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Abstract
Enabling machines with the capability to recognize and comprehend metaphors is a crucial step toward achieving
artificial intelligence. In linguistic theories, metaphor can be identified through Metaphor Identification Procedure (MIP)
or Selectional Preference Violation (SPV), both of which are typically considered as matching tasks in the field of
natural language processing. However, the implementation of MIP poses a challenge due to the semantic uncertainty
and ambiguity of literal meanings of words. Simultaneously, SPV often struggles to recognize conventional metaphors.
Inspired by Quantum Language Model (QLM) for modeling semantic uncertainty and fine-grained feature matching,
we propose a quantum-inspired matching network for metaphor detection. Specifically, we use the density matrix to
explicitly characterize the literal meanings of the target word for MIP, in order to model the uncertainty and ambiguity
of the literal meanings of words. This can make SPV effective even in the face of conventional metaphors. MIP and
SPV are then achieved by fine-grained feature matching. The results of the experiment finally demonstrated our
approach has strong competitiveness.

Keywords: metaphor detection, linguistic theories, quantum-inspired language models

1. Introduction

Metaphors are widely present in the language,
thought and behavior of humans, serving as a
unique means for cognition and understanding of
unknown and abstract concepts. The Concep-
tual Metaphor Theory (CMT) (Lakoff and Johnson,
1980) argues that metaphor is essentially a map-
ping from a source domain concept to a target do-
main concept, which is a kind of analogical reason-
ing ability that reflects human cognitive processes.
For example, the sentence "words were music to
my ears" establishes a connection between "music"
and "words". This description is more vivid, making
it easier for readers to understand the author’s emo-
tions and attitudes. Currently, detection and under-
standing of metaphors have become crucial tasks
in natural language processing, and understanding
metaphors can assist in improving the performance
of related tasks such as machine translation (Mao
et al., 2018), sentiment analysis (Dankers et al.,
2019; Mao and Li, 2021), and even depression
detection (Han et al., 2022).

Although it is difficult for machines to fundamen-
tally understand and recognize metaphors, linguis-
tic theory offers a middle way that treats metaphor
detection as a matching problem. Selectional Pref-
erence Violation (SPV), for instance, assesses
metaphors by comparing the incongruity between
the target word and its context (Wilks, 1975). As
shown in Figure 1, the significant incongruity be-
tween the target word and its context is likely to
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indicate a metaphor. However, this method often
fails when dealing with conventional metaphors in
which the target word and its context are created
widely recognized fixed collocations (Maudslay and
Teufel, 2022; Zhang and Liu, 2022). In other words,
this approach fails to identify metaphorical expres-
sions commonly used. Therefore, many studies
(Mao et al., 2019; Su et al., 2021; Choi et al., 2021;
Zhang and Liu, 2022) have combined Metaphor
Identification Procedure (MIP) to deal with conven-
tional metaphors. MIP method identifies metaphors
by comparing the similarity between the meaning of
the target word in the context and the literal mean-
ing of the target word (Group, 2007; Steen et al.,
2010). As shown in Figure 1, the two meanings are
inconsistent and the target word will be considered
as a metaphor. However, characterizing the literal
meaning of the target word is often challenging due
to the uncertainty of natural language phenomena
such as polysemy (Zhang and Liu, 2022).

In this paper, we attempt to tackle the aforemen-
tioned challenges using Quantum Language Model
(QLM). It’s a semantic computing framework that
draws inspiration from mathematical principles from
quantum mechanics (Sordoni et al., 2013). It ex-
plicitly models the uncertain phenomena present
in human language, such as polysemy (Meyer and
Lewis, 2020; Zhang et al., 2022), and enables fine-
grained semantic matching for information retrieval
(Sordoni et al., 2013; Jiang et al., 2020) or question
answering (Zhang et al., 2018; Chen et al., 2021).
Recently, it has also demonstrated advantages
in tasks related to the understanding of human
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[CLS] The bullets whistled past him. 

• SPV method:
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Figure 1: MIP and SPV methods are implemented respectively in related work, along with the existing
challenges associated with these methods.

cognition, such as emotion recognition (Li et al.,
2021a; Gkoumas et al., 2021) and sarcasm detec-
tion (Zhang et al., 2021; Liu et al., 2021). We note
that metaphor detection (MIP or SPV methods) are
also matching tasks, and their deeper semantic
matching mechanisms align with the application
scope of QLM. Furthermore, QLM can handle se-
mantic uncertainties like polysemy. It may provide
an elegant solution to the challenge of modeling
the literal meaning of target words in MIP method.

Therefore, we propose a Quantum-inspired
Matching Network with Linguistic Theories for
Metaphor Detection (QMM). Specifically, we en-
code each word as a quantum state representation
and model semantic combinations by the density
matrix. Then, we implement MIP and SPV by com-
puting the similarity between the density matrices.
QMM also encapsulates the polysemy information
of the target word in a density matrix by introducing
external knowledge and provides a solution to the
problem of modeling the literal meaning of the tar-
get word in MIP method. The contributions of this
paper can be summarized as follows:

• We design QLM based on linguistic theorie,
which is the first work to achieve metaphor
detection through QLM.

• We solve the problem of difficult modelling of
literal meanings. The literal meaning of target
words is modeled from a novel perspective in
a more natural and reasonable way.

• We achieved highly competitive experimental
results on multiple datasets. The code is avail-
able in the repository1.

2. Related Work

In recent work, metaphor detection can be catego-
rized into various task forms, including approaches

1https://github.com/QuaRobot/QMM

based on sequence labeling, multi-task learning,
classification and matching.

Sequence Labeling-based Methods. The
methods primarily explore metaphorical information
within the sequential relationships. These works
mostly use recurrent neural networks to extract the
sequential relationships of words and train mod-
els leveraging existing metaphor labels (Wu et al.,
2018; Gong et al., 2020; Li et al., 2021b). Con-
sidering the lack of interpretability of simply using
recurrent neural networks, Mao et al. (2019) im-
plement metaphor detection theory MIP and SPV
into sequence labeling models. However, these ap-
proaches rely on shallow neural networks and their
performance still requires further enhancement.

Multi-task Learning-based Methods. The
methods primarily investigate the relationships be-
tween metaphor detection and other tasks. For
instance, Le et al. (2020) studied the relationship
between semantic disambiguation and metaphor
detection and discovered that these two tasks can
mutually benefit from knowledge sharing. There is
also a close relationship between sentiment recog-
nition and metaphor detection (Dankers et al., 2019;
Mao and Li, 2021). Nevertheless, these works of-
ten require the design of complex multi-task learn-
ing networks, and the establishment of the relevant
datasets is also often challenging.

Context-based Classification Methods. The
methods primarily study the relationship between
different semantic objects in the context (Mu et al.,
2019; Zayed et al., 2020). For example, Su et al.
(2020) takes advantage of contextual features by
treating metaphor detection as a reading compre-
hension problem. Some studies on metaphor de-
tection have further investigated the specific gram-
matical relationships (Dankers et al., 2020) and
the impact of verb-object relationships (Song et al.,
2021) in context. These works heavily rely on
labeled data and are not inherently dedicated to
metaphor detection.
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• hit with a pinging noise

• sound like a car engine that is firing

• make a short high-pitched sound

• contact, usually in order to remind of

✓ send a message from one computer to another

Ping your machine in the office.

Word to search for: Ping Search WordNet

Figure 2: The gloss of the word "ping" in WordNet.
If the first gloss is simply taken as the literal mean-
ing of "ping" ("ping" actually means in context is
what the last gloss described), MIP method may
incorrectly judge the target word as metaphorical.
Because the meaning expressed by the first gloss
is clearly not similar to its meaning in context.

Matching Methods Based on Linguistic Theo-
ries. The methods primarily study the relationship
between target words and context based on lin-
guistic theories SPV or the relationship between
the meaning of target words in context and their
literal meanings based on linguistic theories MIP.
Some works simply assume that the literal meaning
of the target word is obtained through pre-training
word vectors (Mao et al., 2019; Choi et al., 2021),
while others contend that the first gloss (the inter-
pretation or definition of a word) in the dictionary
for the target word represents its literal meaning
(Zhang and Liu, 2022). These works are based
on naive assumptions, leading to potentially arbi-
trary judgments made by models, as shown in Fig-
ure 2. Some researchers have attempted to utilize
concatenate operations (Su et al., 2021) or weight
aggregation operations (Wan et al., 2021) to fuse
multiple glosses information. Obviously, the simple
fusion methods may introduce more noise, result-
ing in limited or even decreased performance.

3. Preliminaries

The section will briefly introduce the basic knowl-
edge of quantum theory, then provide the imple-
mentation ideas of QLM in the relevant literature.

3.1. Quantum Preliminary
The mathematical foundation of quantum theory is
based on Hilbert space, which is typically a com-
plex vector space H ∈ Cd. Quantum states are ab-
stracted as column vectors (e.g., u) on this space,
represented by Dirac notation as a ket |u⟩. Its con-
jugate transpose u† is represented as a bra ⟨u|.
Given any two quantum states |u⟩ and |v⟩, the
inner product and outer product can be defined
as ⟨u|v⟩ = u†v and |u⟩ ⟨v| = uv†, respectively.

Mathematically, quantum states be represented
as a linear combination of a set of basis vectors:
|u⟩ =

∑d
i=1 ci |ei⟩, where {|ei⟩}di=1 present a set

of basis vectors of H, corresponding to a set of ba-
sis states and {ci}di=1 refer to a set of coefficients
known as probability amplitudes, which must satisfy
the normalization condition

∑d
i=1 |ci|2 = 1.

A quantum state describes a quantum system
in a pure state. While more complex mixed quan-
tum systems can be formulated by density matri-
ces ρ =

∑n
i=1 pi |ui⟩ ⟨ui|, while {pi}ni=1 represent a

classical probability distribution that describe the
probability of each quantum state |ui⟩ appearing.
Finally, we can employ Gleason’s theorem (Glea-
son, 1975) in quantum measurement to derive the
probability of an observation from a quantum sys-
tem. Additionally, von Neumann entropy (Umegaki,
1954) can be utilized to quantify the correlation
between two quantum systems.

3.2. Quantum Language Model

QLM are more generalized models for modeling the
representation, composition, and matching of nat-
ural language, which can capture the uncertainty
present in natural language (Liu et al., 2021).

Semantic Representation. In QLM, the seman-
tic space of natural language is viewed as a Hilbert
space H spanned by a set of orthonormal basis
vectors {|ei⟩}di=1 (e.g., a set of one-hot vectors).
{|ei⟩}di=1 be interpreted as a set of sememes, while
a word w represents a superposition of sememes:
|w⟩ =

∑d
i=1 ci |ei⟩, where

∑d
i=1 |ci|2 = 1. In the

probability amplitude ci = rie
iϕi , e is natural loga-

rithm, i is the imaginary number with i2 = −1.
{ri}di=1 are real scalar values that describe the
probability distribution of the word w with sememes
combinations. ϕ ∈ [−π,+π] is the phase, which
may contain some important information such as
emotions, sarcasm, metaphors, or positional infor-
mation of language sequences (Zhang et al., 2022;
Gkoumas et al., 2021).

Semantic Composition. More complex se-
mantic combinational relationships, such as para-
graphs, n-grams, and documents, can be modeled
using density matrices. For example, given a para-
graph {w1, w2, ...wn}, its semantic combination can
be represented as: ρd =

∑n
i=1 pi |wi⟩ ⟨wi|, where

|wi⟩ is the semantic representation of the word wi.
{pi}ni=1 represent the weight information of each
word, corresponding to a classical probability dis-
tribution (i.e.,

∑n
i=1 pi = 1). It is important to note

that the diagonal elements in the density matrix rep-
resent classical semantic probability distributions,
while the off-diagonal elements describe correla-
tions between different sememes, which are usually
assumed to be independent in classical methods
(Li et al., 2019). In addition, the density matrix is a
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tool for modeling uncertainty and fuzziness (Meyer
and Lewis, 2020). This will help us to model the
literal meanings of the words elegantly.

Semantic Matching. The similarity between
two semantic objects u and v in QLM can be mea-
sured by either the quantum relative entropy (i.e.,
S(ρu, ρv) = −tr(ρulogρv)) (Sordoni et al., 2013) or
the trace inner product (i.e., S(ρu, ρv) = tr(ρuρv))
(Van Rijsbergen, 2004) of their corresponding den-
sity matrices. The trace inner product can be en-
coded into the joint matrix ρuv = ρuρv, where the
diagonal elements of the joint matrix correspond to
semantic overlap, while the off-diagonal elements
encode semantic interactions between different se-
memes. Therefore, some QLMs enhance the se-
mantic matching effect by using convolutional neu-
ral network to extract off-diagonal elements (Zhang
et al., 2018, 2022).

4. Proposed Model

In linguistic theories, metaphor detection has been
reduced to a matching task. The task can be
formalized as follows: given textual data D =
[w1, w2, ..., wt, ..., wn], determine whether the tar-
get word wt is a metaphor. For MIP method, it is
necessary to compute the similarity between the
target word wt and its literal meaning wl, while SPV
method computes the similarity between the target
word wt and its context C = [w1, w2, ..., wn]. We
propose a metaphor detection framework QMM that
combines MIP and SPV as shown in Figure 3.

4.1. Semantic Representation and
Composition

4.1.1. Contextual Density Matrix

We use BERT to obtain the encoding representa-
tion of the context C = [w1, w2, ..., wn]:

[rc1, r
c
2, ..., r

c
n] = BERT ([w1, w2, ..., wn]). (1)

Here, rci ∈ Rd represents the column vector of the
context word wi.

The positional relationship of the target word rel-
ative to other words is an important feature for
metaphor detection. We assign the target word
the index number 1. Subsequently, the index num-
bers of the words to the left and right of the target
word gradually increase. Then, QMM encodes the
index of wi through an encoding layer f c

index(.) with
randomly initialized values:

[ϕc
1,ϕ

c
2, ..,ϕ

c
n] = f c

index([w1, w2, ..., wn]), (2)

where ϕc
i ∈ Rd. This is similar to the global and

local features considered in works (Su et al., 2020;
Choi et al., 2021; Zhang and Liu, 2022), but the

method used by QMM is clearly fine-grained and
flexible.

Eq.1 corresponds to the real part, and Eq.2 cor-
responds to the imaginary part of the semantic
representation. Thus the word wi is denoted by the
complex-valued vector:

wi = [rci,1 + iϕc
i,1, r

c
i,2 + iϕc

i,2, ..., r
c
i,d + iϕc

i,d]
T

= rci + iϕc
i .

(3)
By Eq.4 we can obtain a normalized complex-
valued vector:

|wi⟩ =
wi

||wi||
, (4)

where |wi⟩ ∈ Cd represents the quantum-like rep-
resentation of the word wi.

Finally, QMM utilizes density matrices for seman-
tic composition:

ρc =

n∑
i=1

pi |wi⟩ ⟨wi|, (5)

where ρc ∈ Cd×d. We obtain weights {pi}ni=1 by
[p1, p2, ..., pn] = σ(f([rc1, r

c
2, ..., r

c
n])), where the f(.)

denotes a two-layer perceptron, the σ(.) denotes
Softmax activation function. The calculation pro-
cess of this weight is similar to an attention mech-
anism. The contextual density matrix fully mod-
els the semantic combination and achieves a fine-
grained feature interaction in a way often over-
looked by classical approaches.

4.1.2. Target Word Density Matrix

For the target word, we adopt a similar approach.
We obtain the real part representation of the target
word wt according to:

rt = BERT (wt|[w1, w2, ..., wn]), (6)

and get the imaginary part representation by:

ϕt = f t
pos(wt|[w1, w2, ..., wn]), (7)

where rt,ϕt ∈ Rd. f t
pos(.) is a randomly initialized

encoder, used for coding Part of Speech (POS) of
target words. A great deal of previous work has
shown POS of the target word plays a very impor-
tant role in metaphor detection (Su et al., 2020;
Zhang and Liu, 2022). Similar to Eq.3 and Eq.4,
we also obtain the semantic quantum representa-
tion |wt⟩ of the target word and a pure-state density
matrix ρt ∈ Cd×d:

ρt = |wt⟩ ⟨wt| . (8)
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Figure 3: The framework of QMM. Here, E represents Eq.3-4 and indicates the initialization of a quantum
state.

⊗
represents the outer product,

∑
represents Eq.5/ Eq.11, while J and D represent Eq.12 and 13,

respectively. C represents feature unfolding and connecting operations.

4.1.3. Literal Semantic Density Matrix

QMM introduces the glosses Gt = [g1, g2, ..., gm]
from external knowledge (e.g., the dictionaries or
WordNet), where each gloss is also a sequence
of words (i.e., gi = [w1, w2, ..., wn]). Using BERT
and a pooling layer, we obtain the global encoding
representation of m glosses of the word wt:

[rg1 , r
g
2 , .., r

g
m] = BERT ([g1, g2, ..., gm]|wt). (9)

Here, rgi ∈ Rd will be represented as the real part
of gloss gi.

The ordering relationship of glosses in a dictio-
nary is an important prior knowledge, reflecting the
frequency with which humans use different mean-
ings of a word (Miller, 1995). Intuitively, the more
forward the position, the more likely it is to be the
literal meaning of the target word. Therefore, we
index each gloss in the order of its appearance.
Then, we encode the index of gi through an encod-
ing layer fg

index(.):

[ϕg
1,ϕ

g
2, ..,ϕ

g
m] = fg

index([g1, g2, ..., gm]|wt), (10)

where ϕg
i ∈ Rd will be represented as the imaginary

part of gloss gi.
Similar to Eq.3 and Eq.4, we can obtain the se-

mantic quantum representation |gi⟩ ∈ Cd. Conse-
quently, we have a literal semantic density matrix
ρl ∈ Cd×d:

ρl =

m∑
i=1

pi |gi⟩ ⟨gi|, (11)

where the weight pi is assigned by calculating
the similarity between the context and each gloss:
[p1, p2, ..., pm] = σ([rg1 , r

g
2 , .., r

g
m]Trc1). rc1 is the first

word [CLS] in the context. σ(.) denotes Softmax
activation function. Therefore, QMM represents
the multiple meanings of a word as a density ma-
trix naturally and harmoniously, while the classical
method is lacking such a theoretical guidance.

4.2. Semantic Matching for Metaphor
Detection

Given ρt, ρl, and ρc, we use the joint matrix (Zhang
et al., 2018, 2022) for semantic matching. QMM
implements SPV and MIP methods by the joint
matrix:

ρjSPV = ρtρc

ρjMIP = ρtρl.
(12)

The joint matrix is a more generalized feature inter-
action method for the matching pairs and is also
a representation method close to the quantum rel-
ative entropy (Zhang et al., 2018). Intuitively, the
joint matrix is better at capturing features in terms
of ’angle’, which may ignore features in terms of
’distance’. Inspired by the definition of the trace
distance (Nielsen and Chuang, 2010), we propose
a difference matrix for SPV and MIP:

ρdSPV = |ρt − ρc|
ρdMIP = |ρt − ρl|.

(13)

Here |.| denotes the computation of L1 paradigm.
Finally, based on MIP and SPV, we obtain the in-
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teraction features:

HSPV = [ρjSPV ; ρ
d
SPV ]

HMIP = [ρjMIP ; ρ
d
MIP ],

(14)

where HSPV ∈ C2×d×d and HMIP ∈ C2×d×d can
be considered as two "images" with two channels.

4.3. Training and Optimization
The complex-valued features HSPV and HMIP en-
capsulate the semantic interaction information from
the perspectives of MIP and SPV. QMM further
introduces complex convolutional layers (Chiheb
et al., 2017). It can be represented as:

Z =

[
R(W ∗H)
I(W ∗H)

]
=

[
A −B
B A

]
∗
[

x
y

]
,

(15)
where the real and imaginary parts of the convo-
lution kernel W are represented by A and B, re-
spectively. The real and imaginary parts of the
semantic interaction feature HSPV or HMIP are
represented by x and y, respectively. R(.) denotes
the operation of taking the real part, and I(.) de-
notes the operation of taking the imaginary part.
The convolved results are unfolded and concate-
nated, serving as the input to a linear layer, which
generates an output yi. The network parameters
are optimized using cross-entropy loss:

L = − 1

N

N∑
i=1

wyiyi log (ŷi) , (16)

where the convolution kernel parameters are up-
dated by ∇L(W) = ∇L(R(W)) + i∇L(I(W)).

5. Experiments and Analysis

In this section, we conducted experiments to vali-
date the effectiveness of QMM.

5.1. Experimental Settings
5.1.1. Datasets

We validated QMM on three most well-known
datasets:

• VUA ALL (Steen et al., 2010) is the largest
metaphor dataset extracted from the VU Ams-
terdam Metaphor Corpus (VUA).

• VUA Verb (Steen et al., 2010) is a subset of
VUA ALL, which only involves metaphor anno-
tations for verbs.

• MOH-X (Mohammad et al., 2016) also only
involves metaphor annotations for verbs. It
collects usages of various verbs from WordNet
and annotates them for metaphor.

5.1.2. Implementation Details

All the gloss data used in this experiment is ex-
tracted from WordNet 3.1. We set the size of the
density matrix to 32× 32. We used 32 convolution
kernels with a size of 3 × 3 for convolution. The
kernels were slid one step at a time. We employed
pre-trained RoBERTa and fine-tuned it 200 epochs.
For VUA ALL and VUA Verb, we set the learning
rate of the pre-trained model to 3e-6, and the learn-
ing rate of QMM to 3e-3. We report the best results
on the test set. For MOH-X, we set the learning
rates of the pre-trained model and QMM to 3e-6.
Since this dataset is relatively small, we added L1
regularization with a weight of 1e-6 and reported
the results of 10-fold cross-validation. All experi-
ments are implemented with PyTorch v1.7.0 and
run on a single NVIDIA Tesla 3090 GPU.

5.2. Baselines
We select several representative methods from the
sequence labeling-based methods, the multi-task
learning-based methods, the classification based
methods and the matching-based methods respec-
tively as baselines.

• RNN_ELMo (Gao et al., 2018) and
RNN_BERT (Mao et al., 2019) encode
semantic representations using ELMo and
BERT, respectively.

• RNN_HG and RNN_MHCA (Mao et al., 2019)
consider the sequence labeling task paradigm,
and they further combine linguistic theories
MIP and SPV, respectively.

• RoBERTa_SEQ (Leong et al., 2020) is a base-
line model in the ACL 2020 metaphor detection
shared task.

• MUL_GCN (Le et al., 2020) is based on a
graph convolutional neural network, which can
perform metaphor detection and semantic dis-
ambiguation.

• DeepMet (Su et al., 2020) regards metaphor
detection as a reading comprehension tasks.

• MrBERT (Song et al., 2021) regards metaphor
detection as a relation classification task be-
tween verbs and nouns and then uses BERT
for fine-tuning.

• MelBERT (Choi et al., 2021) and MisNet
(Zhang and Liu, 2022) are both based on lin-
guistic theories. In MIP module, MelBERT
uses an independent encoder to encode the
literal meaning of words, while MisNet uses
the basic usage of words (the first gloss) in the
dictionary as the literal meaning of words.
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Table 1: The overall experimental results. The best result is marked in boldface and the second best
result is underlined.

Model MOH-X VUA All VUA Verb
Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc.

RNN_ELMo 79.1 73.5 75.6 77.2 71.6 73.6 72.6 93.1 68.2 71.3 69.7 81.4
RNN_BERT 75.1 81.8 78.2 78.1 71.5 71.9 71.7 92.9 66.7 71.5 69.0 80.7

RNN_HG 79.7 79.8 79.8 79.7 71.8 76.3 74.0 93.6 69.3 72.3 70.8 82.1
RNN_MHCA 77.5 83.1 80.0 79.8 73.0 75.7 74.3 93.8 66.3 75.2 70.5 81.8
MUL_GCN 79.7 80.5 79.6 79.9 74.8 75.5 75.1 93.8 72.5 70.9 71.7 83.2

RoBERTa_SEQ - - - - 80.4 74.9 77.5 - 79.2 69.8 74.2 -
DeepMet - - - - 82.0 71.3 76.3 - 79.5 70.8 74.9 -
MelBERT - - - - 80.1 76.9 78.5 - 78.7 72.9 75.7 -
MrBERT 80.0 85.1 82.1 81.9 82.7 72.5 77.2 94.7 80.8 71.5 75.9 86.4
MisNet 84.2 84.0 83.4 83.6 80.4 78.4 79.4 94.9 78.3 73.6 75.9 86.0

QMM(ours) 86.0 86.7 86.3 86.7 80.9 77.8 79.3 95.0 73.9 79.0 76.4 85.3

5.3. Overall Results
The overall results of the experiment are shown
in Table 1. We report the results of QMM on
evaluation metrics Precision (Pre.), Recall (Rec.),
F1-measure (F1), and Accuracy (Acc.) respec-
tively. The QMM receives the highest scores of
86.0, 86.7, 86.3, and 86.7 on the four evaluation
metrics for MOH-X. It achieved overwhelming per-
formance, with improvements of 2.9% and 3.1%
in F1-measure and Accuracy, respectively, com-
pared to the state-of-the-art model. On VUA All
dataset, QMM achieved the highest Accuracy score
of 95. On VUA Verb dataset, QMM achieved the
highest Recall score of 79.0 and the highest F1-
measure score of 76.4. These results indicate that
our method is highly competitive and can achieve
state-of-the-art performance on some datasets.

However, it is worth noting that QMM exhibits
inferior performance compared to MOH-X on VUA.
We possess a fundamental comprehension regard-
ing this matter. In dataset MOH-X, the majority
of target words can be covered by WordNet. The
VUA Verb dataset, however, exhibits greater com-
plexity as it encompasses target words that are not
accounted for in WordNet. The VUA ALL dataset
includes all possible POS. Since WordNet only cov-
ers nouns, verbs, adjectives, and adverbs, there
might be more target words not covered by Word-
Net, resulting in a performance that is inferior to
that achieved on the first two datasets. Therefore,
using a dictionary that covers more target words
might yield better results. However, considering
the challenge of obtaining a larger dictionary, we
ultimately chose WordNet for its broader influence
and ease of use.

5.4. Ablation Study
To validate the role of each component in the pro-
posed method, we performed ablation experiments.
-MIP and -SPV indicate that MIP and SPV are

not used, respectively. -C indicates that complex-
valued features are eliminated. -Q indicates that
QLM is not used, in which case the model will de-
generate into a model with multiple glosses added
by weights, similar to Wan et al. (2021) and Su et al.
(2021).

5.4.1. Module Ablation

The results of ablation experiments are presented
in Table 2. Firstly, the results demonstrate that MIP
and SPV are complementary metaphor detection
methods, and the combination of the two methods
yields the best results. In addition, the use of QLM
resulted in a significant improvement, which may be
due to the density matrix implementing more fine-
grained feature interaction and uncertainty model-
ing of a literal meaning. After adding the complex-
valued feature, QMM further improved indicating
that the positional relationship of the target word
relative to other words is an important feature for
metaphor detection. At the same time, we also ob-
served that the performance of MIP surpassed SPV
when complex-valued features were introduced, in-
dicating that the relative order of glosses in MIP
method is a significant factor that can help us model
the literal meaning of the target word more effec-
tively.

5.4.2. Matching Mode Ablation

We also analyzed the matching mode, and the ex-
perimental results are shown in Table 3. We found
that the proposed difference matrix outperformed
the joint matrix proposed in previous works (Zhang
et al., 2018, 2022). When combining both the joint
matrix and the difference matrix, QMM achieved
the best performance.
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The difference matrix 
of MIP

The difference matrix 
of SPV

The joint matrix 
of MIP

The joint matrix 
of SPV

Ping your machine in the office.

The bullets whistled past him. 

Figure 4: The difference matrix and joint matrix are formed by MIP and SPV on two sentences, where
"whistled" is a metaphorical and "Ping" is literal. The more red areas in the difference matrix, the greater
the semantic difference and likelihood of it being a metaphor. The joint matrix is the opposite.

Table 2: The results of the ablation experiment.
Ablation Pre. Rec. F1 Acc.
-SPV-C-Q 79.8 80.9 79.8 80.0
-MIP-C-Q 79.6 83.2 80.6 80.6

-C-Q 81.9 83.2 82.5 82.9
-SPV-C 79.7 83.7 81.3 81.2
-MIP-C 81.0 82.3 81.4 81.6

-C 84.5 83.3 83.7 84.5
-SPV 85.3 86.4 85.6 85.9
-MIP 86.1 85.5 85.5 85.9

QMM(ours) 86.0 86.7 86.3 86.7

Table 3: The results of the matching mode.
Matching mode Pre. Rec. F1 Acc.

Joint matrix 85.8 86.5 85.8 85.9
Difference matrix 85.2 87.6 86.1 86.2

QMM(ours) 86.0 86.7 86.3 86.7

5.5. Effectiveness Study
In order to interpret the literal semantic density ma-
trix and matching mode, we perform visual analysis.

5.5.1. Density Matrix Analysis

To verify that the learned literal semantic density
matrix can model the phenomenon of polysemy
and reflect the ambiguity of the literal meaning of
the word, we calculated the von Neumann entropy
according to the formula: S(ρ) = −tr(ρ log ρ). The
final results are shown in Figure 5. It shows that

Figure 5: The literal semantic density matrix is
formed by random sampling of 100 samples.

there is a certain degree of positive correlation be-
tween the von Neumann entropy of the density
matrix and the number of synsets corresponding
to the word, which indicates that QMM reflect the
phenomenon of polysem (Meyer and Lewis, 2020)
and is a reasonable method for characterizing the
literal meaning of words.

5.5.2. Matching Mode Analysis

Finally, the visualization analysis of the matching
mode is shown in Figure 4. We found the differ-
ence matrix produces a diagonal effect, and most
of the semantic differences are concentrated on the
diagonal elements. In contrast, the joint matrix pro-
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duces horizontal or vertical textures, and most of
semantic differences are concentrated on the hori-
zontal and vertical textures, intermittently. These
results indirectly explain why QLM (Zhang et al.,
2018, 2022) can not obtain optimal performance
by directly extracting the traces of the joint matrix.
Because the semantic overlap of the joint density
matrix is not concentrated on the diagonal, which
is why we need convolutional neural networks. In
addition, we observe that the second sentence has
more red areas on the diagonal in the difference
density matrix of MIP, suggesting that the sentence
is more likely to be a metaphor, which is indeed the
case. Similar phenomena can also be observed in
the joint matrix of MIP, where there are more blue
areas in the second example sentence, indicating
that the sentence is more likely to be a metaphor.

6. Conclusions

This paper proposes a quantum-inspired match-
ing network with linguistic theories for metaphor
detection (QMM). It not only realizes more granu-
lar semantic interaction but also models the literal
meaning of uncertainty of target words. The exper-
imental results show the competitiveness of this
method. To our knowledge, this is the first work to
use QLM for metaphor detection. This provides a
new application direction and innovative ideas for
the intersection of quantum mechanics and natural
language processing.
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