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Abstract
Code search is an important and well-studied task, but it usually means searching for code by a text query. We argue
that using a code snippet (and possibly an error traceback) as a query while looking for bugfixing instructions and
code samples is a natural use case not covered by prior art. Moreover, existing datasets use code comments rather
than full-text descriptions as text, making them unsuitable for this use case. We present a new SearchBySnippet
dataset implementing the search-by-code use case based on StackOverflow data; we show that on SearchBySnippet,
existing architectures fall short of a simple BM25 baseline even after fine-tuning. We present a new single encoder
model SnippeR that outperforms several strong baselines on SearchBySnippet with a result of 0.451 Recall@10; we
propose the SearchBySnippet dataset and SnippeR as a new important benchmark for code search evaluation.
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1. Introduction

Increasing amounts of source code written every
day lead to a plethora of possible issues, which
almost inevitably have already been solved and
reported upon on forums such as StackOverflow.
A developer debugging an error has the relevant
code snippet and error traceback produced by the
compiler or interpreter, and she wants to find out
the reasons behind the error and ways to fix it. This
leads to the setting that we call “search by snippet”:
based on a code snippet and/or error traceback,
find posts that might contain a solution. To our
surprise, this setting has been very scarcely con-
sidered in literature; e.g., Ponzanelli et al. (2014)
consider it in informally and just use a commercial
search engine. In this work, we propose an infor-
mation retrieval setup where the query is a code
snippet and/or traceback and documents are posts
with text and possibly other code snippets (Fig. 1);
this setting can be automated and incorporated
into IDEs. Previous works on code search (see
Section 2) usually matched the source code of a
function and its comment, and code search also
considers text queries; one can invert the problem
but the text parts are usually short comments rather
than full-text posts that could contain a solution.

In this work, we present a new dataset called
SearchBySnippet that captures this problem set-
ting based on StackOverflow posts (in Python). We
have adapted several state of the art code search
models as baselines, including CodeBERT, Graph-
CodeBERT (GCB), and SynCoBERT. To our sur-
prise, their performances on SearchBySnippet are

very poor; even GCB specially trained on the Code-
SearchNet dataset for this setting lost very signifi-
cantly to the simple BM25 baseline. Therefore, we
have developed a new SnippeR model that uses
a GCB-based encoder for both queries and docu-
ments and incorporates a number of improvements
so it outperforms BM25 on SearchBySnippet. Still,
absolute values of the results are not too high, and
we believe that the problem setting embodied in
SearchBySnippet opens up a new research direc-
tion that could lead to better code understanding.

The primary contributions of this work include:
(i) a novel problem setting for code search and
a new SearchBySnippet dataset for training and
evaluation in this setting; (ii) the SnippeR model
that outperforms strong information retrieval base-
lines and can serve as a starting point for research
in this new setting1. Below, Section 2 surveys re-
lated work, Section 3 presents SearchBySnippet,
Section 4 introduces SnippeR and its training pro-
cedure, Section 5 shows our experimental setup
and results, and Section 6 concludes the paper.

2. Related Work

Datasets. Husain et al. (2019) presented Code-
SearchNet (CSN), constructed from a GitHub
dump, with function bodies split into the code itself
and a description. CSN contains 2M (code snippet,
description) pairs in 6 programming languages, in-
cluding Python. Hasan et al. (2021) combined CSN

1We are going to release the SearchBySnippet and
SnippeR source code once the clearance is done.
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Figure 1: Overview of the problem setting and system design.

and other datasets into a larger one (with Java and
Python subsets of CSN), getting 4M (code snip-
pet, description) pairs. An even larger dataset had
been constructed earlier by Gu et al. (2018); their
CODEnn-Train Java-based dataset has 18M pairs
of methods and their one-sentence descriptions.
CodeXGLUE by Lu et al. (2021) is a machine learn-
ing benchmark collection of datasets for code un-
derstanding and generation tasks, which includes
code in 10 programming languages (and a modi-
fication of CSN). Another multi-task dataset was
presented by Puri et al. (2021), with 14M code
snippets in 5 programming languages.

Code Search. Dense vector representations
are often used for information retrieval (IR): Gu
et al. (2018) used two RNNs to represent the code
and textual descriptions, Feng et al. (2020) based
CodeBERT on language models, Gotmare et al.
(2021) used three Transformer-based models, two
encoders and one classifier, to obtain a hierarchical
representation of code and text. Our model uses
a single encoder for embedding both queries and
documents and has no separate classifier.

Language models for code. GraphCode-
BERT (Guo et al., 2021) uses data flow graphs
during pretraining to solve masked language mod-
eling, edge prediction, and node alignment tasks.
SynCoBERT (Wang et al., 2021) uses multimodal
contrastive learning to achieve better code repre-
sentations and is pretrained on identifier prediction
and abstract syntax tree (AST) edge prediction.

3. SearchBySnippet Dataset

Data Preprocessing. SearchBySnippet is con-
structed from a public StackOverflow dump2 with
questions and answers from 2014 to 2021 and
rich meta-information. During submission, Stack-
Overflow users fill in several fields that appear
in the dump structure (along with fields such as
“FavouriteCount”); the “tags” field allows to eas-
ily categorize questions. We limit our work to
Python due to its popularity. For preprocessing,
we take the “text” and “title” fields that contain the
main text of a question (“text” can have formatting

2https://archive.org/details/stackexchange

Constraint Number %

SearchBySnippet, total 948 749 100.00
with “code” 670 561 70.68
with “error ” 478 992 50.49
with “code” and “error ” 342 086 36.06
with “code” or “error ” 807 467 85.10
with “best_answer ” 337 797 35.60

CodeSearchNet, total 2 070 536 200.18
Python only 457 461 48.22

NeuralCodeSearch, evaluation 287 < 0.01

Table 1: SearchBySnippet dataset statistics and
comparison with other code search datasets.

markup)and the ⟨code⟩ tag for source code and/or
system output and extract text from these tags. If
it does not look like a traceback (e.g., does not
have the “Error” keyword), we mark it as “code”
and extract in the “code” field; if it does, we use the
“error ” field. We also parse the error type from the
traceback with regular expressions and put it into
the “keyword” field. If a question contains several
⟨code⟩ tags, they are classified independently. We
add a “best_answer ” field for the answer accepted
by the user and store the original text in the “body ”
tag. Fig. 1 shows a sample preprocessed query
on the left and a document on the right.

Table 1 shows the dataset statistics. Only half of
the questions have error tracebacks, and over 70%
contain code. Interestingly, questions where we
have extracted both “code” and “error ” fields cover
only 1/3 of the dataset, while the ones with “code”
or “error ” cover 85%. Only 35% of the questions
have accepted answers. Table 2 shows the aver-
age sizes (in symbols) for extracted fields and com-
pares them with the “body ” field (percentages only
count questions where the field(s) are present).

Evaluation Set. Some questions in the Stack-
Overflow dump are marked as duplicates; usu-
ally post A is a duplicate of post B if StackOver-
flow moderators have deemed the question in post
A to be equivalent to the question in post B. We
selected duplicated questions that contain an ac-
cepted answer (in post B) and a code snippet or
traceback, getting 1369 questions that we use for

https://archive.org/details/stackexchange
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Subset Total Field % of
size size total

SearchBySnippet

All posts 1340.18 1340.18 100.00
with “code” 1630.62 576.26 35.34
with “error ” 1981.50 681.04 34.37
with “code” and “error ” 2223.89 1366.80 61.46
with “best_answer ” 1297.66 880.98 67.89

CodeSearchNet (% of SearchBySnippet)

“func_code_string” 755.59 55.38
Python only 1060.22 77.57

“func_documentation_string” 209.87 23.82
Python only 297.59 33.78

NeuralCodeSearch (% of SearchBySnippet)

Answer 159.75 11.59
Question 50.69 5.75

Table 2: Average field sizes, in symbols; “Field size”
shows the size of the field in “Subset”.

evaluation. We use a union of the “code” and “er-
ror ” fields from post A as query and “best_answer ”
from post B as the ground truth document.

Comparison to Other Datasets. We compare
our dataset to CodeSearchNet (Husain et al., 2019)
also devoted to code search. It contains snippets in
several programming languages, including Python,
in the form of functions paired with their descrip-
tions. We also consider NeuralCodeSearch (Li
et al., 2019) as the dataset with the most simi-
lar design; we only use its evaluation part of this
dataset that contains StackOverflow questions with
code snippets cut out from the best answers.

Tables 1 and 2 compare CodeSearchNet
(CSN) and NeuralCodeSearch (NCS) with
SearchBySnippet. CSN is twice larger over-
all, but its Python part is twice as small as
SearchBySnippet. NCS contains only 287
questions in its evaluation part, 3500x less
than SearchBySnippet. Table 2 compares CSN
and NCS with SearchBySnippet in terms of the
average size of various fields (in symbols); we
assume that “func_code_string” in CSN is a rough
equivalent of the union of our “code” and “error ”,
and “func_documentation_string” corresponds
to “best_answer ”. For NCS, the “answer ” and
“question” fields are inverted since “best_answer ”
in our case is a text field, while in NCS it is a
code snippet. CSN and NCS parts of Table 2
show percentages of the corresponding (code
and text) average field sizes in SearchBySnippet;
while code-containing fields in CSN are only 20%
shorter, the text field is 3x to 4x times shorter than
in SearchBySnippet. We believe that this could
make retrieval on SearchBySnippet more difficult.
In NCS, both entities are an order of magnitude
shorter, leading to a much easier retrieval task.

4. Model

Problem setting. In our IR task, the query is a
code snippet and/or traceback from the “code” and
“error ” fields and documents are answers from the
“best_answer ” field. Given a collection of docu-
ments D and a query q, the model has to rank
documents so that the ground truth answer d ∈ D
is closer to the beginning of the list. Following prior
art on code search, we use a neural network en-
coder to obtain dense vector representations of
queries and documents. Unlike Karpukhin et al.
(2020), and following Feng et al. (2020) in code-
related tasks and Sorokin et al. (2022) in general
IR, we use the same encoder E for both queries
and documents. The system first encodes all docu-
ments in the database into embedding vectors and
then constructs the search index. For a query q, it
computes pairwise similarity scores between E(q)
and document embeddings E(d) and sorts them
with the dot product score score(q, d) = E(q)⊤E(d).
Fig. 1 shows the system structure; we call this
model SnippeR (Snippet Retrieval).

We initialize the encoder E with pretrained
GraphCodeBERT (GCB) (Guo et al., 2021), a
model based on RoBERTa (Liu et al., 2019) with
125M trainable parameters, pretrained for source
code using a data flow graph along with the text
representation. In our case the input is not always
code, so we cannot use the data flow graph, but
we discovered that even without it GCB outper-
forms other models. We used the model output
(last layer’s hidden state) for the first ⟨s⟩ token as a
vector representation of the input text (or code).

Training procedure. The encoder is trained to
maximize the similarity between a query and the
matching document’s embedding while minimizing
the similarity between a query and embeddings of
irrelevant documents. Each training sample con-
tains one query q, one relevant (positive) docu-
ment d+, and n irrelevant (negative) documents
D− = {d−j }nj=1. As the contrastive loss we use the
negative log-likelihood of the positive document:

L(q, d+, D−) = − log escore(q,d
+)

n∑
j=1

e
score(q,d

−
j

)
+escore(q,d+)

.

For training, we use hard negatives mined from
the previous model iteration via self-training. We
use iterative learning (Qu et al., 2021; Izacard and
Grave, 2020) in the form shown in Fig. 2: on each
step, the model retrieves top k documents from
the database for every training set query. Then we
treat these top k documents (except for the ground
truth answer) as hard negative examples for the
next model training iteration; in Section 5 we show
the results after one such loop (SnippeR2). For
each query, as other (non-hard) negatives we use
other documents from the training batch and their
hard negative samples; this is the in-batch negative
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trick (Karpukhin et al., 2020; Sorokin et al., 2022)
that helps avoid sampling additional negatives.

Pretraining. SearchBySnippet has only 1369
questions with duplicates and accepted answers
in the evaluation part, but 148K pairs of duplicate
questions with code snippets or tracebacks but no
accepted answers. We use them in pretraining
to better adapt the model for the structure and
semantics of StackOverflow. Pretraining runs the
same as training with two differences: (i) for a pair
of duplicates A and B we use the snippet and/or
traceback from A as the query and B as the target
document; (ii) we include post bodies in the texts
since they do not overlap with the evaluation set.

Data preprocessing and training setup. We
concatenate the code snippet c and traceback t
(“code” and “error ” fields) to form a query q = [c, t].
Queries are often longer than maximum input
length (256 or 512 tokens), and since the end
of a traceback usually contains crucial informa-
tion such as error identifiers and meaningful error
descriptions, we remove tokens from the middle
rather than the end, leaving equal number of to-
kens at the beginning and end. Text documents
are truncated to (the first) 256 or 512 tokens. In
SearchBySnippet, documents are represented as
question title, question body, and accepted answer
(“title”, “body”, and “best_answer ” fields). Since
queries were extracted from post bodies, we can-
not use them in the “body ” field in the training set,
so the post body was removed from a document
representation during training, leaving the model
with “title” and “best_answer ” fields for a document.
In evaluation, we use the “body ” field as well since
now there is no issue with leaking the answer.

5. Evaluation

Setup and hyperparameters. We measure model
performance with Recall@k =

∑k
i=1 [ri = d+],

where d+ is the ground truth document and ri is the
document retrieved at position i; k ∈ {5, 10, 20, 50}
in our experiments. The model was trained for 21
hours on 2 NVIDIA Tesla V100 GPUs (16GB mem-
ory each). We used the Adam optimizer (Kingma
and Ba, 2014) with constant learning rate schedule
and 3500 warm-up steps. To stabilize training we
clipped the gradient norm to 2.0. The learning rate
was set to 10−5, batch size 12.

Baselines. We use the standard information
retrieval baseline Okapi BM25 (Robertson et al.,
1994). The dataset has a significant distribu-
tion shift between training and evaluation; since
BM25 does not train, it does not suffer from the
shift, which is an important factor making this
baseline strong. Other baselines include modern
Transformer-based pretrained models for NLP and
code understanding, trained to produce meaningful

Figure 2: Self-training framework.

Recall
Model @5 @10 @20 @50

GraphCodeBERT (Guo et al., 2021) 0.001 0.001 0.002 0.009
CodeBERT (Feng et al., 2020) 0.001 0.006 0.010 0.013
SynCoBERT (Wang et al., 2021) 0.006 0.010 0.013 0.020
GraphCodeBERT (+CSN) 0.161 0.221 0.280 0.367
BM25 (Robertson et al., 1994) 0.311 0.406 0.474 0.562
SnippeR 0.338 0.451 0.536 0.657

Table 3: Results on SearchBySnippet.

vector representations for code and/or text in the
context of code search (Husain et al., 2019); e.g.,
CodeBERT (Feng et al., 2020) aims to align the
embeddings of the code and corresponding text.
We also evaluated GraphCodeBERT (GCB) (Guo
et al., 2021) and SynCoBERT (Wang et al., 2021)
that incorporate abstract syntactic tree (AST) repre-
sentations for code. ASTs are used in training but
not inference since short snippets from queries of-
ten do not yield a meaningful AST. We considered
these models as base models for SnippeR in pre-
liminary experiments, and GCB won. We also tried
to fine-tune GraphCodeBERT on CodeSearchNet;
since our data is noisy, we fine-tuned GraphCode-
BERT without ASTs (“GraphCodeBERT (+CSN)”).
All models in Table 3 (except BM25) are based on
RoBERTa, with 125M trainable parameters.

Results. Our main evaluation results are shown
in Table 3. Surprisingly, all Transformer-based
models perform very poorly out of the box and
lose to the classic BM25 baseline, despite the fact
that they have been trained to embed both source
code and text into a single embedding space. Fine-
tuning GCB on CSN significantly improved perfor-
mance, but even then GCB falls short of BM25
by a large margin. We present the best result for
SnippeR in the table; it has been able to outperform
BM25 and all other baselines by all considered
metrics. Still, the resulting Recall@5 only slightly
exceeds 30% and Recall@50 is about 65%, which
leaves significant room for improvement.

6. Conclusion

We have presented a novel use case for code
search that has not been widely studied in liter-
ature: searching by a code snippet and/or error
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traceback. We have presented a novel way to con-
struct a dataset for this use case, leading to the
SearchBySnippet dataset with about 1M queries.
We have evaluated several code understanding
models and found that on SearchBySnippet they
all lose even to the BM25 baseline. Thus, we have
developed a new model SnippeR for searching by
code snippets and tracebacks, and have been able
to outperform BM25 on SearchBySnippet. Still, ab-
solute values of our results are relatively low, and
we hope that this new setting and dataset will serve
as a new research direction for code understand-
ing, with SnippeR providing a reasonable baseline.
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