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Abstract
Temporal Knowledge Graph (TKG), which characterizes temporally evolving facts in the form of (subject, relation,
object, timestamp), has attracted much attention recently. TKG reasoning aims to predict future facts based on
given historical ones. However, existing TKG reasoning models are unable to abstain from predictions they are
uncertain, which will inevitably bring risks in real-world applications. Thus, in this paper, we propose an abstention
mechanism for TKG reasoning, which helps the existing models make selective, instead of indiscriminate, predictions.
Specifically, we develop a confidence estimator, called Confidence Estimator with History (CEHis), to enable the
existing TKG reasoning models to first estimate their confidence in making predictions, and then abstain from those
with low confidence. To do so, CEHis takes two kinds of information into consideration, namely, the certainty of the
current prediction and the accuracy of historical predictions. Experiments with representative TKG reasoning models
on two benchmark datasets demonstrate the effectiveness of the proposed CEHis.

Keywords: Information Extraction, Knowledge Discovery/Representation, Question Answering

1. Introduction

Temporal Knowledge Graphs (TKGs), which store
temporally evolving facts in the form of (subject,
relation, object, timestamp) (Jin et al., 2019; Goel
et al., 2020; Li et al., 2022a), have emerged as a
very active research area over the last few years.
Typically, a TKG can be denoted as a sequence
of KG snapshots with timestamps, each of which
contains all facts at the corresponding timestamp.
The TKG reasoning task that aims to, given queries
like (query entity, query relation, ?, future times-
tamp), conduct predictions about these future facts
based on historical ones (Ding et al., 2021; Li et al.,
2022c), has recently attracted more and more inter-
est. It has also been increasingly used in various
downstream time-sensitive applications, such as
emerging event response (Muthiah et al., 2015;
Phillips et al., 2017), policymaking (Deng et al.,
2020) and disaster relief (Signorini et al., 2011).

Although existing models have achieved signif-
icant successes in the TKG reasoning task, they
still inevitably make incorrect predictions due to
the complex temporal dynamics in TKGs. The risk
associated with incorrect predictions hinders the
more extensive adoption of these models in real-
world applications, especially some risk-sensitive
applications such as disaster relief (Li et al., 2022a)
and emergency response (Phillips et al., 2017). To
better facilitate practical applications, it is neces-
sary for the existing TKG reasoning models to have
the ability to abstain from making uncertain, even
incorrect, predictions.

∗Corresponding authors.

This kind of ability to abstain from making certain
predictions, also known as the selective prediction,
has already been studied in the fields of image
classification (Whitehead et al., 2022; Dancette
et al., 2023) and text classification (Kuhn et al.,
2023). To make selective predictions, existing stud-
ies equip the model with a confidence estimator,
which estimates its confidence in the prediction and
guides it to abstain from those with low confidence.
Those existing studies estimate the confidence of
the model mainly based on the final probability dis-
tribution of the current prediction. For instance,
Geifman and El-Yaniv (2017) proposed SoftMax
Response (SR) that utilizes the highest probability
in the final probability distribution as the model’s
confidence score. Raina and Gales (2022) and
Xin et al. (2021) utilized the entropy of the final
probability distribution as the confidence score.

In TKG, besides the model’s confidence in its cur-
rent prediction, there usually exist some historical
predictions that may also help the model decide
whether or not to abstain. In fact, there are vari-
ous historical queries that are relevant to the given
query entity and query relation, even the same as
the given query. Take the query (ISIS, Attack, ?,
2023-5-13) as an example, there are various related
queries in the history, such as those (ISIS, Attack,
?, t) occurring before 2023-5-13. If the model can
correctly make predictions for most of those related
queries, it is very likely to make a correct prediction
with high confidence for this query on 2023-5-13.
This observation emphasizes the importance of
leveraging the accuracy of predictions on historical
queries to enhence the models’ confidence in the
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current prediction.
Motivated by the above issues, this paper stud-

ies for the first time the selective prediction setting
for the TKG reasoning task. Specifically, we pro-
pose a confidence estimator, called Confidence
Estimator with History (CEHis), for selective TKG
reasoning. CEHis employs a certainty scorer to
measure the certainty of the current prediction. It
further uses a historical accuracy scorer to model
the accuracy of historical predictions, by consid-
ering three types of related queries in the history,
i.e., query entity related, query relation related, and
both query entity and relation related, respectively.
As intuitively the impact of the accuracy of the his-
torical predictions on the confidence of the current
prediction may decay over time, we employ the
Hawkes process (Hawkes, 2018) to estimate this
impact of long-term and short-term. Finally, CE-
His leverages a ranking-based strategy to combine
both the certainty score and the historical accuracy
score to get the final confidence of the current pre-
diction. Extensive experiments with representative
TKG reasoning models on two benchmark datasets
demonstrate the effectiveness of CEHis.

In summary, the contributions of this paper are
as follows:

• To facilitate practical applications of TKG rea-
soning, it studies for the first time the selective
TKG reasoning setting;

• It proposes a simple but effective confidence
estimator for this task, which takes both the
certainty of the current prediction and the accu-
racy of historical predictions on related queries
into consideration;

• Experiments on two benchmark datasets
demonstrate the necessity of the selective TKG
reasoning setting and the superiority of the pro-
posed confidence estimator.

2. Related Work

2.1. TKG Reasoning Methods
There are two different task settings for TKG reason-
ing, interpolation and extrapolation (Jin et al., 2020;
Park et al., 2022; Cai et al., 2022; Messner et al.,
2022; Liu et al., 2022). The interpolation setting
aims to infer missing elements of facts at known
timestamps in historical snapshots. In contrast, the
extrapolation setting, which this paper focuses on,
is to predict future facts.

Under the interpolation setting, HyTE (Dasgupta
et al., 2018) proposes to conduct TKG reason-
ing task based on projected-time translation. DE-
DistMult (Goel et al., 2020) and DE-SimplE (Goel
et al., 2020) both utilize a diachronic embedding to
generate entity representations at any given time.

However, most interpolated TKG reasoning mod-
els perform worse when predicting future temporal
facts. Under the extrapolation setting, RE-Net (Jin
et al., 2020) and REGCN (Li et al., 2021b) both
utilize the recurrent mechanism to capture the com-
plex evolutional patterns among the facts in his-
tory. Besides, CyGNet (Zhu et al., 2020) utilizes a
copy-generation mechanism to capture recurrence
patterns of temporal facts. Considering that most
TKG reasoning methods are black-box, TITer (Sun
et al., 2021) and Cluster (Li et al., 2021a) further
employ RL to adaptively find history paths, in order
to provide interpretations for a specific prediction.
More recently, TiRGN (Li et al., 2022a) and His-
Match (Li et al., 2022c) both design multi-encoders
to model different characteristics of historical facts.
CENET (Xu et al., 2023) further utilizes contrastive
learning to identify significant entities from both his-
torical and non-historical dependency. All these
methods are encouraged to make predictions even
wrong, leading to uncontrollable risks. Different
from all these methods, we focus on making selec-
tive, instead of indiscriminate, predictions to control
the risk of TKG reasoning in this work.

2.2. Selective Prediction

The selective prediction setting gives a model an
option to abstain from generating certain predic-
tions, which has been explored in different scenar-
ios (Bartlett and Wegkamp, 2008; Grandvalet et al.,
2008; Gal and Ghahramani, 2016; Cortes et al.,
2016). When conducting selective prediction, a typ-
ical technique is to set a threshold over a confidence
score derived from a pre-trained Neural Network.
In 2017, Geifman and El-Yaniv (2017) proposed to
selectively output using the well-known SR and MC-
Dropout (Gal and Ghahramani, 2016) as selection
strategies. Recently, SelectiveNet (Geifman and
El-Yaniv, 2019) calculates a confidence score via
an additional selection head to determine whether
to abstain or not. Similarly, Deep Gamblers (Liu
et al., 2019) and SAT (Huang et al., 2020) intro-
duce an extra abstention class, the corresponding
logit of this class determines whether a query is
selected to predict or not. More recently, Feng
et al. (2022) achieves better results via using the
classification scores outputted by selective models
with architectural change. Most previous work on
selective prediction is mainly applied to CV tasks
and the NLP field and mainly focuses on the prob-
ability of the current prediction. To the best of our
knowledge, we are the first to utilize the character-
istics of TKGs and apply selective prediction to the
TKG reasoning scenario.
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3. Problem Formulation

3.1. Formulation of TKG Reasoning
A TKG can be formalized as a sequence of KGs
with timestamps, i.e., {G1,G2, ...,Gt, ...}. The KG
at timestamp t can be denoted as Gt = {V,R, Et},
where V, R, Et are the sets of entities, relations,
and temporal facts occurring at timestamp t, re-
spectively. Each fact in Et is denoted as (s, r, o, t),
where s, o ∈ V are the subject and object entities
involved in this fact, r ∈ R is the relation between
s and o. The TKG reasoning task aims to pre-
dict future facts based on given historical facts,
which can be divided into two subtasks, namely,
entity reasoning and relation reasoning. The for-
mer aims to predict the object (or subject) entity for
a given query q = (sq, rq, ?, tq) (or q = (?, rq, oq, tq))
based on the corresponding history before tq, i.e.,
Gq = {G1,G2, ...,Gtq−1}. The latter aims to pre-
dict the relation for a given query q = (sq, ?, oq, tq)
based on Gq.

3.2. Formulation of Selective TKG
Reasoning

Typically, a selective TKG reasoning model fs con-
sists of three parts: a basic TKG reasoning model
f , a confidence estimator g for evaluating the confi-
dence of each prediction, and a threshold γ to deter-
mine if a prediction should be abstained based on
the corresponding confidence. When a prediction
is trustable, fs outputs a ranked entity list generated
by f , otherwise an empty list, i.e., ∅.

The basic TKG reasoning model. Given an in-
put x = (q,Gq) ∈ X , where q denotes the query, Gq

represents the corresponding history and X is the
input space, the model f calculates the probability
of the candidate y ∈ Y to be the correct answer,
i.e., p(y|x), where Y is the candidate answer space.
Note that, for entity reasoning, Y is the set of en-
tities V, whilst for relation reasoning, Y is the set
of relations R. Finally, f outputs a list of all can-
didates, ranked in descending order according to
their corresponding prediction probability.

The confidence estimator. The confidence esti-
mator g(x) is a positive real-valued function, which
evaluates how confident the model f(x) is on its
prediction for a given input x. Ideally, g should ob-
tain high values when f makes correct predictions,
and otherwise, low values.

The threshold. Selective prediction seeks to
make the trade-off between making correct pre-
dictions with high-confidence and abstaining from
making low-confidence predictions to control poten-
tial risks. Therefore, fs is equipped with a threshold
γ to determine whether or not a prediction made by
f should be trusted, and further control the overall
level of abstention.

Above all, the selective TKG reasoning can be
formulated as follows:

fs(x) =

{
f(x), if g(x) > γ,

∅, if g(x) ≤ γ.
(1)

Obviously, the key in selective TKG reasoning is
to assess the confidence of a prediction. Therefore,
in this paper we develop a universal confidence es-
timator that can be readily integrated with existing
TKG reasoning models, to estimate their predic-
tions (see Section 4).

3.3. Evaluation Metrics of Selective TKG
Reasoning

For selective prediction, coverage, risk and ef-
fective reliability are three widely adopted met-
rics (Geifman and El-Yaniv, 2017; Whitehead et al.,
2022). In what follows, we formulate these met-
rics for the selective TKG reasoning task. Let
D = {(xi, y

∗
i )}

|D|
i=1 ⊆ X × Y be a set of inputs

and their corresponding ground truth answers, i.e.,
y∗i is the ground truth corresponding to the input
xi = (qi,Gqi).

Coverage and Risk. The coverage (Geifman
and El-Yaniv, 2017) of fs on D is the proportion
of predictions that are not abstained on the entire
dataset, namely,

C(fs,D) =
1

|D|
∑

(xi,y∗
i )∈D

1[g(xi) > γ], (2)

where 1(P ) is the indicator function that obtains 1
if P is true, otherwise 0.

As for the risk metric, let’s first define that on a
specific prediction. Obviously, for a given query,
the higher the position of the corresponding ground
truth in the final ranked list of candidate answers,
the lower the risk of the model. Therefore, for
a given input x = (q,Gq) and its corresponding
ground truth y∗, its corresponding risk is formulated
in this paper as follows:

riskx(y
∗) = α(1− 1

Rx(y∗)
), (3)

where α is the risk parameter and α ≥ 1. Accord-
ingly, the risk of fs on D can thus be defined as:

R(fs,D) =

∑
(xi,y∗

i )∈D riskxi(y
∗
i ) · 1[g(xi) >γ]

C(fs,D)
.

(4)
Based on coverage and risk, the overall perfor-
mance of fs on D can be measured by the Area
Under risk-coverage Curve (AUC), which plots risk
against coverage (Geifman and El-Yaniv, 2017).
And given a threshold γ, the lower the value of AUC,
the better the performance as it represents lower
average risk.
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Figure 1: An illustrative diagram of the proposed confidence estimator, CEHis, for selective entity reasoning.
For the sake of brevity, the corresponding history Gq paired with each query q is not explicitly given.

Effective Reliability. This metric is first pro-
posed in Whitehead et al. (2022) to measure the
effectiveness of a selective Visual Question An-
swering (VQA) model via assigning a penalty to the
model when wrong predictions are outputted. Un-
like VQA, the size of the candidate answer space
in TKGs is relatively large, which increases the dif-
ficulty of making precise predictions. Motivated by
this, in selective TKG reasoning, for a given input x
and the corresponding ranked candidate list gener-
ated by the basic TKG reasoning model, we assign
a penalty to fs if the ground truth y∗ is not in the top
N positions, a reward to fs if the ground truth y∗ is
in the top N positions, and no reward if fs abstains
from making a prediction. Here, N can be seen as
the tolerance of the model. Formally, the effective
reliability of fs on a given input x in TKGs can be
defined by:

ϕc,N (fs, x)=


1

Rx(y∗) , if g(x) > γ & Rx(y
∗)< N,

−c, if g(x) > γ & Rx(y
∗)≥ N,

0, if g(x) ≤ γ,

(5)
where c is the penalty, and 1

Rx(y∗) denotes the cor-
responding reward. The effective reliability of fs on

the entire dataset D can thus be obtained as

Φc,N (fs,D) =
1

|D|
∑

(xi,y∗
i )∈D

ϕc,N (fs, xi). (6)

Obviously, the higher the effective reliability, the bet-
ter the performance of the TKG reasoning model.

4. Confidence Estimator with History

This section presents the proposed confidence es-
timator, i.e., CEHis, for selective TKG reasoning.
As illustrated in Figure 1, CEHis mainly consists
of two components, i.e., a certainty scorer and a
historical accuracy scorer, to estimate the confi-
dence score of a prediction generated by the basic
TKG reasoning model f . The former measures
the model’s certainty of the current prediction, and
the latter qualifies the impact of the accuracy of
historical predictions on whether to abstain from
the current prediction. Furthermore, it aggregates
the above two kinds of information using a ranking-
based strategy to determine the final confidence
score, and subsequently, abstains from predictions
with low confidence. In the following, we take selec-
tive entity reasoning as an example to illustrate how
CEHis estimates the confidence of a prediction.
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4.1. The Certainty Scorer
Given an input x = (q,Gq), existing TKG reasoning
models usually utilize the softmax activation and
finally output the probability of each entity to be
the correct answer. Typically, the correct predic-
tions tend to have greater maximum probabilities
than those incorrect ones (Hendrycks and Gimpel,
2016). This characteristic can be utilized to esti-
mate the level of certainty in the current prediction.
As a result, in this paper, we adopt the widely used
SR to measure the model’s certainty of the current
prediction, i.e., Sc(x), as follows:

Sc(x) = max
o∈V

p(o|x), (7)

where p(o|x) is the corresponding probability of the
entity o to be the correct answer.

4.2. The Historical Accuracy Scorer
As mentioned above, a selective TKG reasoning
model fs abstains from the incorrect predictions
made by the basic TKG reasoning model f to con-
trol the potential risks. However, whether a predic-
tion on a query is correct or not is unknown, as the
corresponding fact has not yet occurred. Typically,
there are various historical queries that are relevant
to the query entity and the query relation. The ac-
curacy of the historical predictions regarding these
related queries can reflect the difficulty of the cur-
rent query, and further can serve as an indicator of
whether to trust f ’s prediction on the current query.
Motivated by this, the historical accuracy scorer
estimates the accuracy of f ’s predictions based on
the accuracy of historical predictions on three kinds
of related queries, i.e., the subject related ones
Q

<tq
sq , the relation related ones Q

<tq
rq , as well as the

subject and relation related ones Q
<tq
sq,rq . Consider-

ing that the accuracy of recent historical predictions
is more important than older ones, the historical ac-
curacy scorer utilizes the Hawkes process to model
the time-varying impact of these historical predic-
tions on the confidence of the current prediction,
and finally calculates the historical accuracy score
of the current prediction.

Specifically, the subject related queries at times-
tamp ti consist of queries with sq as the subject, and
are denoted as Qti

sq = {(sq,−, ?, ti)}K1
i=1. Here, “−”

means that the corresponding element can be any
relations, K1 is the size of Qti

sq , and ti < tq. Simi-
larly, at timestamp ti, the relation related queries
are denoted as Qti

rq = {(−, rq, ?, ti)}K2
i=1, the sub-

ject and relation related queries are denoted as
Qti

sq,rq = {(sq, rq, ?, ti)}K3
i=1. Taking Q<tq

sq as an ex-
ample, we illustrate how to calculate the impact
of the historical predictions on the confidence of
the current prediction, i.e., S<tq

sq . Given a query
q̃ = (sq, ri, ?, ti) ∈ Qti

sq , CEHis first utilizes the

basic TKG reasoning model f to make a predic-
tion based on the corresponding history Gq̃, and
calculates the position of the ground truth o∗q̃ , i.e.,
Rq̃,Gq̃(o

∗
q̃), over the ranked entity list generated by

f . At timestamp ti, the accuracy of historical pre-
dictions on the subject related queries, i.e., acctisq ,
is calculated by:

acctisq =
1

|Qti
sq |

∑
q̃∈Qti

sq

1

Rq̃,Gq̃ (o
∗
q̃)
. (8)

After processing all historical snapshots, we can
obtain a prediction accuracy sequence of Q<tq

sq , i.e.,
Acc

<tq
sq = {acct1sq , ..., acc

ti
sq , ..., acc

tm
sq }, where t1 <

... < ti < ... < tm < tq.
To precisely estimate whether the prediction

made by f is correct or not, CEHis considers the
impact of both long-term and short-term accuracy
regarding historical predictions. Typically, the accu-
racy of the historical predictions on a recent times-
tamp is more important than that on an earlier times-
tamp. As a result, it is necessary to take the time
information into consideration. Motivated by this,
CEHis utilizes the Hawkes process (“HP Impact Es-
timation” in Figure 1; Cox and Isham (1980); Laub
et al. (2015); Zuo et al. (2020)) to estimate the im-
pact of the accuracy of historical predictions on
whether to abstain or not as follows:

S<tq
sq =µ<tq

sq +

l−1∑
h=0

k(tq − tm−h)acc
tm−h
sq , (9)

where µ
<tq
sq represents the base prediction accu-

racy (the long-term accuracy) of the subject related
queries, which is calculated by the mean of Acc

<tq
sq ;

l is a length hyperparameter which is used to trun-
cate the prediction accuracy sequence Acc

<tq
sq . k(·)

is a predefined decaying function, calculating the
decaying impact of the historical accuracy:

k(tq − th) = exp(−δ(tq − th)), (10)

where δ ≥ 0 denotes the decay rate. Besides the
above absolute time interval, we can also choose
the relative time order information (Zhang et al.,
2022), which can be seen as a normalization, to
calculate the decaying impact of the historical ac-
curacy. Obviously, the cumulative term describes
that the historical prediction accuracy of the lat-
est timestamps (the short-term accuracy) has a
positive contribution to whether to trust f ’s current
prediction. Similarly, at the query timestamp tq, we
can derive the impact of the accuracy of histori-
cal predictions regarding Q<tq

rq and Q<tq
sq,rq , namely,

S
<tq
rq and S

<tq
sq,rq , respectively.

For a given input x = (q,Gq), the final historical
accuracy score is calculated as:

Sa(x) = S<tq
sq + S<tq

rq + S<tq
sq,rq . (11)
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Datasets #Train #Valid #Test #Ent #Rel

ICEWS14 74,845 8,514 73,71 6,869 230
ICEWS18 373,018 45,995 49,545 23,033 256

Table 1: Statistics of the datasets.

4.3. The Ranking-based Aggregation
To calculate the final confidence scores of predic-
tions made by f , we need to aggregate two kinds
of scores outputted by the above two scorers. How-
ever, the certainty score and the historical accuracy
score are calculated based on different information
and are on different scales. As a result, they cannot
be directly combined using absolute values. To this
end, CEHis utilizes a ranking-based aggregation
strategy, which first ranks queries according to the
above two different scores, and then calculates the
final confidence score of two based on the results
of the two rankings.

More specifically, let Qun = {(qi,Gqi)}
|Qun|
i=1 de-

note a set of query-history pairs that require pre-
dictions with unknown distribution. Given an input
x = (q,Gq) ∈ Qun, we can derive the model’s cer-
tainty rank, i.e., Rc,Qun(x), and the historical accu-
racy rank, i.e., Ra,Qun

(x), of its prediction among
Qun:

Rc,Qun
(x) =

∑
xi∈Qun

1(Sc(xi) > Sc(x)), (12)

Ra,Qun
(x) =

∑
xi∈Qun

1(Sa(xi) > Sa(x)). (13)

The total confidence score generated by our con-
fidence estimator g is defined as:

g(x) = βRc,Qun(x) + (1− β)Ra,Qun(x), (14)

where β is an aggregation weight that can be set
using the validation dataset.

5. Experiments

5.1. Experiment Setting
Datasets. We conduct experiments on two widely
used TKGs, namely, ICEWS14 (Li et al., 2022c)
and ICEWS18 (Li et al., 2022a). They both, with
the time granularity of 24 hours, are subsets of
facts in the Integrated Crisis Early Warning System
(ICEWS). Specifically, ICEWS14 and ICEWS18
contain facts that took place between 2014 and
2018, respectively. The statistics of these datasets
is presented in Table 1.

Basic TKG Reasoning Models. As aforemen-
tioned, the proposed confidence estimator, CEHis,
can be applied to a variety of existing TKG rea-
soning models. Here, we take the following three
representative TKG reasoning models with varying

architectures and performance, as the basic mod-
els: RENET (Jin et al., 2020), which employs the
recurrent GCN to model the histories of queries;
REGCN (Li et al., 2021b), which stacks GCN layers
to mine evolutional patterns of each entity among
facts occurring at the latest timestamps; TiRGN (Li
et al., 2022a), which utilizes an additional encoder
to capture the structure dependency among repeti-
tive history and is the most relevant model to our
confidence estimator.

Baselines. Since the selective TKG reasoning
task has not been explored before, we adopt a
few representative confidence estimators used in
other tasks as our baselines, including SR (Geif-
man and El-Yaniv, 2017), entropy (EN; Geifman
and El-Yaniv (2017)), SelectiveNet+SR (SNR; Feng
et al. (2022), SAT+SR (SATR; Feng et al. (2022))
and Deep Sub-Ensembles (SE; Valdenegro-Toro
(2023)). Specifically, SNR and SATR are built
upon SelectiveNet (Geifman and El-Yaniv, 2019)
and SAT (Huang et al., 2020), respectively. They
both train a more general classifier by changing
the model architectures, and utilize the maximum
probability of the classifier itself to conduct selec-
tive prediction. SE ensembles only a selection of
the model’s layers that are close to the output, and
estimates the confidence using the predictive un-
certainty.

Implementation Details. We set both the decay
rate δ and the aggregation weight β within [0,1],
and α to be one. The long-term accuracy of histori-
cal predictions is calculated based on the latest 10
timestamps, and the short-term accuracy is calcu-
lated based on the latest 3 timestamps. All basic
TKG reasoning models are trained using their re-
ported optimal parameters.

5.2. Experimental Results

5.2.1. Results on Selective Entity Reasoning

To examine the effectiveness of CEHis on the selec-
tive entity reasoning task, we focus on measuring
the max coverage at different risk levels, the AUC
for the risk-coverage curve, and the effective relia-
bility scores under different penalty and tolerance
settings. The results for the former two metrics are
presented in Table 2. Due to space limitation, for
the latter metric, we only report the corresponding
results on ICEWS14 in Figure 2.

From Table 2, it can be observed that CEHis out-
performs all baseline methods, in terms of AUC
and the coverage under different risk levels in most
cases. This is because all baseline methods do
not model the accuracy of historical predictions on
related queries. Since those related queries in the
history are similar to the current one, their accu-
racy can serve as an indicator of the model’s ability
to make precise predictions for the current query.
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ICEWS14 ICEWS18
Model Confidence Estimator coverage AUC coverage AUC

risk=0.1 risk=0.3 risk=0.5 risk=0.1 risk=0.3 risk=0.5

RENET

EN 1.81 17.68 61.90 43.34 0.01 4.99 22.64 56.82
SR 1.46 14.62 62.15 43.01 0.01 4.16 22.26 56.76

SNR 1.24 17.16 62.76 42.84 0.22 3.05 21.99 56.95
SATR 1.37 16.70 62.84 42.76 0.02 4.04 22.44 57.03

SE 1.78 15.32 60.19 43.65 0.02 4.07 21.25 57.38
CEHis 3.48 24.97 63.75 40.94 0.08 7.43 27.05 55.14

REGCN

EN 2.00 23.11 69.38 40.16 0.24 6.76 30.51 53.20
SR 1.98 23.33 68.33 40.26 0.61 7.09 31.88 52.76

SNR 1.57 24.87 68.92 40.04 0.52 6.09 31.05 53.37
SATR 3.71 25.20 68.93 39.67 0.28 6.33 29.58 53.86

SE 5.14 23.99 61.73 42.49 0.13 4.96 26.39 54.84
CEHis 4.86 27.51 69.49 38.76 0.75 8.90 33.58 51.92

TiRGN

EN 3.79 26.18 75.34 38.41 0.00 5.96 29.76 52.82
SR 4.15 29.83 76.56 37.41 0.00 6.72 31.81 52.27

SNR 4.23 28.92 72.70 37.86 0.17 7.52 33.40 51.85
SATR 4.30 26.84 72.56 38.36 0.06 6.75 30.47 52.76

SE 5.14 23.99 72.19 39.42 0.01 5.79 30.23 52.97
CEHis 5.19 30.32 76.77 36.97 0.26 8.16 34.60 51.50

Table 2: Risk-coverage metrics results and AUC results of the selective entity reasoning task. The risk R
is set to 0.1, 0.3, and 0.5.

Therefore, by modeling the impact of the accuracy
of historical predictions on the confidence of the
current prediction, CEHis outperforms existing con-
fidence estimators.

On ICEWS18, we notice that TiRGN with SR has
lower coverage than REGCN with SR when the
risk is 0.1 and 0.3. Considering that TiRGN has a
higher parameter complexity of 13.98M (about 1.5x
greater than that of REGCN), we guess TiRGN is
overconfident in its incorrect predictions, which re-
sults in the above performance gap. The proposed
CEHis alleviates the overconfidence problem in the
complex TiRGN model, as the coverage of TiRGN
with GEHis has been significantly improved when
the risk level is 0.1 and 0.3.

Figure 2 shows that CEHis achieves the highest
effective reliability scores across all penalty and
tolerance levels. Also, it can be observed that when
the penalty c increases from 1 to 5, the effective
reliability scores decrease quickly. For instance, in
Figure 2(a), the RENET with CEHis has Φ1,5 > 10
and Φ2,5 < 5. It suggests that when the penalty for
a wrong answer is high, the selective model will be
more cautious and abstain from more predictions.

Additionally, we can observe that the perfor-
mance of the selective TKG reasoning model is
positively correlated with the model tolerance. For
instance, in Figures 2(a) and 2(b), the RENET with
CEHis has Φ1,5 < 15 and Φ1,10 > 15. A larger
model tolerance N allows the model to make more
predictions, thus increasing the number of correct
predictions. Furthermore, it can be noticed that the
models without a confidence estimator consistently
perform poorly when compared with their selective
model counterparts. As the penalty increases, the
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(b) RENET, N=10.

1 2 3 4 5
penalty

-250

0

5

10

15

e
ff

e
ct

iv
e
 r

e
lia

b
ili

ty

Null

EN

SR

SNR

SATR

SE

CEHis

(c) REGCN, N=5.
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(d) REGCN, N=10.
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(e) TiRGN, N=5.
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(f) TiRGN, N=10.

Figure 2: Effective reliability results of the selective
entity reasoning task on ICEWS14. The penalty c
is set to 1, 2, 3, 4 and 5, while the model’s tolerance
N is set to 5 and 10, respectively.

performance gap between them becomes greater,
which illustrates the necessity of empowering the
TKG reasoning model with the ability to abstain
from making predictions.
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Model EN SR SNR SATR SE CEHis
RENET 43.37 41.33 41.79 43.61 43.89 40.23
REGCN 42.13 39.91 39.51 39.09 42.60 38.68
TiRGN 39.33 36.83 37.41 36.79 39.46 36.60

Table 3: AUC results of the selective relation rea-
soning task on ICEWS14. The risk R is set to 0.1,
0.3 and 0.5.

5.2.2. Results on Selective Relation
Reasoning

To verify the effectiveness of CEHis on the selective
relation reasoning task, we compare it with other
confidence estimators. Note that, for the selec-
tive relation reasoning task, CEHis focuses on the
following three kinds of related queries, i.e., sub-
ject related, object related, and both subject and
object related. Due to space limitation, we only
report the AUC results on ICEWS14 in Table 3. We
can see that CEHis performs better than baselines
with different basic TKG reasoning models, which
demonstrates again that modeling the accuracy of
historical predictions is helpful for obtaining more
accurate confidence scores in the selective TKG
reasoning task.

5.3. Ablation Study
To understand the behavior of CEHis with different
basic TKG reasoning models on the selective TKG
entity reasoning task, we take both RENET and
TiRGN as the basic TKG reasoning models and
conduct ablation studies on the ICEWS14 dataset.
The corresponding AUC results are presented in
Figure 3. In the following, we take RENET as an
example, and analyze how each part of CEHis con-
tributes to its performance with RENET.

From Figure 3(a), we can observe that without
considering the certainty of the current prediction
(denoted as -SR) causes a drastic AUC increase,
which indicates that the probability outputted by
the basic TKG reasoning model is important, and
should be taken into consideration when conduct-
ing the selective prediction task.

The result denoted as -His demonstrates the per-
formance of CEHis without modeling the accuracy
of historical predictions on related queries. It can
be seen that, when employing RENET as the basic
model, -His generates a higher AUC on ICEWS14,
which justifies the necessity of modeling the accu-
racy of historical predictions.

To further analyze the importance of three kinds
of related queries, we ignore the accuracy of histor-
ical predictions on both subject and relation related
queries, subject related queries and relation related
queries, denoted as -SRQ, -SQ and -RQ, respec-
tively. As shown in Figure 3(a), -SRQ brings the

CEHis -SR -His -SRQ -SQ -RQ -HA -RA
40.5

41.0

41.5
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(a) Results by different variants of CEHis with RENET.

CEHis -SR -His -SRQ -SQ -RQ -HA -RA
37.0

37.5
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39.5
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(b) Results by different variants of CEHis with TiRGN.

Figure 3: Comparison of variant models of CE-
His with different basic TKG reasoning models on
ICEWS14.

most significant performance drop when compared
with -SQ and -RQ. This can be attributed to the
fact that both subject and relation related queries
contain the most useful information, which is also
verified by existing TKG reasoning models (Zhu
et al., 2020).

In addition, to verify the effectiveness of the
Hawkes process (-HA in Figure 3(a)), we use the
mean operation over the historical accuracy se-
quence of each kind of related queries. It can be
seen that removing this part yields worse results
compared to CEHis, demonstrating the necessity
of utilizing the Hawkes process to model both the
long-term and short-term impact of historical pre-
diction accuracy.

To verify the effectiveness of the ranking-based
aggregation (-RA in Figure 3(a)), we simply add
the absolute value of the model’s certainty of the
current prediction and the accuracy of historical pre-
dictions on related queries. It can be seen that -RA
results in worse performance compared to CEHis,
demonstrating that the ranking-based strategy can



14563

ff ’s Prediction: IranQuery: (Armenia, Sign formal agreement, ?, 352) Certainty score: 0.75
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Figure 4: Case study on the necessity of modeling the accuracy of historical predictions. Each number
represents how precise f ’s historical prediction is on the corresponding query.

help better aggregate the scores outputted by the
certainty scorer and the historical accuracy scorer.

When taking TiRGN as the basic reasoning
model, we can derive the same conclusion on dif-
ferent variants of CEHis, except for -His. From Fig-
ure 3(a) and Figure 3(b), we observe that -His has
a reduced influence on the final AUC result when
employing TiRGN as the basic model compared to
utilizing RENET. This is because TiRGN captures
valuable information within repeated historical facts.
This information can help TiRGN precisely predict
queries with repeated ones in the history. As a re-
sult, the impact of the historical accuracy scorer on
TiRGN is weakened.

5.4. Case Study
In order to further show the necessity of modeling
the accuracy of historical predictions, we present
a case study in Figure 4 where the basic TKG rea-
soning model f makes a wrong prediction. It can
be observed that SR assigns a high confidence
score (0.75) to the current prediction. However, the
historical predictions on related queries are of low
accuracy, which indicates that trusting the current
prediction made by the basic TKG reasoning model
may bring risk. CEHis utilizes the historical accu-
racy scorer to capture the accuracy of historical
predictions, and guide the selective TKG reasoning
model to abstain from making the current prediction.
As a result, the risk brought by incorrect predictions
can be controlled.

6. Conclusions

In this paper, we introduced the selection predic-
tion setting for TKG reasoning, where a model is
allowed to abstain in order to avoid making incorrect
predictions. We further proposed a confidence es-
timator, called CEHis, to conduct the selective TKG

reasoning task. CEHis considers both the certainty
of the current prediction and the accuracy of histori-
cal predictions on related queries, and employs the
Hawkes process to model the time-varying impact
of the accuracy of historical predictions. Finally,
we demonstrated the effectiveness of CEHis upon
comparison with other confidence estimators by
applying them to existing TKG reasoning models.
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