automatic met-
rics for the evaluation of generated poetry, which
includes aspects of format, rhyme, and sentence
integrity. They introduced a “format” metric, which
evaluates whether the generated content complies
with the specified format, particularly concerning
the number of characters in each sentence.

Meanwhile, their “rhyme” metric assesses the
presence of rhyme within the generated poetry. By
checking for agreement of the last characters in
each line of the lyrics, it rewards lyrics that display
end rhyme. Sentence integrity is evaluated by fine-
tuning a GPT-2 model to predict the probability of
punctuation.

3. Method

3.1. Music theory
When producing a new song, one can either begin
by composing the lyrics or by creating the melody.
If lyrics are to be written for a given melody, the
implementation of scansion becomes valuable in
examining the compatibility of the lyrics with the
melody. This ensures intelligibility and singability
throughout the song.

The use of scansion is not limited to English, a
non-tonal language. It can be expanded to tonal
languages such as Mandarin. Mandarin is charac-
terized by five distinct tones that can distinguish
the meaning of Hanzi having the same pinyin2, as
shown in Fig. 2.

Tone Hanzi (pinyin) Translation
1 妈(mā) Mother
2 麻(má) Numb
3 马(mǎ) Horse
4 骂(mà) Scold
0 吗(ma) What

Figure 2: Five tones in Mandarin

Figure 3: Four tones in Mandarin as 5-level tone
contours (A) and Western musical notation (B). The
fifth tone (tone 0) has no pitch and is excluded.

Lijia Wang (1993) described Mandarin tones as
contours in a 5-level notation relative pitch (Fig.3
A introduced by Chao (1933)) and as music score
(Fig.3 B). This way of representing tone can be
seen as an expansion of scansion to Mandarin.

Our idea is that scansion can be conducted
in both directions, from melody to scansion (M-
scansion) and from lyrics to scansion (L-scansion).
This way, it constitutes an intermediate representa-
tion that connects melody and lyrics. Different rep-
resentations are possible, depending on whether
we represent tones in 3 heights or 5 heights. 3-
height scansion classifies tones and melody into 3
levels: high, middle and low. Meanwhile, Mandarin
tones are naturally categorized in 5 height, so t1,
t2, t3, t4, t0 are used in the 5-height scansion.

2Pinyin is the romanization system for Standard Man-
darin Chinese.
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3.2. M-scansion
We investigate four methods of creating M-scansion
from melody: heuristic rules based on neumes,
contour matching using cosine similarity, sequence
labeling through a hidden Markov model, and se-
quence completion using GPT-2. We empirically
test whether 3-height and 5-height scansion is
the better representation, by applying these meth-
ods to both. Out of our four M-scansion methods,
HMM and GPT2 require parallel data for training,
whereas neume and similarity metric doesn’t need
to be trained.

Absolute pitch from the melody need to be
mapped to relative pitch in the M-scansion. The
translation cannot proceed note for note, but must
take the context into account, because the contour
of melody is more important than pitch distance be-
tween adjacent notes. Most people perceive and
understand music through relative pitch. They rec-
ognize relationship between notes in a melody (e.g.,
intervals) regardless of the absolute pitches being
played. In addition, notes represented in absolute
pitch is sparse because it spans a wide range of
possible values (notes) and may have uneven dis-
tributions. Converting absolute pitches to relative
pitches can make the values denser without affect-
ing the distance between pitches. An example of
pitch conversion is illustrated in Tab.4. The conver-
sion is based on the difference between each pitch
and the minimum pitch value.

Pitch 74 73 69 74
Converted 5 4 0 5

Figure 4: Conversion from absolute pitch of melody
to relative pitch

We do not have a ready-made parallel dataset
for Mandarin available. This is because current
Mandarin pop songs cannot be used as they do not
sufficiently observe the tone-melody matching that
we want to create. We turn to Cantonese songs
as these obey tone-melody matching. In a way,
we learn from Cantonese songs the properties we
would like Mandarin songs to have. We determine
which songs in the iComposer parallel dataset are
likely to be Cantonese. We do this by translating
Cantonese tones into contour heights. We consider
3 different representations of Cantonese tones, all
of which operate in 5-height, as described in Ta-
ble 1.

We plot similarity measured by cosine similarity,
for each of the three representations in the iCom-
poser dataset and find a bimodal distribution as
shown in Figure 5 (blue: 3-tone; red: 5-tone; green:
6-tone). We choose the lyrics with high similarity
(≥ 0.6) for 6-tone as our training material3.

3For 3-tone, we find 255 songs with similarity above

Tone Pitch 6-tone 5-tone 3-tone
1 5-5 5 5 5
2 3-5 4 4 5
3 3-3 3 3 4
4 2-1 1 1 1
5 2-3 2.5 3 3
6 2-2 2 2 3
7 5 5 5 5
8 3 3 3 3
9 2 2 2 3

Table 1: 6/5/3-tone representation (Cantonese)

Figure 5: Similarity of pitch and Cantonese lyrics in
iComposer dataset, measured by 6/5/3-tone Can-
tonese scansion

We manually confirm that lyrics with high simi-
larity are indeed Cantonese, by inspecting 20 ran-
domly chosen songs out of the 415. All of these
were Cantonese. We also sampled 20 lyrics from
the group below 0.6 and found that all were Man-
darin or Min Nan dialect.

The 415 songs are preprocessed by filtering out
lines that start with t0 in 5-height because a Man-
darin sentence must not begin with a neutral tone.
The absolute pitch values in the dataset are shifted
so that the minimum pitch in the sequence is 0. The
resulting dataset for training M-scansion of HMM
and GPT2 has 7,502 lines for training, and 833
lines for testing (8,335 lines in total).

3.2.1. Neume detection

A neume is a fundamental element in the musical
notation of chant songs, providing an abstract rep-
resentation of how a text should be sung in relation
to relative pitch (Parrish, 1978). The longest basic
shape of a neume contains three notes, as shown
in Fig.6.

Apart from the traditional three-note neumes, we
add 5 shapes of triplets where three notes with
same pitch and another four triplets contain two
notes with same pitch. We determine the first el-
ement by comparing it to the median pitch of the
melody (default median contour segment is <m>
and <t2>). The pitch gap is assessed in relation to
the pitch difference, as depicted in Figure 2. We
measure the pitch distance in semitone, represent-
ing the gap between Tone 1 and Tone 2, which re-

0.6, and 425 for 5-tone.



14374

Figure 6: Basic three-note neumes

sults in a pitch difference of (4-3) * 2 = 2 in 5-height
scansion. After determining the first element, the
group of the first three notes is then mapped to a
three-note neume shape. Subsequently, the follow-
ing two notes in the group are assigned scansion
symbols based on the pitch distance. The window
size of 3 moves forward to the next set of triplets to
identify the neume once again.

3.2.2. Maximum similarity

Mandarin tones consist of 2-3 pitches. In order to
calculate the cosine similarity between the pitch
sequence of the lyrics and the pitch sequence of
the melody, the pitches can be simplified into their
primary pitch, as shown in Tab. 2.

Tone 1 2 3 4 0
Primary pitch in 3-height 5 3 1 5 1
Primary pitch in 5-height 4 3 1 5 0

Table 2: Primary relative pitch of tones in Mandarin

The primary pitch of Tone 1 is assigned a value of
4 due to tone sandhi (a phenomenon where tones
in speech are systematically changed in certain
contexts). In Mandarin, one kind of tone sandhi
occurs when two adjacent Hanzi characters are
both in Tone 1. The pitch of the first Hanzi in Tone
1 then decreases from 5-5 to 4-5.

There are 4× 5n−1 candidates in 5-height scan-
sion, because the first tone cannot be t0, and 3n

candidates in 3-height scansion for a melody with
n notes. To streamline the search process and
reduce computational time, a window size of 6 is
used for 5-height similarity, while a window size of
4 is employed for 3-height similarity. The primary
objective is to maximize the cosine similarity.

3.2.3. Sequence Labelling by HMM

Our next M-scansion method is to use a Hidden
Markov Model (HMM) to predict M-scansion in a
sequence labeling task. The model’s state space
corresponds to the tonal symbols (H symbols for
H-height scansion), while the observations repre-
sent the pitches in the sequence (26 pitches after
shifting from absolute pitch in the dataset).

The model is trained using the Baum-Welch al-
gorithm with labelled data. The Viterbi algorithm is
applied to decode the most probable sequence of
tonal symbols for a given pitch sequence. Model
performance is evaluated through our new auto-
matic metric called contour violation, which we in-
troduce below.

3.2.4. Sequence Completion by GPT2

The last M-scansion method involves finetuning a
GPT2-medium model for 6 epochs, using a batch
size of 8 and Cross-Entropy Loss with Adam opti-
mization, on a parallel melody-lyrics dataset.

3.2.5. M-Scansion evaluation

We propose a new automatic metric to measure
how close a contour of lyrics is to a given melody,
called contour violation. The best-possible score of
contour violation metric is 0, which means that no
violation was detected. The score is calculated line-
by-line and nomalised by length (number of Hanzi
per line). Examples for three ways of labelling con-
tour tendency symbols are shown in Tab.3, Tab.4
and Tab.5.

Pitch 64 72 72 68 70
Contour segment <bos> <rise> <flat> <fall> <rise>

Table 3: Translation from Pitch to Contour
Lyrics 窗 外 的 麻 雀

5-height t1 t4 t0 t2 t4
Contour segment <bos> <rise> <fall> <rise> <rise>

Table 4: Translation from Tone to Contour (5-height)

Lyrics 窗 外 的 麻 雀

3-height h h l m h

Contour segment <eos> <flat> <fall> <rise> <rise>

Table 5: Translation from Tone to Contour (3-height)

If there is a contradiction between corresponding
labels in the same position, i.e. <rise> vs. <fall>,
we subtract one from the score. The best possible
performance is therefore 0 in this score.

Tab. 6 shows the results. Cosine similarity per-
forms significantly better than other methods in M-
scansion, in both 3 and 5-height representation
(p < 0.014), so we adopt it going forward.

3.3. L-scansion
L-scansion converts tones of Hanzi in lyrics into
contour symbols. Fig. 3 above showed the different
pitches and contours in Mandarin. We split tones

4We use a two-tailed paired MC permutation test with
α = 0.05 and R = 10, 000.
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Accuracy Contour violation
3-ht 5-ht 3-ht 5-ht

Neume 0.41 0.29 2.68 2.49
Similarity 0.57 0.35 1.66 0.71
HMM 0.57 0.24 4.45 3.30
GPT2 0.56 0.32 3.77 3.59

Table 6: Automatic evaluation of M-scansion type
into three groups based on their primary pitches:
low <l>, middle <m> and high <h>. This is illus-
trated in Tab. 7.

Lyrics 妈 麻 马 骂 吗

Tone 1 2 3 4 0
5-height t1 t2 t3 t4 t0
3-height h m l h l

Figure 7: L-scansion in 3/5-height
We use a Chinese lyrics corpus of 36,891

lyrics from 494 singers5. In this corpus, four
lines together form a group. A total of 408,985
lyrics groups are included in the dataset, with a
train/dev/test split of 327,133 / 40,288 / 41,564.

4. Overall Model Design

Our overall model, illustrated in Fig. 8, consists of
two parts: a melody processor and a lyrics genera-
tor. Given a new melody, the melody processor first
extracts pitch and duration of each musical note by
pretty midi6. The pitch number is mapped to a key
in a piano keyboard.

We finetune mbart-large-cc25, a multi-lingual
sequence-to-sequence model (Liu et al., 2020), to
generate Mandarin lyrics. As a variant of the BART
(Bidirectional and Auto-Regressive Transformers)
(Lewis et al., 2020), mBART is pre-trained on a
diverse corpus comprising 25 languages, including
Simplified Chinese.

The pseudo-melody, as the source language,
is composed of three key elements: a keyword,
the Hanzi count, and the scansion sequence (in a
3/5-height ratio), while the lyrics are in the target
language (Mandarin).

The model undergoes training with a batch size
of 32 over a span of 3 epochs, employing cross-
entropy loss as the optimization objective.

5. Evaluation Metrics

Apart from our new metric contour violation, which
was introduced in section 3.2.5, we introduce fur-
ther new metrics for the automatic evaluation of
intelligibility and variation of lyrics.

5The Chinese lyrics corpus is available at
https://github.com/gaussic/Chinese-Lyric-Corpus

6https://github.com/craffel/pretty-midi

5.1. Intelligibility
Munro and Derwing (1995) defined intelligibility
as the extent to which a listener can understand
a given speech. As human evaluation is time-
consuming and expensive, automatic proxy metrics
are attractive; automatic intelligibility scores (Hol-
ube and Kollmeier, 1996) have been routinely used
in automatic speech recognition (ASR) (Karbasi
and Kolossa, 2022). We transfer the method to
songs. Lyrics generated by our competitor systems
are sung out by a female virtual singer from Syn-
thesizer V Studio7, using the same melodies that
we used for generation. As speech recogniser, we
use CapCut8, a software by TikTok, and report de-
viation from the original text as an error for each
line in the lyrics (reported as % of characters).

5.2. Variation
Variation is important for a lyricist, who should
be able to create distinct lyrics that suit different
melodies and moods. We measure the variation
amongst several lyrics produced by the same sys-
tem using the cosine similarity of the embeddings
generated by text2vec-base-chinese9.

5.3. Topic fit
We give our system keywords to “set the mood”, as
is common in the field of lyrics and poetry gener-
ation. Our topic fit metric is designed to measure
the degree to which lyrics obey this prompt, and
expresses this as a similarity metric (cosine of the
embeddings mentioned above). We want to punish
systems that do not react to keywords at all, as
the ability to request a certain topic is an important
control we would like to have over the lyrics. How-
ever, when observing humans, we find that while
they take the keywords into account very well, they
might not repeat the keywords themselves, but find
metaphors or paraphrases to express the topic in
more subtle ways. The ideal point on the topic fit
scale is therefore somewhere in the middle. This
was our reason for defining topic fit as the difference
from the human level of topic fit.

6. Experiment

We use our new evaluation metrics to evaluate the
performance of our scansion-based lyrics gener-
ators SmBART-3 and SmBART-5 (trained on 3 or
5-height scansion, respectively) in comparison to
four baselines: GPT2-lyrics, iComposer, SongNet ,
and GPT-3.5 Turbo with prompting.

7https://dreamtonics.com/synthesizerv/
8https://www.capcut.com/zh-tw/
9https://text2vec.org/
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Figure 8: Our scansion-based model

The GPT-2 Chinese lyrics model was finetuned
on a pre-trained model (Zhao et al., 2019) by
150,000 Chinese lyrics, using a dataset nearly
four times the size of ours. This model uses key-
words provided in groups as prompts to generate
lyrics. The number of musical notes from the given
melodies is a threshold for truncating the generated
output, with punctuation being removed from the
generated lyrics.

iComposer system takes the pitch of each line
within a given melody as an input to generate
lyrics in traditional Chinese Hanzi, which are sub-
sequently automatically converted into simplified
Chinese Hanzi using OpenCC10. In the case of our
melodies, the pitch information is extracted and
provided to iComposer. It’s important to note that
iComposer relies solely on pitch information for lyric
generation, and therefore, does not require the use
of keywords.

SongNet is trained using our dataset. However,
SongNet does not accept melodies in MIDI format.
To handle the provided melodies, we extract the
number of Hanzi in each line of melody and com-
bine them into a sequence of 4 lines by sentence
segments used for SongNet. This information is
utilized for maintaining the format, ensuring rhyme,
and creating segment embeddings within SongNet.
Furthermore, in the training process, we employ
keywords instead of Cipai11.

We first use GPT-3.5 Turbo with zero-shot setting
to generate Mandarin lyrics per line. The prompt
we use is shown in Tab. 8.

We also invite five professional lyricists with over
8 years of experience to participate in the compe-
tition. Each lyricist is provided with keywords and
melodies to work with. They are each asked to write
lyrics for two melodies, each within a one-hour time
constraint, which prevents excessive refinement of
their lyrical content.

10https://github.com/BYVoid/OpenCC
11A title representing a tonal pattern in classical Chi-

nese poetry.

To generate keywords, we apply the TextRank
(Mihalcea and Tarau, 2004) algorithm to a dataset
of 15,000 Mandarin lyrics crawled from the web.
From the returned words, we select the 40 most
frequent ones, 4 for each melody, based on their
frequency in this dataset, as keywords for our ex-
periment. In cases where multiple keywords have
the same English meaning, we remove redundant
duplicates. We randomly select 4 keywords for
each of our 10 melodies. Table. 7 shows some
examples of the sets of keywords we create this
way.

黑夜(night),无情(ruthless),泪水(tear),眼神(eye spirit)
风雨(wind and rain),结果(result),心情(mood),朋友(friend)
梦想(dream),世间(world),地方(place),流浪(straying)

Table 7: Example keyword groups

While creating new materials by actual com-
posers incurs additional costs, we chose this ap-
proach to enhance the meaningfulness of our eval-
uation compared to using existing melodies. Utiliz-
ing existing melodies carries the risk of introducing
bias, as the lyrics corresponding to a given melody
might already be included in the training dataset.
We prepare 10 new melodies encoded in MIDI. To
mitigate the potential influence of the melody, we
regulate the vocal range and tempo of each com-
position12. This range covers the lower register of
the Contralto and extends to the uppermost notes
of the Soprano (Peckham, 2005). The number of
note in each line of melody is from 7 to 12.

7. Results

Figure. 9 presents the results of our evaluation us-
ing the new metrics. Our systems are designed
for maximum tone–melody match, so we report
contour violation results first. We can see that
SmBART-5 (1.83% contour segment error rate) sig-

12BPM (beats per minute) of melodies was 120. Vocal
range stretches from E3 to C6.
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Figure 9: Automatic evaluation results (boldfaced is best automatic system, if significantly different from
next-best system)/

nificantly outperforms all other systems. SmBART-
3, the next best system at 2.65%, is significantly
better than the next best automatic system (iCom-
poser at 4.65%). In fact, GPT2-lyrics, iComposer,
SongNet, GPT3.5-P and humans are indistinguish-
able on this metric. The human “ceiling” does not
act as a ceiling here: our expert lyricists’ lyrics
show a relatively high contour violation of 4.83%.
We didn’t ask the humans specifically to fit the lyrics
to the melody and they were under time pressure
when they wrote the lyrics. While songs with good
melody–lyric fit are pleasant to listen to, they also
require a higher level of effort for humans, as the
search space is so large. We therefore do not take
the fact that our experts didn’t produce such lyrics
as an indication that systems should not aim for the
fewest possible contour variations. Out of all auto-
matic systems, SongNet had the highest contour
violation rate at 5.13% (significantly different from
both SmBART models). Both neural systems per-
form badly, GPT-3.5-P at 4.78% and GPT2-lyrics
at 4.85, which is not surprising given their design:
these systems do not have access to the melody.

We next turn to intelligibility, an important as-
pect of lyrics quality. In these results, the three
numerically best systems – SmBART3 (2.41%);
SongNet (3.00%); SmBART-5 (3.40%) – are in-
distinguishable from each other. However, out of
the three, only SmBART-3 is significantly better
than GPT2-lyrics, and it is also marginally different
from the humans. These pairwise significance re-
sults, taken together, show a slight preference for
SmBART3. GPT3.5P is significantly worse than
SmBART3, SmBART5 and SongNet.

The intelligibility metric does not have a clear win-
ner, but it has a clear loser. iComposer’s error rate
is more than 1000% that of SmBART-3. It is signifi-
cantly worse than all systems except from GPT3.5-
P. The reason is for iComposer’s bad performance
may have to do with the fact that it was trained using
a melody-lyrics parallel dataset of 1,000 songs with-
out language labels, half of which are Cantonese
songs and the other half songs written in Mandarin
and other languages. The small size of training
dataset prevents iComposer from generating flu-
ent sentences. Also, the vocabulary and syntax
between Mandarin and the other languages is dif-

ferent. If iComposer generates lyrics that are Can-
tonese rather than Mandarin, it gets hurt by the fact
that the synthesiser we use is singing in Mandarin
pronunciation. We also exploit Cantonese lyrics,
but we avoid problems with vocabulary and syn-
tax because we the only information we use from
Cantonese are the tones and their fit to the melody.

Let us now turn to our proxy metrics for creativ-
ity. In our variation metric, Human lyrics show the
best performance, as expected. SmBART-3 (.628),
SongNet (.637) and GPT2-lyrics (.637) are joint win-
ners (indistinguishable amongst themselves), but
only SmBART-3 significantly better than the next-
best tier of systems SmBart-5 (.658) and GPT-3.5
(.685). SmBART-5’s relatively low performance
here might come from the fact that it is limited
by the strict matching between tone of lyrics and
melody, which reduces the number of the lyric can-
didates that fits the melody. Running out of candi-
dates is one of the biggest dangers for generative
models such as ours. In comparison, SmBART-3
model shows a better balance between melody–
tone matching and variation. The lowest performer
is iComposer at .718 (significantly different to all
other models).

The next creativity metric is perplexity. All sys-
tems perform in the range of .67-.73, with SmBART-
5 and humans jointly at the high range. The only
significant difference we can establish in this met-
ric, however, is that iComposer is worse than all
other systems. High perplexity can mean that the
sentence is creative or that it is not fluent. We con-
clude that this is maybe the least informative of our
creativity metrics.

When it comes to topic fit, we can see that
SmBART-3, SmBART-5, SongNet and GPT3.5-P
are indistinguishably close to the human “medium
fit” to keywords, at .05, .06, .07, and .08 respectively.
These four systems, however, are significantly bet-
ter than GPT2-lyrics and iComposer, which is not
surprising as these systems cannot take keywords
as their input.

Taking all metrics into account, we feel that
SmBART-3 has the best overall profile. SongNet
and SmBART-5 are also not bad, but while
SmBART-3 is the numerically best performer in
all metrics except Contour violation, and even in
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that category it is statistically indistinguishable from
the numerically best system (SmBART-5). Large
language models, at least without extensive prompt-
ing, fared less good in our experiment. We believe
this demonstrates advantages of our architecture,
which offers direct symbolic control over crucial as-
pects of lyrics generation. SongNet has different
strengths and weaknesses. It can not use melody
directly, but it has a sophisticated segment embed-
ding to ensure the integrity of generated lines.

Our prompting experiments with GPT-3.5-P show
mixed results. We find that the proper way of
prompting made a huge difference, and we de-
signed a way to make it generate lyrics with the
correct number of Hanzi characters. However, like
GPT-2 lyrics, many of its lines exhibit the same
issue of being cut off due to a sentence length
threshold.

8. Conclusion

We have shown that our scansion-based hybrid
models are able to generate lyrics that are better
than competitors in the matching between tonal
contour and melody contour (161% and 81% im-
provement in error rate to next-best system, respec-
tively). This was our main motivation behind the
creation of the scansion method. Scansion works
by comparing the scansion corresponding to the
melody (M-scansion) with a scansion correspond-
ing to the lyrics (L-scansion). We are also interested
in a song’s potential for dissemination. Lyrics hat
are easy to understand are more likely to be re-
membered and sung, so more intelligible songs are
preferable. Our automatic method of measuring
intelligibility is based on a synthesizer and a STT
model. We also present a set of automatic metrics
that can potentially be used to pinpoint creativity,
although the results are less conclusive than those
for intelligibility and tone–melody match.

One of our contributions concerns corpus-
building. We present a method for creating pseudo
melodies from lyrics, enabling the creation of po-
tentially very large parallel pseudo-melody–lyrics
parallel datasets. These can stand in for melody–
lyrics datasets in many supervised situations. One
of the tricks we used in gathering information for
our M and L-scansion is to use a different tonal
language, Cantonese, to estimate scansion match-
ing. The fact that this transfer from Cantonese to
Mandarin lyrics works so well indicates the pos-
sibility of a universal connection between melody
and lyrics. Practically, our use-case is one more
demonstration that low resource languages can
derive advantages from analogous datasets origi-
nating from other languages, in this case one with
an abundance of parallel datasets.

Finally, our prompting strategy worked well only

when we forced very specific output requirements
onto GPT-3.5, namely a tabular format. We hy-
pothesize that this could be effective for not only
for languages where the minimum singing unit is a
character (as in Mandarin), but also for languages
with syllabic structures, such as English.

9. Limitations

Our model is based on the idea of scansion that
is only influenced by the pitch of musical note and
relative pitch of Hanzi. The model does not use the
note duration which is also important information
for lyricists during writing. The model may gener-
ate lyrics that fit the melody’s pitch but fail to match
the intended rhythm, which can also cause Monde-
green. It ignored the influence of consonant and
vowel of Hanzi as well.

Our model generates lyrics line by line. Four
lines, as a chorus, might be logically or thematically
inconsistent.

The models used in the task of lyrics genera-
tion often assume that Hanzi and musical note are
mapped one-to-one. However, in actual songwrit-
ing, no matter in tonal and non-tonal languages, a
one-to-many mapping between syllables and notes
is common. This oversimplification to one-to-one
alignment can hinder the model’s ability to generate
lyrics resembling those of actual songs.

Rhyming is widely regarded as a feature of lyrics,
making them easier to remember. Our model can-
not guarantee that the generated lyrics will rhyme.

The keywords selected for the experiments were
chosen because of their high frequency as key-
words in each line. In real songs, core keywords
often appear in a title or chorus, rather than in every
line of the lyrics.

10. Ethics Statement

The application scansion might influence the pro-
tection of the copyright of songwriters. Our lyricists
contributed voluntarily and our experiment passed
our internal ethics review. We respect the copyright
of the lyricists and no personal data is held in any
form.
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A. GPT3.5 prompt

Act as a professional Mandarin lyricist.
The requirements of the format how you write the
lyrics:
1. Generate a line of lyrics without punctuation.
2. The line should be generated in a table labelled
from 1 to N.
3. Each cell contains only a single Hanzi.
4. The keyword for the lyrics is <keyword>.

Table 8: Our prompt to GPT-3.5, using a tabular
format of lyrics, with N being the sentence length.

B. Scansion as intermediate for
SmBART-3 model

LYRICS Hanzi 你 们 太 想 开 心

Tone T2 T0 T4 T3 T1 T1
L-scansion m l h l h h
M-scansion m l h l h h

MELODY Absolute Pitch 72 68 78 70 76 76

Table 9: Representation of a song. Blue lines are
raw input; black lines are created by our scansion
analysis in 3-height.
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