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Abstract
Synthesizing QA pairs via question generator (QG) for data augmentation is widely used in Machine Reading
Comprehension (MRC), especially in data-scarce scenarios like limited labeled data or domain adaptation. However,
the quality of generated QA pairs varies, and it is necessary to select the ones with high quality from them. Existing
approaches focus on downstream metrics to choose QA pairs, which lacks generalization across different metrics
and datasets. In this paper, we propose a general selection method that employs a generative large pre-trained
language model as a reward model in a Reinforcement Learning (RL) framework for the training of the selection
agent. Our experiments on both generative and extractive datasets demonstrate that our selection method leads to
better downstream performance. We also find that using the large language model (LLM) as a reward model is
more beneficial than using it as a direct selector or QA model. Furthermore, we assess the selected QA pairs from
multiple angles, not just downstream metrics, highlighting their superior quality compared to other methods. Our
work has better flexibility across metrics, provides interpretability for the selected data, and expands the potential
of leveraging generative large language models in the field of MRC and RL training. Our code is available at
https://github.com/JulieJin-km/LLM_RL_Selection.
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1. Introduction

With the development of the large language models
(LLM), Question Answering (QA) has become one
of the main forms of interaction between humans
and models, making the study of QA data increas-
ingly highlight. We focus on QA data of Machine
Reading Comprehension (MRC), which plays a cru-
cial role in developing QA systems and assessing
models’ multidimensional understanding abilities.

Various approaches have been proposed to ad-
dress the challenge of data scarcity in MRC through
the synthesis of domain-specific QA pairs using
neural question generation (QG) models (Golub
et al., 2017; Wang et al., 2019; Shakeri et al., 2020;
Puri et al., 2020; Lee et al., 2020; Yue et al., 2021;
Yao et al., 2022). However, generated QA pairs are
often of low quality and cause harm rather than im-
provement when all added into training data. This
brings forward a crucial selection problem: given a
set of synthetic QA pairs, how to select high-quality
ones from all candidate data that are beneficial for
future applications.

Previous selection methods can be classified into
internal and external approaches. Internal methods
utilize the likelihood estimation, known as LM Score,
obtained from the QG model for selection (Shakeri
et al., 2020). External methods, on the other hand,
employ an external model such as a pre-trained QA
model (Alberti et al., 2019), a rank classifier (Yao
et al., 2022) or a question value estimator (Yue
et al., 2022) for selection. While these methods
have shown some improvement in downstream QA
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Figure 1: Illustration of our method. A selec-
tion agent is trained under reward guidance from
LLM based on synthetic QA pairs, and select high-
quality QA pairs from the same synthetic QA pairs.
The selected QA pairs are augmented into the train-
ing of QA model.

performance (Rennie et al., 2020; Yue et al., 2022),
there is still potential for enhancing the selection out-
comes. And these methods predominantly focus
on specific metrics of the downstream QA task and
lack generalization across different metrics. Conse-
quently, QA pairs selected through these methods
may be beneficial for specific metrics exclusively.
The selection criteria are inflexible and challeng-
ing to tailor to varying requirements of downstream
tasks. Moreover, the selection process lacks intu-
itive explanations, failing to offer insights into the
distinguishing attributes of the selected QA pairs.

In this paper, we propose to apply generative
large pre-trained language model (LLM) for flexible
and interpretable selection. We train a selection

https://github.com/JulieJin-km/LLM_RL_Selection
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agent which takes in synthetic QA pairs and outputs
real-valued scores as an inner evaluation metric for
their qualities. The inherent interpretation of scores
can be flexible and adapts to diverse downstream
tasks and metrics. Due to the lack of supervision
and inspired by Yue et al. (2022), we use Reinforce-
ment Learning (RL) algorithm to train the selection
agent. LLM have demonstrated promising capa-
bilities in quality assessment and reward design
(Fu et al., 2023; Kwon et al., 2023). Therefore, we
apply LLM to provide reward and guide the training
process. Figure 1 illustrates the overall framework.

To comprehensively evaluate our method, we
consider both generative and extractive datasets,
following the experimental setup of Yao et al. (2022)
and Yue et al. (2022) respectively, to ensure a fair
comparison with previous works. Experimental re-
sults show that our method outperforms existing se-
lection methods in downstream performance. We
also experiment with LLM as a selector and QA
model, finding it performs best as a reward model.
And we use the competency assessment frame-
work proposed by Wang et al. (2022) to show the
multi-dimensional high quality of our selected data
compared to other methods. Our method has flex-
ibility across metrics and provides interpretability
for the selected QA pairs. Our contributions are as
follows:

• We propose to apply generative large pre-
trained language model (LLM) as reward
model to train a selection agent with RL, which
can effectively select high-quality examples to
augment the training data in MRC.

• We conduct experiments on both generative
and extractive datasets, and the results show
that our selection agent leads to superior down-
stream performance compared to other selec-
tion methods independent of dataset type.

• We assess quality of selected data from mul-
tiple dimensions, and our method can select
QA pairs with higher competency values in
most dimensions. Additionally, our method ex-
tends well to example selection for construct-
ing demonstrations on few-shot setting, yield-
ing notable results with limited examples.

2. Related Work

Synthetic QA pairs The synthesis of QA pairs
from unlabeled contexts has emerged as a signif-
icant research area, involving the generation of
questions and corresponding answers. The gen-
eration of questions and answers can be related
(Shakeri et al., 2020; Lee et al., 2020; Yue et al.,
2021; Yao et al., 2022; Yue et al., 2022) or indepen-
dent of each other (Alberti et al., 2019; Puri et al.,

2020). With the development of Question Gener-
ation (QG) techniques (Du et al., 2017; Sun et al.,
2018; Nema et al., 2019), a commonly adopted
approach is to leverage a QG model to generate
questions based on pre-processed answers. The
answers can either be identical to those in original
datasets (Yue et al., 2022), or extracted from unla-
beled text with special methods such as heuristics-
based methods (Yao et al., 2022), an classifier (Puri
et al., 2020) or a seq2seq model (Shakeri et al.,
2020). We focus on the selection of synthetic QA
pairs rather than their generation. Therefore, we
followed Yue et al. (2022) to synthesize QA pairs in
extractive datasets and followed Yao et al. (2022)
to synthesize QA pairs in generative datasets. This
allows us to encompass various types of data and
establish a solid basis for fair analysis.

Data Selection How to select valuable samples
from all given data has been widely studied in ma-
chine learning community as active learning (Set-
tles, 2009; Ebrahimi et al., 2020). As for QA pairs,
data selection is an internal part of the QA pair gen-
eration pipeline. Previous selection methods can
be divided into two categories based on whether ex-
ternal models are used in the process. The internal
methods use generation log likelihood generated
by the QG model, known as LM score(Shakeri et al.,
2020), as a metric for selection, which is intuitive
but not performant enough. The external methods
use an external model for ranking, such as a pre-
trained QA model (Alberti et al., 2019), a pre-trained
ranking classifier (Yao et al., 2022), a question
value estimator (Yue et al., 2022). Among these,
using question value estimator trained by RL has
made impressive performance in semi-supervised
domain adaption of QA (Yue et al., 2022). But they
primarily focus on downstream metrics, lack gener-
alization across different metrics, and fail to reflect
the characteristic of selected QA pairs. Further-
more, they incur high computational costs during
RL training. We propose to apply generative large
pre-trained language models as reward model to
train a selection agent with RL, which offers the ad-
vantages of flexible adaptation to various metrics
and datasets, improves interpretability, and reduces
training expenses.

Apply LLM in Reinforcement Learning The em-
ployment of RL in NLP research is an increasingly
researched issue, especially with the development
of large pretrained language models(LLM). RL can
be used to help the training and alignment of LLM
(Ouyang et al., 2022; Pang et al., 2023), while LLM
can be used as reward model to guide RL training
due to their increasing abilities (Kwon et al., 2023;
Rafailov et al., 2023). Fu et al. (2023) propose
to utilize the emergent abilities (e.g., zero-shot in-
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struction) of generative pre-trained models to score
generated texts. We apply generative language
model to assess synthetic QA pairs in a similar way
and combine it with RL algorithm.

3. Method

3.1. Background and Notations
First, we describe the task with notations for-
mally. We denote the original QA dataset as
Dori = {corii , qorii , aorii }Ni=1, where c, q, a means con-
text, question and answer correspondingly, N is
the size of original QA dataset. Considering that
original QA dataset is not sufficient, synthetic QA
pairs are required. Synthetic QA pairs are gener-
ated mainly through a QG model, which is trained
and used differently in generative and extractive
datasets (see details in section 4). We denote the
synthetic QA pairs as Dsyn = {csyni , qsyni , asyni } re-
gardless of its type and generation method.

Our task is to select high-quality ones from Dsyn

that are not only helpful for enhancing downstream
metrics, but also show great data quality from mul-
tiple angles.

3.2. Selection Agent
A selection decision is often made based on some
scores that can indicate the quality of QA pairs
(Yue et al., 2022). The score function g take in a
synthetic QA sample and output its corresponding
score v, i.e.,vi = g(csyni , qsyni , asyni ). The imple-
mentation of g varies as we described in section
2.

We adopt BERT model as selection agent’s back-
bone as in Yue et al. (2022) for a fair comparison of
different training methods. However, they incorpo-
rated dataset-specific information as additional fea-
tures in the hidden representation, which is applica-
ble only to extractive datasets and not to generative
datasets. To build a general dataset-independent
selection agent, we simplify the structure to BERT
model and linear classifier layers, described as fol-
lows:
h = BERT [<CLS> qsyni <ANS> asyni <SEP> csyni ]

h′ = σ(W2σ(W1h+ b1) + b2)

vi = W3h
′ + b3

where <CLS>,<ANS>,<SEP> are special delim-
iter tokens, h ∈ RH is representation derived
from <CLS>, W1 ∈ RH1×H , b1 ∈ RH1 ,W2 ∈
RH2×H1 , b2 ∈ RH2 ,W3 ∈ RH2 , b3 ∈ R are trainable
parameters from linear layers1, σ is the activation
function tanh. The whole process can presented
as vi = eγ(q

syn
i , asyni , csyni ), where eγ represents

the selection agent.

1See appendix B for more details.

3.3. Agent Training: Reward from LLM
We can’t train the selection agent with supervised
methods due to the lack of labeled data on the true
values of synthetic QA pairs. Inspired by Yue et al.
(2022), we use RL to train the selection agent.

From the perspective of RL, actions refer to
whether to select a certain QA pair, states refer
to the selected data, state space increases expo-
nentially with the number of datas, and the rewards
are used to estimate the states (i.e., currently se-
lected examples). The actions are related to values
given by selection agent. We adopt the Bernoulli
sampling based on the values as policy, which en-
courages the policy exploration compared to strict
threshold. We followed Yue et al. (2022) to formu-
late the decision making policy πγ in batch-wise
fashion:

vi = eγ(q
syn
i , asyni , csyni )

si ∼ Bernoulli(vi)

πγ(S|Dsyn
B ) =

B∏
i=1

[vsii · (1− vi)
1−si ]

where eγ is the selection agent, B is the batch size,
Dsyn

B is the batch data and S = {s0, s1, ..., sB} is
the selection vector, si ∈ {0, 1} for i ∈ [1, B].

The selection agent is trained to maximize the
rewards and is updated through REINFORCE al-
gorithm (Williams, 1992).

r = reward_fn(S,Dsyn
B )

Lγ = −ES∼πγ(·|Dsyn
B )[r]

∇γLγ = −ES∼πγ
[r∇γ log πγ(S|Dsyn

B )]

= −ES∼πγ [r∇γ

B∑
i=1

log[vsii (1− vi)
1−si ]]

where r is the reward of current selection, Lγ is the
loss function that needs to be minimized and∇γLγ

is the gradient of selection agent with RL training.
One of the significant distinctions we introduce

in our method is the implementation of reward func-
tion. Instead of performance-driven reward which is
rigid and costly, we use generative large language
models (LLM) as reward model to generate reward.
The motivation is that the high-quality data tend to
receive higher probability based on given instruc-
tions and contexts within generative language mod-
els, which has been shown in many text generation
tasks, including dialogue response, text summariza-
tion, data-to-text and machine translation (Fu et al.,
2023). We explore this characteristic in synthetic
QA pairs.

The reward is calculated as follows. The input
of reward function is the selection vector S and
the batch data Dsyn

B generated by the selection
agent. We first extract current selected data Dsyn

S
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PromptTemplate

Type Instruction based T Answer A
SEM_1 Answer the question based on the conversation between a human and AI.\nQuestion:

Are the responses of AI semantically appropriate? (a) Yes. (b) No.\nConversation:
Human asked, {context}. {question} AI answered {answer}

Yes.

SEM_2 Answer the question based on the conversation between a human and AI.\nQuestion:
Are the responses of AI semantically appropriate? (a) Yes. (b) No.\nConversation:
Human asked, {context}. Based on the context, {question} AI answered {answer}

Yes.

SEM_3 Answer the question based on the conversation between a human and AI.\nQuestion:
Are the responses of AI semantically appropriate? (a) Yes. (b) No.\nConversation:
Human said, answer the question based on the given text. The question is {question}
The text is {context}. AI answered {answer}

Yes.

QUE Answer the question based on the conversation between a human and AI.\nQuestion:
Is the question generated by AI related to the conversation? (a) Yes. (b)
No.\nConversation:Human said, generate a question based on the following text.
{context}. AI said {question}

Yes.

MRC Answer the question based on the given context.\nQuestion: {question}\nContext:
{context}

{answer}.

Table 1: The design of PromptTemplate is based on instructions from Fu et al. (2023), and the output is T
and A correspondingly. SEM_1,SEM_2,SEM_3, QUE construct the prompting template from dialogue-
level, while MRC is from pure MRC-level. SEM_1 is the default.

from Dsyn
B based on S: Dsyn

S = {(qsyni , asyni , csyni ) |
(qsyni , asyni , csyni ) ∈ Dsyn

B ∧ si = 1}. For each sam-
ple inDsyn

S , we reconstruct it using a special prompt
template and compute the overall conditional prob-
ability of the generative language model. And we
use the average of all rewards of Dsyn

S as the final
reward. The whole process is formally described
as follows:

Ai, T i = PromptTemplate(qsyni , asyni , csyni )

ri =

m∑
k=1

log pθ(A
i
k | Ai

<k, T
i, θ)

rS =

∑
i ri

| Dsyn
S |

where PromptTemplate is the instruction-based
template used to construct prompt text, Ai and T i

are the target text and prompt text constructed from
template, Ai

k is the k-th token of Ai, m is the num-
ber of tokens of Ai, and θ is the parameters of the
generative language model. The details and candi-
dates of PromptTemplate is represented in table
1. We use rS to train and update the selection
agent. The complete training process is shown in
appendix A in the form of pseudocode.

Due to the diversity of instructions and the in-
terpretability of probabilities, we believe that this
training method is more flexible and interpratable
than performance-driven reward method.
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Figure 2: Illustration of our experiments. We con-
sider both generative and extractive datasets, using
different processes to generate synthetic QA pairs.
See section 4.2 and 4.3 for more details.

4. Experiments

4.1. Experimental Setup
The details about datasets are different in different
types of datasets, which are described in the follow-
ing sections. But the whole process remains con-
sistent. We first employ the provided data to train a
QG model, then use the pre-trained QG model to
generate questions and construct QA pairs. These
synthetic QA pairs serve as the basis for apply-
ing various selection methods to select high-quality
samples. The selected data is incorporated into
the training of a QA model. The performance of
the QA model on test sets provides insights into
the quality of the selected data. The entire process
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Different Selection Methods
Dataset ALL RTC Other
FairytaleQA 9726 - 5835
NQ 104,071 53377 62,442
TriviaQA 61,688 25389 37,012

Table 2: Number of synthetic datas selected by
different methods. Other is our method and any
selection method in section 4.1 except RTC. RTC
is not suitable for generative dataset.

is shown in the figure 2 for better illustration.
The models are all implemented using Hugging

Face transformers library (Wolf et al., 2019). In
order to conduct a fair and comprehensive com-
parison, we implement the following baselines: (1)
No Augmentation: we train the QA model with
original train dataset without any data augmenta-
tion. (2) Dev as Augmentation: We use data of
the validation dataset as data augmentation to train
the QA model. Data from the validation dataset is
representative of high-quality data, but is scarce.
(3) All Augmentation: we train the QA model with
original given train dataset and all synthetic QA
pairs. (4) Random Selection: we random select
synthetic QA pairs from all generated data and
use them in the training. (5) LM Filtering (Shak-
eri et al., 2020): we use the generation log likeli-
hood (LM Score) generated by the QG model as
metrics to rank the synthetic QA pairs and keep
the top K% as data augmentation. (6) RTC Se-
lection (Alberti et al., 2019): we use the pre-
trained QA model in (2) to select QA pairs that
are solvable from all synthetic data. This base-
line is only used in extractive dataset because the
threshold of solvable samples is vague for genera-
tive datasets. (7) QVE(Question Value Estimator,
Yue et al. (2022)): This method applies direct QA
performance as reward to train a estimator to select
QA pairs. We reproduce their work. Note that we
apply marginal information in the extractive dataset
but not in the generative datasets (See section 3.2
for more details). (8) Rank Model: This method is
proposed by Yao et al. (2022), which trains a exter-
nal classifier to select QA pairs. Since the technical
details of training is not public, we just use their re-
leased model to select data. This baseline is only
used in the generation dataset. (9) LLM as Selec-
tors: We use the LLM directly for selection based
on the reward they generated. This baseline can
reflect the effect of RL framework compared to our
method.

In our approach, we mainly consider Llama2-7b
and Llama2-13b (Touvron et al., 2023) as our re-
ward model due to cost consideration and their im-
pressive performances, but the reward model can
be extended to other generative language models
as well. For the same data type, candidate syn-

No. Methods Rouge-L
(1) No Augmentation 52.98
(2) Dev as Augmentation 53.04
(3) All Augmentation 51.39
(4) Random Selection 52.62
(5) LM Filtering 50.24
(7) QVE 51.6
(8) Rand Model 49.9

(9)
As selector
llama2-7b 51.64
llama2-13b 52.57

Our
As reward model
llama2-7b 53.32
llama2-13b 53.44

Table 3: Generative performance of FairytaleQA
test set on data selected by different methods.

thetic QA pairs are identical for all selection meth-
ods for fair comparison. However, the data genera-
tion process, the training method of QA model and
evaluation metrics are different for different data
types, which are described in the following sections.
To mitigate the impact of the amount of training data
on downstream performance, we make the number
of output selected QA pairs same for all selection
methods except RTC, as shown in table 2. The
numbers of selected QA pairs of our method are
the same as "Other" in the table 2.

To eliminate the impact of randomization vari-
ance, all experimental results in this paper are
obtained based on the average of three different
seeds.

4.2. Generative MRC Dataset
4.2.1. Dataset

Following Yao et al. (2022), we use FairytaleQA (Xu
et al., 2022) dataset for experiments. FairytaleQA
dataset is a generative MRC datatset released in
recent years, which focuses on educational nar-
rative comprehension and covers seven types of
narrative elements or relations.

4.2.2. Training Details and Metrics

Yao et al. (2022) proposed a pipeline for question-
answer generation (QAG) based on FairytaleQA
dataset. The pipeline consists of three steps: an-
swer extraction, question generation and neural
network based ranking. We follow the first two
steps to generate synthetic QA pairs.

The backbone of both QG model and QA model
is BART-Large for fair comparison. We use all la-
beled data of training dataset to train the QG model.
The answers are extracted based on heuristics-
based AG Module proposed by Yao et al. (2022).
And we use pretrained QG model and extracted
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No. Methods NQ TriviaQA
EM F1 EM F1

(1) No Augmentation, Source only 43.31 57.92 48.89 58.29
(2) Dev as Augmentation 52.94 67.01 58.02 63.89
(3) All Augmentation 59.75 71.99 61.89 66.89
(4) Random Selection 58.57 70.99 59.97 65.57
(5) LM Filtering(Shakeri et al., 2020) 57.84 70.57 60.69 66.09
(6) RTC Selection(Alberti et al., 2019) 58.43 70.84 60.76 66.05
(7) QVE with marginal info (Yue et al., 2022) 58.82 71.15 60.73 66.12

(9)
As selector
llama2-7b 58.6 71.17 60.75 66.20
llama2-13b 58.84 71.32 61.07 66.48

Our
As reward model
llama2-7b 59.05 71.61 61.13 66.39
llama2-13b 59.24 71.67 61.82 67.17

Table 4: Semi-supervised domain adaptation performance on data selected by different selection methods
on extractive datasets.

answers to generate questions in the context of orig-
inal validation dataset and construct synthetic QA
pairs. The selected QA pairs will be mixed into the
training data to train the QA model. See appendix
B for more details about hyperparameters.

The performance of the QA model is evaluated
through Rouge-L value on test dataset like Yao et al.
(2022), which reflects the downstream performance
of different selection methods.

4.2.3. Results

Table 3 shows the overall results of all baselines
and our method in generative MRC datasets.

The results show that: (1) Including all synthetic
QA pairs in the training data has a detrimental
effect on the original performance, indicating the
low overall quality of the synthetic data. (2) Ran-
dom selection achieves better performance than
most other selection methods, indicating that most
other methods struggle if the overall quality of can-
didates is low. (3) Among all selection methods,
our method achieves the best performance. The
subpar performance of the rank model (No.8) pro-
posed by Yao et al. (2022) may be due to the fact
that the published model is not suitable for our set-
ting and environment. (4) Applying LLM as a reward
model rather than a selector can introduce more
improvements, which means using RL to train se-
lection agents is better than reward-based direct
ranking, and even outperforms ranking model with
larger scale (llama-7b as reward model outperforms
llama2-13b as selector). The reason might be that
the rewards generated by LLM do not directly align
with the evaluation metrics, or rewards are not fully
reliable due to limited model size. Hence, better
performance can be obtained where policy explo-
ration is encouraged in RL.

4.3. Extractive MRC Dataset

4.3.1. Dataset

To make a fair comparison with Yue et al. (2022),
we set our experiments as semi-supervised domain
adaption of QA and assume only a small number of
target annotations are available. We use SQuAD
1.1 (Rajpurkar et al., 2016) as source datasets,
NaturalQuestions (NQ) (Kwiatkowski et al., 2019)
and TriviaQA (Joshi et al., 2017) as target datasets.

4.3.2. Training Details and Metrics

For each target dataset, the original validation
dataset is used as the test set, all context and only a
small number of labeled QA pairs of training dataset
are available for training (1000 samples, about 1%-
1.5%). And during training, another small amount
of labeled data is extracted from the training data
set as a verification data set, which we define as a
sample development set for illustration.

The backbones of QG model and QA model are
BART-base (Lewis et al., 2020) and BERT-base-
uncased (Devlin et al., 2019) respectively. The QG
model is trained with source training datasets and
then finetuned on the sample dev set. Then we use
the pre-trained QG model to generate questions on
all the context of training datasets based on original
answers. The generated questions are combined
with original answers to form QA pairs.

We apply LLM for reward generation, as de-
scribed in section 3. But the context of MRC data
is often very long and may exceed the maximum
context length of language models. To address
this issue, we split the contexts into chunks and
calculate the reward separately, taking the maxi-
mum value of the rewards in different chunks as the
reward for this sample. See appendix B for more
details about hyperparameters.



14549

QA Model Setting FairytaleQA NQ TriviaQA
Rouge-L EM F1 EM F1

llama2-7b 0-shot 15.78 29.00 42.40 29.33 33.98
Max-shot 30.44 45.83 59.37 53.23 61.67

llama2-13b 0-shot 23.19 32.89 45.52 30.93 44.21
Max-shot 42.93 53.61 66.90 57.50 65.79

Table 5: Performance on the same test set as previous with LLM as QA model under zero-shot and
few-shot setting. Max-shot refers to using as many examples as possible within context limitation to
construct the demonstration.

The evaluation metrics is QA performance (EM
and F1) on test set, where QA model is trained with
source dataset and then finetuned on target data.

4.3.3. Results

Table 4 shows the overall results of all baselines
and our method in extractive MRC dataset.

The results show that: (1) Using all of synthetic
QA pairs in the training yields the best performance
due to large data volume. This also indicates that
the overall quality of synthetic data is high. (2)
Among all selection methods, QVE and using LLM
as selector are more effective compared to random
selection, LM and RTC methods. Note that the dif-
ferent results compared to Yue et al. (2022) may
be attributed to different devices, transformers ver-
sion or hyperparameters like batch size2. Due to
the emergent ability of LLM and its implicit famil-
iarity with Wikipedia texts, using LLM as selector
directly can induce comparable and even better per-
formance than previous selection methods. This
phenomenon was not found on generative dataset,
and we assume it is attributed to the relatively high
overall quality of synthesis QA pairs, as said in
section 4.2. (3) Our method outperforms all other
selection methods, achieving performance compa-
rable to using all data with only 60% of the data.
We find that applying large language model as re-
ward outperforms using it as selector for the same
type of models, as said in generative dataset.

5. Analysis

5.1. LLM as QA model
We propose to use LLM as reward model to select
high-quality QA pairs to enhance the downstream
QA performance, and we have made experiments
to demonstrate that our method is better than using
LLM directly as selector. But from the perspective
of QA system, LLM has the potential to be used

2These objective hardware factors have an impact on
both the selection process and the generation process
of candidate QA pairs, which lead to performance gap
with original paper (Yue et al., 2022)

QA Model Method FairytaleQA

llama2-7b
random 26.26

llama2-7b (selector) 28.5
llama2-7b (reward) 30.48

Table 6: 5-shot Performance (Rouge-L) on the
Fairytale test set. Method refers to the method
for selecting examples from validation set to con-
struct demonstrations.

as QA model to enhance the downstream perfor-
mance. Therefore, we make experiments on the
same datasets as in section 4.2 and 4.3 to show
the performance of LLM as QA model rather than
selecting examples.

Since the fine-tuning process of llama2-7b and
llama2-13b is very hardware-consuming and our
experimental scenarios are based on limited su-
pervised data, we conduct the experiments under
zero-shot and few-shot settings. The test datasets
are the same as in section 4.2 and 4.3. For few-
shot setting, we random select examples from cor-
responding validation datasets to construct demon-
strations. To mitigate the influence of prompts, we
directly use prompts from widely adopted Prompt-
Source (Bach et al., 2022).

The results are presented in table 5. "Max-shot"
indicates that using as many examples as possible
within limited context window length of each model.
The number of examples used in the demonstra-
tions of each test sample is dynamically determined
by the length of test sample, randomly chosen ex-
amples and context window.

The results show that more examples in the
demonstration can bring more help to LLM as QA
model. And the larger the model, the better the per-
formance, which is consistent with the community
consensus. With the scale of 7b and 13b, the per-
formance of LLM as QA model still lags behind pre-
vious results in table 3 and table 4. This indicates
that LLM can serve as a reward model rather than
a selector or QA model to bring more assistance
to QA systems. However, the results of llama2-13b
are close to the previous results, and using a larger
model as QA model may exceed the previous re-
sults. Therefore, we make further experiments to



14550

Figure 3: Values of selected NQ data in compe-
tency assessment framework. The higher the value,
the better the quality of corresponding dimension.
Our method with llama2-7b is shown as ’llama2’.

show that our selecting method can also be helpful
for few-shot performance by selecting high-quality
examples to construct demonstrations.

We choose FairytaleQA dataset as representa-
tive due to its relative difficulty. We test llama2-7b
model under few-shot setting with 5 examples se-
lected from validation dataset to construct demon-
strations. The selection methods we considered
here are random, LLM as selector, LLM as reward
model since other methods are not suitable. The re-
sults are presented in the table 6. The results show
that our method is not limited to selecting synthesis
data, but is applicable to selecting demonstration
examples. Using llama-7b as QA model with 5 ex-
amples selected by our method can outperform the
"Max-shot" setting. Based on the random results
from table 6, we can infer that the number of exam-
ples for "Max-shot" exceeds 5. Therefore, even if
using a larger LLM as QA model can achieve better
results, our method can still be further improved on
this basis.

5.2. Analysis on Selected Examples

Experimental results in section 4.2 and 4.3 show
that our selection agent helps QA model to reach
better performance in comparison with existing se-
lection methods. To further evaluate quality of
selected QA pairs of different methods, we take
selected NQ data as examples and use compe-
tency assessment framework proposed by Wang
et al. (2022) to assesses data property from multiple
dimensions, including vocabulary, grammaticality,
readability, sentences linguistics reasoning, and
merge all. See original paper for more details. Due
to the incompleteness of their public code, some
dimensions are not assessed in our work. We use
llama2-7b model as reward model to represent our
method.

The results is presented in figure 3. The higher

Prompt Type NQ
EM F1

SEM_1(default) 59.05 71.61
SEM_2 58.91 70.96
SEM_3 58.75 71.28
QUE + SEM_1 58.97 71.40
MRC 57.83 70.92

Table 7: Impact of different prompting templates on
NQ performance with llama2-7b as reward model.
The rest settings are the same as table 4.

the column value, the better the quality for each
dimension. According to Wang et al. (2022), the
samples with high values of certain aspect can be
used in helping model improve corresponding ca-
pability boundary. The results demonstrate that our
method selects high-quality data with high compe-
tency values in most dimensions compared to other
selection methods, which is helpful for extending
model’s capability boundary. The results also show
that qve method with performance-driven reward
lacks generalization across different metrics.

5.3. Flexibility and Interpretability
In section 3, we have provided a theoretical expla-
nation of the flexibility and interpretability features
inherent in our method. In this section, we illustrate
through experiments and demonstrations.

As for flexibility, prompt templates have multiple
formats as shown in table 1. Due to the inherent
flexibility of prompting, our method can be easily
applied in different metrics and tasks. For exam-
ple, if the evaluation metric for selected data is
about grammar, we can easily change the prompt
template to Are the responses of AI grammatically
correct? Then the selection agent that trained with
this template tends to select data with strict gram-
mar. Therefore, our method is flexible and easy to
apply to different metrics.

In addition, we explore the effect of different
prompt templates for similar tasks listed in the table
1, which can inform the choice of prompt template.

We choose llama2-7b model as reward model
and test in NQ as before, and list the results in table
7. The results show that different templates result
in different performance, but most are still superior
or comparable to other selection methods in table
4. This also indicates that the format of dialogue
is more helpful than MRC for our task. The more
concise the template is, the better the performance.

As for interpretability, we show it through the ac-
tual meaning of scores given by selection agent.
Most selection methods filter based on their scores,
but they can’t explain why this sample with high
scores and others not. However, our score has ac-
tual meaning. For examples, if a sample is scored
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RL step NQ
EM F1

step = 0 (direct) 58.14 70.44
step = 1000 58.59 70.83
step = 2000 58.79 71.31
step = 3000 59.05 71.61
step = 4000 58.84 71.16
step = 5000 58.37 70.7

Table 8: Impact of different RL training steps on
NQ performance with llama2-7b as reward model.

0.7 by selection agent trained with default template,
it indicates that the estimated probability of this
sample’s answer semantically matching its ques-
tion and context is about 0.7. Based on prompting
template, it becomes evident that the differences
in sample values offer insights into the distinctive
features encapsulated within the selected QA pairs.

5.4. The Influence of RL
In addition to regular factors as seed, batch size
and learning rate, we conduct additional experi-
ments on RL training steps to show its influence.

We set the step size to 0 to directly use the un-
trained agent model (which is BERT in our experi-
ments) to rank and select QA pairs. The rest indi-
cate that we use the selection agent trained with RL
for the corresponding steps to make the selections.
We show the results in table 8.

The results show that training steps significantly
impact the performance, which brings forward the
issue about the convergence of RL training. The
performance of the selection agent trained with few
steps tends to be stochastic, while training with
a large number of steps may lead to overfitting
or forgetting. The overall performance presents a
form of increasing first and then decreasing, and the
optimal training steps is the peak point. We found
the same issue when we reproduced Yue et al.
(2022)’s work. Finding the optimal training steps
is crucial for great performance. All the previously
reported results in this paper are obtained using
the optimal number of training steps.3

6. Conclusion and Future Work

We propose to train the selection agent with gener-
ative language model as reward in RL framework,
which can select high-quality synthetic QA pairs
independent of downstream metrics. Our method

3We set the training steps to a large number and saved
checkpoints with different training steps. The checkpoint
with the highest F1 score is identified as the optimal
training step, ensuring the selection of the most effective
model. To ensure a fair comparison, we applied a similar
approach to confirm the optimal steps for other baselines.

outperforms existing selection methods in down-
stream performance on both generative and extrac-
tive datasets, while offering flexibility across metrics
and interpretability for the selected QA pairs. The
experimental results also show that using LLM as
a reward model is better than using it as a direct
selector or QA model in our task.

In this paper, our focus has been on genera-
tive language models with 7b and 13b due to cost
considerations. However, large language models
exhibit impressive emergent abilities that may aid
our task and are good reward models, which is still
need to be explored. And our work focus on the se-
lection process only, assuming the availability of a
pool of synthetic QA pairs. We will attempt to com-
bine our core idea into the generation process of
synthetic QA pairs and generate high-quality data.

In conclusion, our method demonstrates an in-
stance to use large language model in MRC and
explore its combination with RL. Due to the diver-
sity of prompt template, our work can be easily
extended to other tasks beyond QA. In the future,
we will further explore more language models and
their combination with RL in more tasks and appli-
cations.
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A. Pseudocode of Training Algorithm

We propose to apply generative language model as
reward to train the selection agent with RL, which
has described in section 3.3. The whole process
can be described in the format of pseudocode in
Algorithm 1, and the reward function is described
in Algorithm 2.

B. Hyperparameters

In this section, we list the hyperparameters used in
the experiments in section 4.

According to section 3 and appendix A, the re-
quired hyperparameters during the RL training of
selection agent are as follows: batch size B, train-
ing step T ,learning rate of the selection agent α,
chunk length C, hidden layer dimension H1,H2,H3.
In addition to the training process, training the QG
model to generate questions and training the QA
model to evaluate using metrics from downstream
tasks also requires some hyperparameters such as
learning rate, epoch, max_seq_length and so on.
For a fair comparison, we keep these hyperparam-
eters as Yue et al. (2022) and Yao et al. (2022).
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Algorithm 1 The Selection Agent Training Method
Input: generative language model M ; synthetic
QA pairs Dsyn;
Hyperparameters: batch size B, training step T ,
learning rate of selection agent α.
Output: trained selection agent eγ .
1: Randomly initialize eγ
2: for step = 1 to T do
3: ▷ 1 Sample a batch of synthetic QA pairs:
4: SampleDsyn

B = {(csyni , qsyni , asyni )}Bi=1 from
Dsyn

5: ▷ 2 Select with selection agent:
6: V = eγ(Dsyn

B )
7: ▷ 3 Sample selection vector:
8: S ∼ Bernoulli(V)
9: ▷ 4 Get reward from M :

10: r = reward_fnM (S,Dsyn
B )

11: ▷ 5 Update the selection agent:
12: Lγ = −ES∼πγ(·|Dsyn

B )[r]

13: ∇γLγ = −ES∼πγ
[r∇γ log πγ(S|Dsyn

B )]
14: γ ← γ − α · ∇γLγ

15: end for
16: return eγ

Algorithm 2 Reward function based on generative
language model
Input: selection vector S, candidate synthetic QA
pairs Dsyn

B ;
Hyperparameters: generative language model M
and its parameters θM .
Output: reward.
1: for i = 1 to B do
2: ▷ 1 Construct the prompt:
3: Al, T l = PromptTemp(qsyni , asyni , csyni )
4: ▷ 2 Calculate reward for one sample:
5: ri =

∑m
k=1 log pM (Ai

k | Ai
<k, T

l, θM )
6: end for
7: ▷ 3 Use the average as final reward:
8: r =

∑
i ri

|Dsyn
S |

9: return r

For experiments on NQ dataset and TriviaQA
dataset, we set B to 10 per gpu and we use 2
gpus to train, so B is actually 20. The learning rate
of the selection agent is 3e-5, and we set H1 =
H3 = 768, H2 = 64, C = 1000 for both dataset.
As for the number of training steps related to the
convergence of RL training, we set the maximum
number of training steps to 6000 and 5000 for the
NQ dataset and the TriviaQA dataset, respectively,
since the two datasets have different data volumes.
However, we save checkpoints every 500 steps for
judging convergence.

For experiments on FairytaleQA dataset, batch
size B, learning rate and hidden layers dimension
are the same as in the extractive datasets. The

number of training steps varies with the amount of
data. The scale of FairytaleQA dataset is not as
large as extractive datasets, so we set the training
step to 500 and save checkpoints every 100 steps
for judging convergence.
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