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Abstract
The Area Under Curve measure (AUC) seems apt to evaluate and compare diverse models, possibly without
calibration. An important example of AUC application is the evaluation and benchmarking of models that predict
faithfulness of generated text. But we show that the AUC yields an academic and optimistic notion of accuracy that
can misalign with the actual accuracy observed in application, yielding significant changes in benchmark rankings.
To paint a more realistic picture of downstream model performance (and prepare a model for actual application), we
explore different calibration modes, testing calibration data and method.
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1. Introcuction

In Natural Language Processing (NLP), we often
want to compare diverse models in diverse domains
and tasks. Consider Figure 1 that shows the an-
swer of a dialog system to a user input. On the
machine-generated output, we would like to use a
model to judge whether the answer is faithful.1 For
this, we could draw from a huge shelf of models,
including in/out-domain trained classifiers, or even
metrics such as BERTscore (Zhang et al., 2020).

But how do we evaluate and compare such di-
verse models? When the target labels are binary,
e.g., as they are indeed for text faithfulness (but
also in many other NLP/ML tasks), it seems ap-
pealing to employ the Area Under Curve (AUC)
measure. Indeed, AUC has a nice probabilistic
interpretation and makes model calibration (i.e.,
searching for a decision threshold) unnecessary.
Mainly for these reasons, the AUC has been explic-
itly recommended for evaluation and benchmarking
of models that predict faithfulness (Honovich et al.,
2022; Gekhman et al., 2023; Zha et al., 2023).

Yet, an issue is that AUC has an academic view
on model power. In a “real-world” application, we
cannot forgo model calibration, as we ultimately
have to make decisions. In our example of text
faithfulness, there are clear ramifications of differ-
ent decision thresholds: with a false-positive we
run a risk of releasing false or even harmful out-
put; a false-negative may lead to censoring of good
system output.

1This particular task is well motivated: Today, text gen-
eration models produce millions of texts each day, and
their output can still be unfaithful, with some assessing
that LLM hallucination are inevitable (Xu et al., 2024).
Thus, models that can reliably and efficiently assess
faithfulness of generated text are of growing importance
(Falke et al., 2019; Kryscinski et al., 2020; Wang et al.,
2020; Maynez et al., 2020; Gekhman et al., 2023; Zha
et al., 2023; Steen et al., 2023; Zhang et al., 2024).
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Figure 1: In NLP we witness diverse domains and
tasks (here: dialog, faithfulness), and wonder about
the predictive power of scores by diverse mod-
els (here: e.g., the BERT/BARTscore metric, task-
focused systems such as the automatic Q/A metric
‘Q2’ or Natural Language Inference systems, possi-
bly also LLMs). While the AUC seems appealing
as an assessment measure, it bears pitfalls.

In this paper, we show that such important real
world considerations tend to be neglected by the
AUC, and find that its theoretical perspective on
system performance may not align with actual per-
formance in applications. Our findings indicate that
a main factor for this lies in the diversity of model
score and data distributions. Indeed, we argue that
AUC should not be used as a sole measure for
model evaluation and benchmarking, particularly
when models and data are diverse.

In sum, our main contribution is two-fold:
1. We show that the evaluation of diverse mod-

els with AUC can be misleading, and that AUC pre-
dicts mostly only the optimistic scenario of direct
in-domain and in-distribution calibration.

2. We test different calibration strategies (varying
development domain and method) for i) learning
how to develop calibrated classifiers from diverse
models and ii) best estimate their expected down-
stream classification performance.

Our code is available at https://github.
com/flipz357/SchroedingersEvaluation.
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Figure 2: ROC curve examples of different models.

2. Preliminaries

AUC (or AUROC) is the Area Under the Receiver
Operating Characteristic Curve (Fawcett, 2006).
Given data {(xi, yi)}ni=1 with yi a binary label and
xi an input mapped by a model to a score si ∈ R,
we can set threshold θ̂ to get a true positive rate
TPR(θ̂) and false positive rate FPR(θ̂):

TPR(θ̂) =
TPθ̂

TPθ̂ + FNθ̂

FPR(θ̂) =
FPθ̂

FPθ̂ + TNθ̂

.

Given I[c] returns 1 if the condition c is true, and
0 else, the TPθ̂ is the amount of true positives∑n

i=1 I[si > θ̂ ∧ yi = 1]; TNθ̂ is the amount of
true negatives

∑n
i=1 I[si ≤ θ̂ ∧ yi = 0]; FPθ̂ is the

amount of false positives
∑n

i=1 I[si > θ̂ ∧ yi = 0]
andFNθ̂ the amount of false negatives

∑n
i=1 I[si ≤

θ̂ ∧ yi = 1]. With this, we can plot the receiver-
operator curve (ROC) with TPR on the y-axis and
FPR on the x-axis, and get the area under curve
(AUC), which equals 1 for a perfect classifier and
0.5 for a random classifier (cf. Figure 22).

The AUC score has an intuitive interpretation:
Given two data instances with opposing labels, the
AUC score tells us the probability that our model
assigns a greater score to the positively labeled in-
stance than to the instance with the negative label.

AUC seems appealing (theoretically): Besides
its intuitive interpretation, the AUC score allows
simple evaluation by factoring out model calibration
(determining a threshold). Thus we can assess and
compare seemingly fairly the theoretical classifica-
tion power of diverse models such as metrics as
well as non-calibrated classifiers (e.g., classifiers
trained on different domains), and of course also
standard classifiers that are already calibrated.

However, with this theoretic view on model power,
the AUC makes us potentially neglect the final goal
of most NLP systems: they should assign cate-
gorical decisions and show decision skill. If we’d

2Figure under public CC-BY-SA-4.0 license from pub-
lic domain and further refined by the authors of this paper.

presume that calibration of diverse models would
be of same difficulty for any model, relying on AUC
would perhaps seem fine. However, diverse mod-
els may return diverse score distributions. Data for
finding a suitable threshold also can be diverse and
noisy. Therefore we hypothesize that calibration
suitability of models is also diverse, possibly affect-
ing their real-world classification performance, with
ramifications for the utility of AUC.

3. Experimental setup

Data sets are adopted from the popular TRUE
benchmark (Honovich et al., 2022). TRUE com-
bines a rich variety of faithfulness domains in a stan-
dardized format: summarization (Pagnoni et al.,
2021; Maynez et al., 2020; Wang et al., 2020;
Fabbri et al., 2021), knowledge-grounded dialog
(Honovich et al., 2021; Gupta et al., 2022; Dziri
et al., 2022), and paraphrases (Zhang et al., 2019).3
TRUE explicitly recommends AUC evaluation.

Metrics that we include are BERTscore (Zhang
et al., 2020) using either DeBERTa (He et al., 2020),
henceforth denoted by DBERTsc, or RoBERTa (Liu
et al., 2019), denoted by RBERTsc. As recom-
mended by Honovich et al. (2022), we take their
precision predictions, which should better assess
faithfulness than F1 or recall. Then we also show
BARTsc(ore) (Yuan et al., 2021), BLEURT (Sellam
et al., 2020) and BLEU (k=4) (Papineni et al., 2002).

Models are also diverse. Some are NLI-based
(a closely related task), while others employ elabo-
rate scoring techniques, e.g., by analyzing a cross-
product of sentences. As in TRUE, we employ
ANLI (Honovich et al., 2022) which is a T5-11B
(Raffel et al., 2020) LLM trained on ANLI (Nie et al.,
2020). SummacZS (Laban et al., 2022) evaluates
an NLI model on sentence pairs and averages max-
imum entailment probabilities, and Q2 (Honovich
et al., 2021) integrates a question-answering step.

3.1. Measurement of expected accuracy
Given are datasets d1, ..., dn and a diverse model
m that outputs a real number (‘score’). It is intuitive
to transform the score into a binary prediction by
fitting a logistic curve with a bias βm

0 and a weight
βm
1 , also known as Platt scaling (Platt et al., 1999):

p(x,m) =
1

1 + e−(βm
0 +βm

1 m(x))
(1)

With this, we can make a decision with natural prob-
ability threshold θ = 0.5:

f(x,m) =

{
1, if p(x,m) > 0.5

0, otherwise.
(2)

3Summarization: quags, summeval, frank, quags-x,
quags-c. Dialog: begin, dialfact, q2. Paraphrase: paws.
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data set BLEU QuestE FactCC SummaCC SummacZS BARTSc RBERTSc Q2 ANLI DBERTSc BLEURT

qags-c 63.9 | 11 64.2 | 10 76.4 | 6 79.6 | 5 80.9 | 3 80.9 | 4 74.8 | 7 83.5 | 1 82.1 | 2 69.1 | 9 71.6 | 8
summeval 60.2 | 11 70.1 | 9 75.9 | 6 79.8 | 3 81.7 | 1 73.5 | 7 73.0 | 8 78.8 | 4 80.5 | 2 77.2 | 5 66.7 | 10
frank 78.0 | 10 84.0 | 7 76.4 | 11 88.9 | 3 89.1 | 2 86.1 | 5 80.8 | 9 87.8 | 4 89.4 | 1 84.3 | 6 82.8 | 8
qags-x 48.6 | 11 56.3 | 7 64.9 | 5 76.1 | 3 78.1 | 2 53.8 | 8 52.8 | 9 70.9 | 4 83.8 | 1 49.5 | 10 57.2 | 6
dialfact 72.5 | 7 77.3 | 5 55.3 | 11 81.2 | 3 84.1 | 2 65.6 | 8 62.9 | 10 86.1 | 1 77.7 | 4 64.2 | 9 73.1 | 6
mnbm 49.3 | 11 65.3 | 6 59.4 | 10 67.2 | 4 71.3 | 2 60.9 | 9 65.5 | 5 68.7 | 3 77.9 | 1 62.8 | 8 64.5 | 7
begin 84.6 | 5 84.1 | 6 64.4 | 11 81.6 | 9 82.0 | 8 86.3 | 4 87.1 | 2 79.7 | 10 82.6 | 7 87.9 | 1 86.4 | 3
q2 64.3 | 10 72.2 | 6 63.7 | 11 77.5 | 2 77.4 | 3 64.9 | 8 64.8 | 9 80.9 | 1 72.7 | 4 70.0 | 7 72.4 | 5
paws 77.3 | 7 69.2 | 9 64.0 | 11 88.2 | 2 88.2 | 3 77.5 | 5 69.3 | 8 89.7 | 1 86.4 | 4 77.5 | 6 68.3 | 10
mean 66.5 | 11 71.4 | 7 66.7 | 10 80.0 | 4 81.4 | 2 72.2 | 5 70.1 | 9 80.7 | 3 81.5 | 1 71.4 | 8 71.4 | 6

Table 1: AUC evaluation (x100).

data set BLEU QuestE FactCC SummaCC SummacZS BARTSc RBERTSc Q2 ANLI DBERTSc BLEURT

qags-c 51.9 | 9 58.3 | 8 51.9 | 10 59.6 | 7 65.5 | 4 68.9 | 1 68.5 | 2 63.8 | 5 67.7 | 3 60.0 | 6 51.9 | 11
summeval 18.5 | 9 51.8 | 5 18.4 | 10 82.9 | 3 82.6 | 4 22.0 | 6 19.1 | 8 86.2 | 1 85.5 | 2 21.3 | 7 18.4 | 11
frank 66.8 | 9 73.3 | 7 66.8 | 10 79.4 | 1 74.1 | 6 68.6 | 8 77.3 | 4 78.8 | 2 74.7 | 5 77.5 | 3 66.8 | 11
qags-x 51.5 | 7 51.5 | 8 51.5 | 9 61.1 | 4 69.0 | 2 52.3 | 6 53.1 | 5 62.3 | 3 75.7 | 1 51.0 | 11 51.5 | 10
dialfact 62.0 | 6 66.1 | 5 56.2 | 11 66.3 | 4 69.3 | 3 61.4 | 9 61.0 | 10 74.4 | 1 70.4 | 2 61.5 | 8 61.7 | 7
mnbm 89.8 | 2 89.8 | 3 88.2 | 7 89.4 | 5 88.8 | 6 89.8 | 1 87.9 | 8 86.7 | 9 73.6 | 10 64.2 | 11 89.8 | 4
begin 74.5 | 8 76.2 | 6 70.8 | 11 76.9 | 5 80.3 | 1 72.2 | 10 79.9 | 2 76.0 | 7 79.1 | 3 78.9 | 4 72.5 | 9
q2 44.0 | 9 53.1 | 5 42.3 | 11 59.6 | 4 63.9 | 2 42.4 | 10 45.6 | 7 73.2 | 1 60.5 | 3 48.3 | 6 44.1 | 8
paws 50.6 | 8 49.9 | 9 53.0 | 7 80.7 | 1 69.2 | 4 46.4 | 10 53.7 | 6 73.9 | 3 78.9 | 2 67.4 | 5 44.4 | 11
mean 56.6 | 9 63.3 | 5 55.4 | 11 72.9 | 4 73.6 | 3 58.2 | 8 60.7 | 6 75.0 | 1 74.0 | 2 58.9 | 7 55.7 | 10

Table 2: Expected accuracy evaluation (x100).

So calibrating our model m means finding suitable
βm
0 , βm

1 . To calculate the generalization accuracy
of m, it is intuitive to adopt the following strategy:
For any unseen testing data set di, we calibrate Eq.
1, by tuning βm

0 , βm
1 on all dj ̸=i. Finally, we get the

expected accuracy on our testing data set di:

acc(di) =

∑
(x,y)∈di

I[f(x,m) = y]

|di|
. (3)

Note that in contrast to AUC, our expected accu-
racy measurement is real-world oriented: Assume
we have a metric such as BERTScore (Zhang et al.,
2020) – how would an applicant transform this met-
ric into a faithfulness predictor for filtering their gen-
eration system output? Clearly, they would need to
perform calibration using development data. With
our setup, we simulate this important scenario and
obtain an expected accuracy score.

4. AUC mispredicts accuracy

4.1. Experiment goal
The main goal of our experiment is to investigate
our hypothesis that AUC can yield a wrong picture
about actual performance of models. To this aim,
we conduct a real-world oriented downstream task
simulation of diverse faithfulness models, measur-
ing their expected accuracy (as detailed above).

4.2. Experiment results
We compare Table 1 (AUC of models) against Table
2 (expected accuracy). Interestingly, changes are
more drastic than we had initially suspected. In fact,

they even result in a change of the best system on
the benchmark: the Q/A based system Q2 ranks
third after ANLI and SummacZS in average AUC,
but according to the average accuracy, it obtains
rank 1 (an improvement of two ranks). Then we also
observe interesting cases of ranking changes of
other metrics: for instance, BLEU yields a low rank
according to AUC in the mnbm data set (rank 11),
but performs much better accuracy-wise (rank 2).

4.3. Studying score distribution
We saw that AUC may not predict estimated down-
stream accuracy. But why would some models be
more negatively/positively affected by calibration?
A reason may lie in the models’ score distribution
and their suitability for calibration. Therefore, we
investigate the models’ empirical distributions.

Why would Q2 be preferable over ANLI? This
question is interesting, since we saw that the best
performing models differ between AUC and ex-
pected downstream accuracy. The two models are
also diverse, since Q2 employs a Q/A module while
ANLI is an LLM trained on NLI. Their histograms
(Figure 3) differ much: while both ANLI and Q2
tend to the extremes of the spectrum, the effect is
much more pronounced for ANLI. Throughout the
scale, Q2 appears to be more ‘balanced’. For the
ANLI distribution, the data already seems harshly
discriminated in two classes, perhaps increasing
the difficulty of finding a generalizable threshold.

Less variance → easier calibration? We create
two groups of models: those that obtain a better
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metric names and variance mean
better B Q R Q2 D
metrics 0.03 0.02 0.02 0.14 0.02 0.05
worse F SC SZ BA A BL
metrics 0.16 0.08 0.20 0.01 0.24 0.03 0.12

Table 3: Variance of metric scores that perform
better/worse under expected accuracy

.
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Figure 3: Histograms of best performing models Q2
and ANLI. Q2 performs best according to expected
accuracy, ANLI performs best according to AUC.

rank according to accuracy, and those that obtain
a worse rank. The histograms are shown in Figure
4. We see that models that are relatively more neg-
atively affected by calibration tend to show more
skewed distributions. The scores of the better mod-
els, however, seem more balanced and also exhibit
a smaller average variance (Table 3: avg. variance
of better metrics=0.05; avg. variance of worse met-
rics=0.12).

5. Analysis

5.1. Effect of calibration technique
We want to study the effects of different approaches
to calibration. The diversity of models and data in
TRUE provides an interesting study environment.
Our first setup is aimed at testing the classification
performance in dependence of the nature of the
training data. This lets us assess domain effects
and generalization power as calibration effects. For
the second setup we investigate different calibration
algorithms, to shed more light on the question: How
to best transform a diverse model into a faithfulness
assessment?

Setup I: Domain Effects & Generalization. We
denote the cross-domain setup from the section
before as Xdomain. Additionally, we introduce the
arguably hard setup of OutDomain which is interest-
ing since it only allows training on out-domain train-
ing data and thus tests the transfer to new domains.

0.0 0.2 0.4 0.6 0.8 1.0
0

10000

20000

30000

40000

50000

60000

70000

80000

Co
un

t

BLEU
QuestE
RoBERTSc
Q2
DeBERTSc

0.0 0.2 0.4 0.6 0.8 1.0
0

10000

20000

30000

40000

50000

60000

Co
un

t

FactCC
SummaCC
SummacZS
BARTSc
ANLI
BLEURT

Figure 4: Top: histograms of models that perform
better under expected accuracy (vs. AUC). Bottom:
histograms of models that perform worse.

Other setups are InDomain that allows calibration
only in in-domain training data, and InData, where
we have in-domain and in-task training data, where
we would naturally expect the best although much
less generalizable performance. For InData, we
estimate performance on a random 80/20 train/test
split of a data set, averaged over 100 repetitions.

Setup II: Calibration method effects. The intu-
itive logistic curve calibration is by far not the only
possible calibration method. In fact, it has also
been criticized (Silva Filho et al., 2023), e.g., due
to observed over-confidence effects.

To test another method of probabilistic calibra-
tion, we run experiments with Isotonic regression
(Niculescu-Mizil and Caruana, 2005). To every
training datum (xi, yi), isotonic finds a ŷi s.t. (yi −
ŷi)

2 is minimized and ∀j : xj ≥ xi =⇒ ŷj ≥ ŷi.
Prediction of an unseen datum xk is then performed
through interpolation: ŷk = ŷl +

xk−xl

xr−xl
(ŷr − ŷl) if

xl ≤ xk ≤ xr, and else either ŷl (if xk < xl) or ŷr (if
xk > xr). Additionally, we test a non-probabilistic
(θ ̸= 0.5) method of decision stump that is a deci-
sion tree with depth=1, searching for one threshold
that empirically best divides the training data.

Results. Table 4 shows the mean (over each data
set) accuracy results for variations of calibration
method and variations of calibration data. We make

14403



metric BLEU QuestE FactCC SummaCC SummacZS BARTSc RBERTSc Q2 ANLI DBERTSc BLEURT AVG
AUC 66.5 | 11 71.4 | 7 66.7 | 10 80.0 | 4 81.4 | 2 72.2 | 5 70.1 | 9 80.7 | 3 81.5 | 1 71.4 | 8 71.4 | 6 73.9
Xdomain 56.6 | 9 63.3 | 5 55.4 | 11 72.9 | 4 73.6 | 3 58.2 | 8 60.7 | 6 75.0 | 1 74.0 | 2 58.9 | 7 55.7 | 10 64.0
-Isotonic 55.5 | 10 65.0 | 5 62.7 | 6 70.2 | 4 71.4 | 3 57.2 | 9 58.8 | 8 75.7 | 1 74.0 | 2 59.2 | 7 55.0 | 11 64.1
-stump 57.6 | 9 68.0 | 5 59.3 | 6 70.9 | 3 70.6 | 4 56.8 | 11 57.6 | 8 75.7 | 1 74.1 | 2 58.0 | 7 56.9 | 10 64.1
OutDomain 56.3 | 10 62.8 | 5 56.7 | 9 72.3 | 4 73.3 | 3 58.4 | 8 60.5 | 7 74.3 | 1 73.8 | 2 60.7 | 6 55.1 | 11 64.0
-Isotonic 55.5 | 10 63.0 | 5 60.7 | 6 63.8 | 4 71.9 | 2 57.2 | 9 58.3 | 8 74.7 | 1 71.6 | 3 59.6 | 7 55.0 | 11 62.8
-stump 55.4 | 10 63.3 | 5 62.7 | 6 64.1 | 4 69.1 | 3 56.8 | 9 57.6 | 8 75.2 | 1 71.7 | 2 58.1 | 7 54.7 | 11 62.6
OutData 54.3 | 11 62.8 | 5 54.8 | 10 73.9 | 2 73.9 | 3 55.7 | 8 56.1 | 7 74.7 | 1 72.5 | 4 56.4 | 6 55.5 | 9 62.8
-Isotonic 57.9 | 6 61.4 | 5 55.5 | 9 67.7 | 4 71.4 | 2 55.3 | 10 56.2 | 8 73.9 | 1 69.0 | 3 54.4 | 11 56.8 | 7 61.7
-stump 56.2 | 7 60.7 | 5 55.4 | 10 65.2 | 4 67.2 | 2 54.6 | 11 55.7 | 9 73.5 | 1 67.0 | 3 56.0 | 8 56.6 | 6 60.7
InDomain*** 51.2 | 10 69.7 | 4 57.3 | 8 74.9 | 3 75.7 | 2 61.8 | 7 50.8 | 11 77.0 | 1 66.9 | 5 51.9 | 9 64.2 | 6 63.8
-Isotonic*** 65.1 | 8 70.6 | 5 61.4 | 9 75.3 | 4 77.0 | 2 65.4 | 7 48.8 | 11 77.3 | 1 76.5 | 3 51.0 | 10 67.0 | 6 66.9
-stump*** 61.2 | 9 70.4 | 5 61.9 | 8 75.6 | 4 76.8 | 3 66.4 | 7 48.4 | 10 77.6 | 2 77.7 | 1 47.0 | 11 69.3 | 6 66.6
InData 66.9 | 11 70.1 | 8 69.1 | 10 75.5 | 4 77.7 | 2 70.2 | 7 69.6 | 9 79.3 | 1 75.7 | 3 70.8 | 5 70.3 | 6 72.3
-Isotonic 69.9 | 11 71.3 | 7 70.3 | 10 77.6 | 4 78.2 | 3 72.7 | 5 70.8 | 9 78.4 | 1 78.4 | 2 71.0 | 8 71.9 | 6 73.7
-stump 69.6 | 9 70.3 | 8 69.4 | 11 76.7 | 4 77.4 | 3 71.2 | 6 69.4 | 10 78.5 | 1 78.4 | 2 70.3 | 7 71.3 | 5 73.0

Table 4: Different modes of calibration, varying calibration method and training data. Mean performance
over all data sets. In each group of three lines: The first line is calibration via logistic regression, the second
line is isotonic regression, and the third is decision stump. Note the assumptions on data availibility: Indata
requires annotated in-domain in-task training; InDomain needs in-domain training; XDomain lessens this
dependence, and OutDomain is the most general setup. ***: A data subset (PAWS) is calibrated InData
(instead of Indomain), since it is the only data set of domain paraphrase/wiki.

metric BLEU QuestE FactCC SummaCC SummacZS BARTSc RBERTSc Q2 ANLI DBERTSc BLEURT AVG
AUC 66.5 | 11 71.4 | 7 66.7 | 10 80.0 | 4 81.4 | 2 72.2 | 5 70.1 | 9 80.7 | 3 81.5 | 1 71.4 | 8 71.4 | 6 73.9
κ, XDomain 12.7 | 10 23.1 | 5 14.7 | 9 31.4 | 4 34.5 | 3 8.8 | 11 18.9 | 7 40.7 | 1 40.7 | 2 19.3 | 6 18.9 | 8 24.0
κ, OutDomain 4.3 | 10 17.7 | 6 13.7 | 8 30.1 | 4 33.9 | 3 8.5 | 9 17.1 | 7 39.8 | 1 39.6 | 2 19.3 | 5 1.4 | 11 20.5
κ, Outdata 14.7 | 7 23.2 | 5 10.7 | 10 42.8 | 3 45.1 | 2 10.5 | 8 11.3 | 9 46.4 | 1 41.1 | 4 9.8 | 11 15.0 | 6 24.6
κ, Indomain 21.4 | 8 28.3 | 6 18.1 | 10 37.9 | 4 42.7 | 3 25.1 | 7 18.2 | 9 45.1 | 2 46.8 | 1 14.9 | 11 29.7 | 5 29.8
κ, Indata 21.5 | 10 25.2 | 8 17.3 | 11 39.9 | 4 41.4 | 3 28.9 | 5 24.3 | 9 45.1 | 1 42.1 | 2 27.1 | 6 26.0 | 7 30.8

Table 5: Evaluation with KAPPA (κ) after calibration reveals the hardness of predicting faithfulness. For
each model/column and calibration data/row, the best score over three calibration methods is displayed.

some observations: i) As expected, InData is the
easiest setup, yielding highest accuracy (up to 73.7
accuracy with isotonic calibration). ii) Out-domain
generalized calibration is hard. Here Logistic cal-
ibration provides overall best calibration (64.0 ac-
curacy). iii) Again, there is no ranking that is same
as under AUC, and all calibrated accuracy scores
tend to be much lower thatn AUC. iv) different cali-
bration methods can yield different results, but we
cannot make generalizing statement as to which
calibration method would be overall preferable.

Notably, only in the easy and strongly data-
dependent setup of InData calibration, AUC some-
what aligns with the expected accuracy. The rela-
tively high scores and easiness of this setup sug-
gest that AUC is an optimistic performance mea-
sure, especially when data and models are diverse.

5.2. Other classification metrics

Calibrated classifiers can be evaluated with metrics
other than accuracy. We show the KAPPA score
as a chance-corrected accuracy measure with a
random baseline score of 0.0, correcting for label
skew (Opitz, 2024). Results in Table 5 reveal the
hardness of the task: Many measures are not much
better than the chance baseline, even the best ob-

served KAPPA score still seem low.

6. Conclusions

When evaluating diverse models as binary classi-
fiers, it seems appealing to use the AUC score for
benchmarking and evaluation (specifically since it
factors out calibration). But we show that AUC may
fail to predict the accuracy that can be expected in
an application. Our work can be both interpreted as
a warning to not rely (only) on AUC for evaluation
as well as a call for reflecting on application when
evaluating diverse decision models.
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