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Abstract
We introduce the Situated Corpus Of Understanding Transactions (SCOUT), a multi-modal collection of human-robot
dialogue in the task domain of collaborative exploration. The corpus was constructed from multiple Wizard-of-Oz
experiments where human participants gave verbal instructions to a remotely-located robot to move and gather
information about its surroundings. SCOUT contains 89,056 utterances and 310,095 words from 278 dialogues
averaging 320 utterances per dialogue. The dialogues are aligned with the multi-modal data streams available
during the experiments: 5,785 images and 30 maps. The corpus has been annotated with Abstract Meaning
Representation and Dialogue-AMR to identify the speaker’s intent and meaning within an utterance, and with
Transactional Units and Relations to track relationships between utterances to reveal patterns of the Dialogue
Structure. We describe how the corpus and its annotations have been used to develop autonomous human-robot
systems and enable research in open questions of how humans speak to robots. We release this corpus to
accelerate progress in autonomous, situated, human-robot dialogue, especially in the context of navigation tasks
where details about the environment need to be discovered.
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1. Introduction

For robots to team effectively with humans, a crit-
ical capability will be to use forms of natural com-
munication like language. Moreover, these inter-
actions must be bi-directional, as robots will need
to provide status updates and ask for and receive
clarification or help from teammates in challeng-
ing situations. Finally, the interactions must be
situated in knowledge about the environment that
the robot inhabits. In order to study these forms
of communication and accelerate progress in the
development of autonomous robot dialogue sys-
tems, collections of data should (1) focus on un-
constrained, robot-directed dialogue in contrast to
traditional human-human dialogue,1 (2) exhibit nat-
ural diversity of communication strategies inherent
in situated dialogue, and (3) be organized into a
format that can be quickly labeled and used for
training an autonomous dialogue system.
In this paper, we present SCOUT, the Situ-

ated Corpus Of Understanding Transactions,
a multi-modal, human-robot dialogue corpus that
meets these data criteria. SCOUT is a collection

1Humans instruct robots differently compared to in-
structing other humans (Mavridis, 2015; Marge et al.,
2020, 2022).

of human-robot dialogues within the task domain
of collaborative navigation between a human and
a remotely-located robot. Human participants as-
sumed the role of Commander and collaborated
with a remotely-located robot to explore and as-
sess the robot’s environment and locate objects of
interest. To progress through the task, Comman-
ders relied on a combination of overhead maps
generated from streaming LIDAR (LIght Detection
And Ranging) sensors, pictures from the robot’s
camera upon request, and text messages. Com-
manders spoke freely to the robot and were given
no restrictions on how they formulated their lan-
guage, allowing them to follow their natural tenden-
cies for speaking to a robot when completing this
task. The dialogues were collected in a Wizard-
of-Oz (WoZ) experimental paradigm, wherein the
robot’s autonomy was controlled by two “wizard”
experimenters: a Dialogue Manager to ground in-
structions to the robot’s surroundings and select di-
alogue behaviors, and a Robot Navigator to move
the robot and provide status updates (see Fig. 1).

Our construction of SCOUT brings together for
the first time all the data streams and modalities
collected in this task domain. SCOUT contains
89,056 utterances and 310,095 words from 278
dialogues lasting about 20-minutes each with an
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Figure 1: Wizard-of-Oz data collection design

average of 320 utterances per dialogue. 5,785 im-
ages were taken across the corpus and are linked
to the moment they were taken in the dialogue.
Thirty LIDAR maps are included with annotations
that reflect the spaces the robot scanned in the en-
vironment during the dialogue (some of the maps
include only subsets of the whole area).
The dialogues exhibit a situated andmulti-modal

nature with linguistic references to space, dis-
tance, and the physical world, providing for many
opportunities to study dialogue dynamics. We ap-
ply four existing linguistic annotations to subsets
of SCOUT to advance understanding of phenom-
ena within human-robot dialogue. To this end, we
annotate SCOUT with (1) Abstract Meaning Rep-
resentation (AMR) (Banarescu et al., 2013) and (2)
Dialogue-AMR (Bonial et al., 2019b) to assess in-
terlocutor intents and meaning within an utterance.
To track relationships between utterances, we an-
notate both (3) Transactional Units (TUs) (Carletta
et al., 1996) and (4) the Relations between utter-
ances within a TU; together these reveal patterns
of the Dialogue Structure (Traum et al., 2018). We
describe how these annotations on top of SCOUT
have been subsequently used in action selection
for automated robot navigation systems and auto-
mated dialogue systems along with other areas of
human-robot analysis.
This paper offers the following contributions:
• A fully-compiled, novel corpus of multi-modal,
robot-directed dialogue in a collaborative ex-
ploration task involving a remotely-located
physical or simulated robot (Sec. 3 and 4).

• Annotations of SCOUT data using existing
frameworks of AMR, Dialogue-AMR, and Di-
alogue Structure TUs and Relations (Sec. 5).

• Applications of SCOUT data and annotations,

including the development of systems and
analyses of the language and behaviors ob-
served in the human-robot dialogue (Sec. 6).

Although portions of the dialogues have previ-
ously been shared via private data-sharing agree-
ments to enable the annotations and applications
described here, this paper presents the compre-
hensive compilation and curation process of the
dialogues and multi-modal streams for public re-
lease under a Creative Commons Zero 1.0 Uni-
versal (CC0 1.0) license. We believe the corpus
and its annotation will serve to immediately ben-
efit the Human-Robot Interaction (HRI), Dialogue,
and broader Robotics communities that aspire to
use language as a way to interact with robots.
SCOUT is available at https://github.com/
USArmyResearchLab/ARL-SCOUT

2. Experiments and Data Collection

The experimental domain involved a collaborative
human-robot exploration task in a low-bandwidth
environment (Marge et al., 2016). The robot (a
Clearpath Jackal with functionality implemented
in ROS, the Robot Operating System (Koubâa,
2017)) entered an unexplored area and received
instructions from a remotely-located human team-
mate. This human teammate (called ”Comman-
der”) was given specific goals for the exploration,
such as locating and counting doors and specific
objects of interest, e.g., doorways, shovels, shoes.
The Commander could not directly teleoperate the
robot and had to provide verbal instructions to
accomplish tasks with the robot (e.g., “Move for-
ward five feet”, “Proceed through the doorway in
front of you”). The Commander’s knowledge of
the environment was based upon (1) a dynamic

https://github.com/USArmyResearchLab/ARL-SCOUT
https://github.com/USArmyResearchLab/ARL-SCOUT
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Experiment 1 Experiment 2 Experiment 3 Experiment 4

Dialogue Processing WoZ + keyboard WoZ + button GUI WoZ + button GUI ASR + auto-DM
Robot Behaviors WoZ + joystick WoZ + joystick WoZ + joystick WoZ + joystick

Robot & Environment physical physical virtual virtual

Table 1: Human-Robot Dialogue Experimentation. ASR: Automatic Speech Recognition

LIDAR map of the area built up in real time as
the robot moved, (2) snapshot pictures from the
robot’s front-facing RGB camera, taken upon Com-
mander request, and (3) text messages from the
robot. The left-hand side of Fig. 1 depicts what
the Commander saw and could do during the in-
teraction while seated at their workstation.
The robot was controlled using a Wizard of Oz

methodology to facilitate a data-driven understand-
ing of how people talk to robots (Riek, 2012; De-
Vault et al., 2014). The experiments employed two
Wizards; their division of labor is depicted on the
right-hand side of Fig. 1. The Dialogue Manager
Wizard (DM-Wizard) listened to the Commander’s
instructions and decided how the robot should pro-
ceed in the dialogue. Status updates and clarifica-
tions were sent to the Commander from the DM-
Wizard in a chat window. When the DM-Wizard de-
termined that instructions were executable in the
current context, the instructions were passed in a
constrained form to the Robot Navigator Wizard
(RN-Wizard), who used a joystick to teleoperate
the robot and who provided information of failures
through speech or a button click back to the DM-
Wizard as the task was being completed. The DM-
Wizard passed status updates from theRN-Wizard
to the Commander.
Four experiments varied the modes of dialogue

processing and how the robot and environment in
the experiments were represented (Table 1). Ex-
periment 1 had a DM-Wizard manually type mes-
sages to interact with the Commander in real-time,
and a RN-Wizard control a physical robot in envi-
ronments that resembled an alleyway or an indoor
space of a house-like environment under construc-
tion. The house contained a variety of hallways,
rooms, and objects that gave themes to different
spaces, for example, a kitchen area, conference
room, and office.
Experiment 2 automated the DM-Wizard’s com-

mand handling and response generation with a
click-button graphical user interface (GUI). The col-
lection of messages uncovered from Experiment 1
was incorporated into the GUI for use by the DM-
Wizard, substantially reducing typing and compo-
sition effort by the DM-Wizard while increasing re-
sponse uniformity. The GUI design built in func-
tionality to avoid inflexible situations by using open
slots where the DM-Wizard could type in a value
for well-defined templates, e.g., “I see a door on

the left,” “I see a door on the right,” “I see a wall,”
etc. There were no entirely open response but-
tons; all buttons reflect, at a minimum, an ob-
served template of responses like “I see ___”. (Bo-
nial et al., 2017). Experiment 2 took place in the
same physical environments as Experiment 1.
Experiment 3 utilized the sameDM-Wizard GUI

and moved from a physical robot and environ-
ment, to a simulated one designed to be a 1–1
replica of the physical environments, including the
objects and their placement. Gazebo, a high fi-
delity 3D simulator, was used to construct the en-
vironment and complete the experiments (Koenig
and Howard, 2004). The simulated robot was pro-
grammed with the same capabilities as the phys-
ical one using ROS. From the Commander’s per-
spective, the study was equivalent to the previous
two, with the exception that the images from the
camera were virtually rendered.
Finally, Experiment 4 deployed a completely

automated dialogue system trained on data col-
lected from the prior experiments. Instead of a
DM-Wizard listening to the Commander’s speech
and routing messages back and to the RN-Wizard,
the dialogue system provided these capabilities.
This auto-DM system was divided into the follow-
ing components: (1) an automated speech recog-
nition (ASR) component that would transcribe
speech in real time from the Commander, (2) a dia-
logue manager including a classifier that would de-
termine the Commander’s intent from their speech
using training data collected in the previous ex-
periments, and determine whether to (3) trans-
late instructions to the RN-Wizard, and/or (4) pro-
vide replies to or request clarification from the
Commander. This experiment had only the RN-
Wizard as a wizard experimenter to tele-operate
the robot in response to instructions provided to it
by the auto-DM system. The auto-DM system was
trained on Experiment 1 and 2 data, and tested
on a subset of Experiment 3 data. Several train-
ingmethods were employed, and accuracy ranged
from 61% - 75%. Over half of the incorrect re-
sponses would still be appropriate and advance
the dialogue, as they were considered felicitous
(appropriate responses that would have the same
effect as the correct response) or approximate (re-
sponses that differed only slightly from the correct
one, e.g., variation in turn radius or movement dis-
tance) (Gervits et al., 2019).
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3. SCOUT Construction

In this section, we describe our methodology to iso-
late, extract, and verify the various data streams
from the experimentation, and our process to
compile the information into the human-readable
and machine-processable formats that comprise
SCOUT.
Commander data consists of the Commanders’

verbal interactions with the robot. These were
recorded in Mumble2 using a push-to-talk button.
Annotators were trained to manually transcribe the
Commander speech from Experiments 1–3 using
the Praat software (Boersma and Weenink, 1992–
2019). Turns were segmented by silences, and
then further by intents. For example, the turn
“go to the map and take a picture” would be seg-
mented into the utterances “go to the map” and
“and take a picture” (Bonial et al., 2019a). The
speech data from Experiment 4 was transcribed
during the experiment by Google ASR or Kaldi.
Key tokens were automatically normalized, for ex-
ample, converting “five ft” to “5 feet” for consis-
tency with themanual transcription coding schema
in Experiments 1–3. Post-experimentation, man-
ual verification was conducted to correct ASR re-
sults, for example “turn right for you to grieve” was
corrected to “turn right 45 degrees” after listening
to the utterance. The timestamp at which the utter-
ance began (which was not necessarily the same
as when the push-to-talk button was depressed)
was saved in metadata by Mumble or the ASR for
future alignment.
Dialogue Manager data are text messages sent

by the DM to either the Commander or the RN-
Wizard. Text messages were recorded as a mod-
ified sensor_msgs/StringStamped ROS topic
in a ROS bag file—a file format also used to save
diverse timestamped sensor data from the robot.
Text messages to the Commander and to the RN-
Wizard were differentiated from each other in the
ROS bag file. The timestamps were extracted
along with the utterances for alignment.
Robot Navigator data consists of the RN-

Wizard’s verbal or text messages to the DM.
In Experiments 1–3, RN communications were
spoken and transcribed following the same pro-
cess using Praat, saving the timestamps from
the metadata. In Experiment 4, communica-
tions were text messages the RN triggered by
a button press on the joystick coded as the
sensor_msgs/Joy ROS topic, or on the GUI
coded as the sensor_msgs/StringStamped
ROS topic. Text messages and their timestamps
were extracted from the ROS bag file for align-
ment.
The transcribed speech and text utterances

2https://www.mumble.info/

from all interlocutors were time-aligned into com-
munication floors that reflect the passing of infor-
mation during the dialogue as it occurred. The
streams are shown in Table 2. Given that the DM
served as an intermediary directing communica-
tions between the Commander and RN, the dia-
logue took place across two non-mutual conversa-
tional floors: the Left and Right floors. The Left
floor includes communication between the Com-
mander and what the Commander thinks of as “the
robot,” (really the DM, acting as front end), and
contains streams “CMD” and “DM→CMD.” The
Right floor was between the DM and RN, and
contains streams “DM→RN” and “RN.” The DM
would convey information across floors, as shown
in lines 230-234 (Left to Right) and 238 (Right
to Left). Timestamps were coded either as sec-
onds since the dialogue started (Experiments 1
and 2) or with a unix timestamp (Experiments 3
and 4). Complications arose in synchronizing the
timestamps across recordings from the three dif-
ferent machines used to run the experiments (one
each for Commander, DM, and RN), and required
scripts and manual verification to ensure that each
utterance was inserted into the correct location in
the transcript across the conversational floors.
The resultant time-aligned transcripts were com-

piled into .xlsx spreadsheets in the format of Ta-
ble 2 (see Fig. 4 in Appendix for a screenshot), as
well as a compacted tab delimited format to facili-
tate different methods of file-processing:
ID time stream text
...
222 1054.31 CMD "robot proceed

through the doorway"
223 1061.9 CMD "turn a hundred and

eighty degrees to
the right"

224 1063.78 CMD "and take a picture"
225 1070.54 DM->CMD "processing. . ."
...

In Experiment 4, the .xlsx spreadsheets contain
additional columns for the raw ASR results and in-
termediary normalized forms, in addition to the fi-
nal corrected utterance (see Fig. 5 in Appendix).
The Commander text in these tab delimited for-
mats is the corrected utterance.
Images were taken by the RN and recorded as

sensor_msgs/Image ROS topics in ROS bag
files. After extraction, each image per dialogue
was given a unique id and inserted into a modified
.xlsx spreadsheet at the moment the RN-Wizard
had the robot take the image (see Fig. 6 in Ap-
pendix.) In the spreadsheet, clicking or control-
clicking on the image name will open the .jpg im-
age in the computer’s default picture viewer pro-
gram. This information is also available in a modi-
fied tab delimited format, where the stream value is
“IMAGE” and the text value is the image filename:

https://www.mumble.info/
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Left Conversational Floor Right Conversational Floor

#ID Timestamp CMD DM → CMD DM → RN RN

222 1054.31 robot proceed through the
doorway

223 1061.9 turn a hundred and eighty
degrees to the right

224 1063.78 and take a picture

225 1070.54 processing. . .
226 1077.99 I see more than one

doorway.
227 1079.46 The one to my left?

228 1081.34 the doorway to your left

229 1085.72 processing. . .

230 1103.95 move to Foyer -
Kitchen doorway

231 1107.81 then. . .
232 1109.87 turn 180
233 1111.06 then. . .
234 1112.19 send image

235 1114.76 moving. . .
236 1121.65 turning. . .

237 1134.48 done and sent

238 1135.29 done, sent

Table 2: Navigation instruction initiated by the Commander (#222-244), clarification (#225-229), transla-
tion to a simplified form by Dialogue Manager (DM) to Robot Navigator (RN) (#230-234), status updates
(#235-236), completion by the RN (#237), and notification of task completion to Commander (#238).

ID time stream text
...
234 1112.19 DM->RN "send image"
235 1114.76 DM->CMD "moving. . ."
236 1121.65 DM->CMD "turning. . ."
i019 1133.96 IMAGE "frame019"
237 1134.48 DM->RN "done and sent"
...

LIDAR maps were extracted from what the LI-
DAR had scanned by the end of each dialogue
(Fig. 2a). These are snapshots from the last frame
of the dialogue as captured in the screen recording
of the Commander’s monitor. Due to how the LI-
DAR visualization functionality was implemented,
some snapshots show a subset of the environment
rather than a complete view. One .png file was ex-
tracted for each dialogue in Experiment 1, with fu-
ture plans to streamline the process and compile
maps for the remaining dialogues.
Rendered floor plans of the complete environ-

ment were manually created for each of the di-
alogues with LIDAR maps, showing the objects
of interest scanned by the LIDAR (Fig. 2c, with
legend in Fig. 2b). These determinations were
made bymanually comparing the LIDAR to the ren-
dered floor plan. Dark gray spaces indicated the
LIDAR had not scanned the area and informed the

determinations. A text version of this annotated
floor plan is also available, where each target en-
tity (e.g., doorway, shovel, etc.) was mapped to
a unique identifier (e.g., “door1”) and denoted as
scanned or not scanned:
door1 not-scanned
door2 scanned
...

4. SCOUT Statistics

The corpus contains data from 93 Comman-
ders, where each Commander completed three
dialogues—one training exercise in the alleyway
and two main exercises in the house, starting at
different locations with different objects of interest
to count—for a total of 278 dialogues containing,
on average, 320 utterances.3 The corpus con-
tains 89,056 utterances total, 310,095 words, and
5,785 images (Table 3). On average, Comman-
ders requested 20.8 images per dialogue which
they could use to assess the environment in their
search and counting tasks. On a per individual
and per task basis (training or main), the requests

3One Commander only completed the training and
one main, thus SCOUT has 278 and not 279 dialogues.
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(a) LIDAR map at the end of a dialogue.
Dark gray is unscanned by LIDAR

(b) Legend for Fig. 2c (c) Corresponding top-down floor plan of
Fig 2a showing items’ scanned status

Figure 2: One LIDAR map and annotated floor plan with items scanned or not scanned by the LIDAR
marked. Floor plan and legend were not shown during the exercise.

Corpus Attribute SCOUT Total

Commanders 93
Dialogues 278
Utterances 89,056
Words – All 310,095

Words – Unique 89,056
Images 5,785

Avg. Utterances per Dialogue 320
Avg. Images per Dialogue 20.8

Standard-AMR Sentences 569
Dialogue-AMR Sentences 569

Dialogue Structure TUs 13,663
Dialogue Structure Relations 69,430

Table 3: SCOUT corpus summary. Corpus at-
tributes per experiment in Table 5 in Appendix.

ranged from 3–88 images. These statistics per ex-
periment are given in Table 5 in the Appendix.
Table 4 shows the breakdown of corpus at-

tributes by experiment and interlocutor per conver-
sational floor. We also tabulated a subset of 30
randomly selected dialogues from Experiment 3 in
order to show a more fair comparison across ex-
periments due to the difference in participant pool
size (shown in parenthesis next to the full counts
in the Experiment 3 column.)
The Commanders spoke a total of 25,386 utter-

ances (2,446 unique words) and the RN-Wizards
spoke 13,805 utterances (526 unique words) as
shown in “Total” column in Table 4. The difference
in counts is likely due to their roles in the experi-
ment. The primary vocabulary of the RN-Wizard
comes from acknowledgements of DM-wizard re-
quests and reports of failures, whereas the Com-
mander vocabulary reflects their attempts to take
initiative and issue the requests. As a result, we
observe the Commander vocabulary is greater

and more varied than the RN-Wizard.
The Dialogue Manager sent a total of 31,959

text messages (813 unique words) to the Com-
mander (DM→CMD), and sent 17,906 text mes-
sages (537 unique words) to the RN (DM→RN).
We observe that the variety in vocabulary drops
from Experiment 1 to Experiment 2, which likely
reflects the introduction of the GUI (“DM→CMD
Words – Unique“ 565 to 311; and “DM→RNWords
– Unique“ 349 to 141 in Table 4). Aspects of the
DM-Wizard’s dialogue processing were compared
in Experiments 1 and 2 (i.e., keyboard vs. but-
ton GUI) for assessing the Commander’s ability to
work with the DM-Wizard to issue well-formed and
executable instructions. In combination with the
dialogue structure analysis in Section 5, we found
that, compared to Experiment 1, more instructions
were issued in Experiment 2 within the same 20
minute trial limit, and more instructions were suc-
cessful, showing improvement in the speed of the
interaction (Marge et al., 2018). The corpus at-
tributes remain reasonably consistent within Ex-
periment 1 and 2 values for the Experiment 3 Sub-
set.
In Experiment 4, we observe a significant in-

crease in DM→CMD frequency of words from
the prior experiments (“DM→CMD Words – All”
5,550–10,923 in Exps 1–3Subset, up to 24,253
in Exp 4), perhaps due to the introduction of the
auto-DM, while the Commander variety of words
decreases (“CMD Words – Unique“ 661–738 in
Exps 1–3Subset, down to 320 in Exp 4). We sus-
pect the rise in frequency signifies an increase
in miscommunication with the auto-DM, and that
the lack of Commander vocabulary variety, while
still maintaining the same level of word frequency,
is due to an attempt to revert to more simplified
terms, or hesitation to ‘try out’ different ways of giv-
ing instructions due to the auto-DM’s limitations;
the word error rate in Experiment 4 was 25%.
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Corpus Attribute Exp. 1 Exp. 2 Exp. 3 (Subset) Exp. 4 Total

Dialogues 30 30 188 (30) 30 278

CMD Utterances 1,819 2,161 18,206 (2,545) 3,200 25,386
Words – All 9,883 10,923 85,549 (11,453) 10,633 116,988
Words – Unique 738 661 2,078 (675) 320 2,446
Avg. Words per Utterance 5.43 5.05 4.70 (4.50) 3.32 4.61

DM→CMD Utterances 1,779 3,370 20,595 (2,987) 6,215 31,959
Words – All 5,550 10,923 65,889 (10,485) 24,253 106,615
Words – Unique 565 311 418 (326) 335 813
Avg. Words per Utterance 3.12 3.24 3.20 (3.51) 3.90 3.34

DM→RN Utterances 1,417 1,766 12,622 (1,688) 2,061 17,906
Words – All 5,139 5,588 41,038 (5,568) 7,433 59,196
Words – Unique 349 141 289 (158) 51 537
Avg. Words per Utterance 3.63 3.16 3.25 (3.30) 3.61 3.31

RN Utterance 1,082 1,124 8,436 (1,042) 3,163 13,805
Words – All 2,246 1,647 14,528 (1,935) 8,875 27,296
Words – Unique 253 39 349 (93) 105 526
Avg. Words per Utterance 2.08 1.47 1.72 (1.86) 2.81 1.98

Table 4: SCOUT corpus statistics by experiment and interlocutor and conversational floor

5. Annotations on SCOUT

With SCOUT fully assembled, we applied exist-
ing linguistic annotation schemas in order to bet-
ter understand how humans worked with the robot,
namely through analyzing the form and content
of their instructions. We include in SCOUT’s re-
lease Abstract Meaning Representation (AMR),
Dialogue-AMR, and Dialogue Structure TU and
Relation annotations (quantities shown in Table 3).
Taken together, these make different levels of
conversational patterns accessible to automated
systems—propositional semantics of an utterance
(AMR), the illocutionary force (Dialogue-AMR), the
meso-level intentional structure of a set of utter-
ances (Dialogue Structure TUs), and finally the
individual relations of each subsequent utterance
within a TU to an antecedent utterance (Dialogue
Structure Relations)4.

5.1. Standard-AMR and Dialogue-AMR
Annotation

To distill a robot’s behavior primitives and their
parameters from totally unconstrained natural lan-
guage, we apply AMR, a formalism for sentence
semantics that abstracts away many syntactic id-
iosyncrasies and represents sentences with di-
rected, acyclic graphs (Banarescu et al., 2013).
Below is the utterance “take a photo” represented
in Standard-AMR form in PENMAN representation
(Penman Natural Language Group, 1989); note
that AMR abstracts away from the semantically
light verb “take”, instead representing photograph-
ing semantics:

4See references for details of annotation schemas.

(p / photograph-01
:ARG0 (y / you)
:mode imperative)

Dialogue-AMR is an enhanced AMR represent-
ing not only the content of an utterance, but the illo-
cutionary force behind it, as well as tense, aspect,
and completability (Bonial et al., 2019b)—all as-
pects of meaning that are necessary for the robot
to interpret and act upon the natural language in-
structions. The same utterance as above is rep-
resented in Dialogue-AMR form using a domain-
specific action frame send-image-99 which rep-
resents a robot’s photographing behavior:
(c / command-SA

:ARG0 (c2 / commander)
:ARG1 (s / send-image-99

:ARG0 (r / robot)
:ARG1 (i / in-front-of

:op1 r)
:ARG2 c2
:completable +
:time (a / after

:op1 (n / now)))
:ARG2 r)

We annotated subsets of utterances from Experi-
ments 1 and 2 with Standard-AMR and Dialogue-
AMR, and an entire dialogue from Experiment 3.
These annotations are available in parallel .txt files
where each annotated utterance is given a unique
id corresponding to the dialogue and sentence ID
from the .xlsx corpus files.

5.2. Dialogue Structure Annotation

To understand and make explicit the patterns
of multi-floor conversation, we applied Dialogue
Structure annotation to capture the relationships
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ID time stream text TU ant. relation
...
222 1054.31 CMD "robot proceed through the doorway" 28 None None
223 1061.9 CMD "turn a hundred and eighty degrees 28 222 continue

to the right"
224 1063.78 CMD "and take a picture" 28 223 continue
225 1070.54 DM->CMD "processing. . ." 28 224* processing
226 1077.99 DM->CMD "I see more than one doorway." 28 222 missing-info
227 1079.46 DM->CMD "The one to my left?" 28 222 req-clar
228 1081.34 CMD "the doorway to your left" 28 227 clar-repair
...

Figure 3: Tab delimited format for Dialogue Structure. Transaction Unit (TU), antecedent (ant).

between utterances within and across the con-
versational floors. Each aligned transcript was
divided into Transaction Units (TUs) defined in
Traum et al. (2018) as clusters of utterances
across conversational floors that sequentially work
towards fulfilling the original speaker’s intent. A
TU may encompass multiple dialogue utterances,
spanning multiple speaker turns, including re-
quests for clarification and subsequent repairs,
confirmations and various types of acknowledg-
ments that instructions were heard, understood,
and complied with. Each utterance was further
annotated with the Relation and Antecedent—the
ID of the most immediate direct relation between
this utterance and a prior utterance (Traum et al.,
2018). Any contextual information required for un-
derstanding the annotation was denoted.
Every dialogue in SCOUT was annotated with

this formalism and recorded in new .xlsx spread-
sheets (Fig. 7 in Appendix) and converted into the
tab delimited format in Fig. 3. In this example,
#222 is the start of a new TU and assigned no re-
lation. The instruction is continued by the same in-
terlocutor into #223 and #224 through the continue
relation. In #226 the DM informs the Commander
that information is missing (missing-info) for suc-
cessful execution of the instruction, and thus their
request for a clarification (req-clar), to which the
Commander provides the appropriate repair (clar-
repair) in #228.

6. Applications

SCOUT and its annotations provide for a variety
of analyses in support of Robotics research, es-
pecially within the HRI and Dialogue communi-
ties. We briefly describe research directions mak-
ing use of SCOUT for system development, and
how the data have encouraged discovery of new
questions on how humans speak to robots.

6.1. Systems Developed from SCOUT
Annotations

The SCOUT annotations have been used to train
and deploy fully autonomous dialogue and naviga-

tion prototypes. The ScoutBot system utilizes the
Dialogue Structure annotations from Experiments
1–3 to enhance the auto-DM developed in Experi-
ment 4, and further implement autonomous robot
navigation through ROS twist messages that map
to user intents in a simulated building (Lukin et al.,
2018a; Gervits et al., 2019). The MultiBot system
extends this auto-DM pipeline to a simulated ur-
ban outdoor environment with multiple robots, fur-
ther integrating heuristics for goal-based naviga-
tion instructions (Marge et al., 2019). The AMR
and Dialogue-AMR annotations have been utilized
for designing a classifier for intents, and integrat-
ing with a Clearpath Husky Unmanned Ground Ve-
hicle in the real-world in robot-directed navigation
(Bonial et al., 2023). The SCOUT corpus was also
used to train a dialogue structure parser (Kawano
et al., 2023).

6.2. Analyses of Human-Robot Multi-Modal
Communication

The diversity of Commanders and the open-ended
nature of the communication gives rise to many
questions about Commander instruction-giving
and navigation preferences. Researchers have
asked howCommanders’ interactions with respect
to time and trust affect their instruction-style, and
found an increase in landmark instructions (e.g.,
“move to the door in front of you”) over metric in-
formation (e.g., “move forward five feet”) (Marge
et al., 2017) as well as more verbose and com-
pound instructions over time and with increasing
trust (Lukin et al., 2018b). Moolchandani et al.
(2018) used the navigation patterns observed in
SCOUT to discover that humans prefer when the
robot demonstrates a sense of self-safety and
awareness of its environment. The multi-modal
nature of the exchanges has been explored, find-
ing a relationship between the success of item-
counting and exploration and quantity of images
taken (Lukin et al., 2023). The corpus has also
allowed for study of different types of capabilities
robots should have to conduct natural dialogue-
based interactions with humans (Pollard et al.,
2018), and the exchanges between the Comman-
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der and Dialogue Manager have been evaluated
for various linguistic modalities (i.e., presence of
modal expressions, negation, and quantifiers) (Do-
natelli et al., 2020).
The images of SCOUT represent an opportu-

nity to develop new computer vision and language
techniques. A subset of these low-resolution and
dim images with atypical angles have been used
in computational visual storytelling to represent di-
verse environments and presentation of imagery
found to be lacking in other collections of visual
storytelling data (Lukin et al., 2018a). In ana-
lyzing a human-authored story collection utilizing
SCOUT images, Halperin and Lukin (2023) ob-
served narrative biases with respect to the cultural
and linguistic biases associated with what human-
authors recognized in the images.

7. Related Work

There are many human-human situated cor-
pora that exhibit the Director-Follower paradigm
SCOUT follows. These corpora have been used
to study referring expressions (Stoia et al., 2008;
Liu et al., 2016; Hu et al., 2016), speaker intents
(Narayan-Chen et al., 2019; Bonial et al., 2021),
structure (Eberhard et al., 2010), and to develop
autonomous robot systems for following directions
(MacMahon et al., 2006; Chen and Mooney, 2011;
De Vries et al., 2018; Suhr et al., 2019; Chen
et al., 2019; Thomason et al., 2020; Padmakumar
et al., 2021; Gervits et al., 2021). Other situated
paradigms leverage knowledge about object affor-
dances within the world, e.g., a cup observed to
be on its side may roll, and in combination with
human gestures, inform a robot’s reasoning and
actions within simulated spaces (Pustejovsky and
Krishnaswamy, 2020). However, prior work has
shown that the way humans instruct robots is differ-
ent from how they instruct other humans (Mavridis,
2015; Marge et al., 2020, 2022). There is a criti-
cal need for corpora like SCOUT that capture the
human-robot dynamic in a coordinated Director-
Follower task.
The Multi-Woz corpus (Budzianowski et al.,

2019) is the largest of several corpora (includ-
ing Eric and Manning (2017)) collected in a WoZ
crowd-sourcing paradigm proposed in Wen et al.
(2016). Here, each crowd-worker acted as either a
wizard or a user and supplied only a single turn af-
ter observing previous turns. While this paradigm
allows for scaling to a larger training corpus, it is
unclear that this turn-by-turn addition to the dia-
logue in text via an online portal can reveal natu-
ralistic dialogue patterns or individual communica-
tion style differences. Therefore SCOUT presents
a unique resource for studying multi-modal and sit-
uated dialogue within a more natural interaction

modeled between a human and robot.
Recent zero-shot approaches using large lan-

guage models show the ability to process robot-
directed instructions and generate an executable
plan without needing a corpus or annotations (e.g.,
Brohan et al. (2023)). Yet because these models
are not trained on domain experience, they cannot
afford the same rich semantic and structural knowl-
edge supplied by SCOUT data and annotations.

8. Conclusion

SCOUT meets the characteristics outlined at the
start of this paper for datasets to study human-
robot dialogue. The corpus focuses on how hu-
mans would instruct a robot (rather than another
human) to perform navigation tasks, and how
robots could respond in a variety of situations. It
explores the natural diversity of communication
strategies in situated dialogue, ranging from com-
plex, abstract-level instructions to lower-level ba-
sic control. The data and annotations have been
used to advance our understanding of human-
robot dialogue and to develop automated robotic
systems.
We envision this corpus as providing critical an-

notation infrastructure and insight into multi-party
cooperative tasks, for example, between hetero-
geneous human-robot teams. Instead of the three
interlocutors (CMD, DM, RN) speaking across two
conversational floors in SCOUT, a heterogeneous
team of robots could organize communication with
human participants in different ways, for exam-
ple, unique conversational floors between CMD
and each robot to avoid channel contention, or the
robots communicating to each other within a con-
versational floor from which to then report back
to the CMD. The corpus and its annotations thus
represent one possible configuration out of many
for multi-modal, multi-party human-robot interac-
tion for studying how visual information, intents,
and goal progress is tracked.
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Ethical Considerations

This data was collected following an approved
IRB protocol with all participants signing a con-
sent form. Personally identifiable information (PII)
that was recorded during the study (i.e., participant
speech and recordings of their face) are not re-
leased in SCOUT. Additional permissions to use
PII, including presenting audio/video clips at con-
ferences or publicly releasing the full audio/video,
was agreed to with explicit permission.

Limitations

Due to the choice of experimental design, SCOUT
data may not generalize to all scenarios. For in-
stance, the vocabulary may be only representa-
tive of the search task assigned to the Comman-
ders, and the low-lighting in the images may prove
challenging for state-of-the-art computer vision al-
gorithms trained on ‘canonical’ environments.
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Appendix

The corpus statistics from Table 3 are further broken up by experiment here in Table 5. Screenshots of
the .xlsx formatted files are shown in Figures 4-7.

Corpus Attribute Exp. 1 Exp. 2 Exp. 3 (Subset) Exp. 4 Total

SCOUT Totals Commanders 10 10 63 (10) 10 93
Dialogues 30 30 188 (30) 30 278
Utterances 6,097 8,421 59,859 (8,262) 14,639 89,056
Words – All 17,818 29,081 207,004 (29,441) 51,194 310,095
Words – Unique 1,905 1,172 3,134 (1,252) 811 4,322
Images 835 565 3,694 (519) 691 5,785
Avg. Utterance per Dialogue 203 280 318 (275) 487 320
Avg. Images per Dialogue 27.8 18.8 19.5 (17.3) 23 20.8

Annotation Totals Standard-AMR Sentences 52 212 305 — 569
Dialogue-AMR Sentences 52 212 305 — 569
Dialogue Structure TUs 1,005 1,243 9,169 (1,216) 2,246 13,663
Dialogue Structure Relations 4,700 6,728 45,648 (6,406) 12,354 69,430

Table 5: SCOUT corpus statistics by experiment

Figure 4: Aligned .xlsx transcript screenshot format for Experiments 1-3
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Figure 5: Aligned .xlsx transcript screenshot format for Experiment 4 with the ASR results and interme-
diary normalized forms

Figure 6: Aligned .xlsx transcript screenshot format with image references

Figure 7: Aligned .xlsx transcript screenshot format with Dialogue Structure annotations (the three right-
most columns)
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