
LREC-COLING 2024, pages 14579–14594
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

14579

Self-Improvement Programming for Temporal Knowledge Graph
Question Answering

Zhuo Chen1,2, Zhao Zhang1,2, Zixuan Li∗,1,2 , Fei Wang∗,1,2, Yutao Zeng,
Xiaolong Jin1,2 and Yongjun Xu1,2

1Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

{ chenzhuo23s, zhangzhao2021, lizixuan, wangfei, jinxiaolong, xyj } @ict.ac.cn
yutao.zeng@outlook.com

Abstract
Temporal Knowledge Graph Question Answering (TKGQA) aims to answer questions with temporal intent over
Temporal Knowledge Graphs (TKGs). The core challenge of this task lies in understanding the complex semantic
information regarding multiple types of time constraints (e.g., before, first) in questions. Existing end-to-end methods
implicitly model the time constraints by learning time-aware embeddings of questions and candidate answers, which
is far from understanding the question comprehensively. Motivated by semantic-parsing-based approaches that
explicitly model constraints in questions by generating logical forms with symbolic operators, we design fundamental
temporal operators for time constraints and introduce a novel self-improvement Programming method for TKGQA
(Prog-TQA). Specifically, Prog-TQA leverages the in-context learning ability of Large Language Models (LLMs)
to understand the combinatory time constraints in the questions and generate corresponding program drafts with
a few examples given. Then, it aligns these drafts to TKGs with the linking module and subsequently executes
them to generate the answers. To enhance the ability to understand questions, Prog-TQA is further equipped
with a self-improvement strategy to effectively bootstrap LLMs using high-quality self-generated drafts. Extensive
experiments demonstrate the superiority of the proposed Prog-TQA on MultiTQ and CronQuestions datasets,
especially in the Hits@1 metric.

Keywords:Temporal Knowledge Graph Question Answering, In-Context Learning, Self-Improvement

1. Introduction

Temporal Knowledge Graphs (TKGs) store real-
world facts along with a timestamp or time interval
(e.g., (China, Host a visit, Vietnam, 2015-12-27)).
Temporal Knowledge Graph Question Answering
(TKGQA) aims to answer natural language ques-
tions with temporal intent (i.e., temporal questions)
over TKGs. The task is particularly important in
various applications, such as historical research,
financial analysis, and understanding trends over
time, where the temporal intent is crucial for ac-
curate and meaningful answers (Lüdemann et al.,
2020; Xu et al., 2023).
Compared to common questions, temporal

questions engage multiple time constraints and
thus have more complex semantic information.
The core challenge of the TKGQA task is how
to understand semantic information comprehen-
sively by diving deep into the combinatory time
constraints in the question. For example, the tem-
poral question “Which country was last visited by
Obama before he visited the Foreign Minister of
Cape Verde?” involves dual time constraints “be-
fore” and “last”. By understanding the time con-
straints, the question can be answered by the fol-
lowing reasoning steps: 1) Localize the time point
in terms of the fact “(Obama visit, Foreign Minister

*Corresponding author

of Cape Verde, 2013-03-28)”; 2) Query the facts
about Obama’s visit; 3) Filter the facts preceding
the above time point according to the “before’’ con-
straint; 4) Sort the filtered facts and get the country
in the latest fact according to the “last’’ constraint.
Existing TKGQA methods (Saxena et al., 2021;

Mavromatis et al., 2022) implicitly model the time
constraints by learning time-aware embeddings
of both questions and candidate answers. Then,
they predict answers by calculating the similarity
between these embeddings. Nevertheless, such
methods struggle to model and utilize time con-
straints precisely, further making them unable to
fully understand the complex semantic information
of combinatory constraints in temporal questions.
Different from thesemethods, semantic-parsing-

based approaches (Chen et al., 2021; Gu and Su,
2022; Shu et al., 2022) in Knowledge Graph Ques-
tion Answering (KGQA) task convert natural lan-
guage questions to logical forms (e.g., SPARQL
queries), and subsequently execute them on
Knowledge Graphs (KGs) to retrieve answers.
Such approaches parse the semantics of ques-
tions into the composition of symbolic operators.
These operators are capable of handling numer-
ical constraints, comparisons, and ordering, thus
offering a feasible solution to answer temporal
questions. However, applying existing semantic-
parsing-based methods directly to temporal ques-

14580

Figure 1: SPARQL query with complex clauses for
temporal operations (left) and extended KoPL with
neat temporal operators (right).

tions encounters two challenges: 1) Lack of brief
temporal operators: Common query languages
(e.g., SPARQL) lack specifically designed tem-
poral operators. As the left part of Figure 1
shows, the SPARQL query represents temporal
constraints through ordinary numerical operators
in the form of multiple query clauses (depicted
in blue), which are not concise enough for auto-
mated generation; 2) Lack of logical form anno-
tations: Traditional semantic-parsing-based meth-
ods heavily rely on extensive annotations for train-
ing. Without sufficient annotated logical forms for
temporal questions, it’s hard to equip models with
abilities to parse complex questions into query pro-
grams with temporal operators.
To overcome the first challenge, we system-

atically analyze time constraints and design cor-
responding temporal operators. Specifically,
we choose the Knowledge-oriented Programming
Language (KoPL) (Cao et al., 2022), which offers
extensibility and adaptability, extending its func-
tion library by implementing the designed tem-
poral operators. As illustrated in Figure 1, per-
forming a single temporal operation in the ex-
tended KoPL requires only one temporal operator,
whereas achieving the same in SPARQL necessi-
tates multiple clauses.
Recently, LLMs (e.g., ChatGPT) have shown im-

pressive semantic understanding and robust few-
shot generalization capabilities on a variety of
NLP tasks (Brown et al., 2020). Thus, we tackle
the second challenge by utilizing the In-Context
Learning (ICL) ability of LLMs and propose a two-
stage framework called Prog-TQA. Prog-TQA can
generate programs incorporating external TKG
schemas flexibly. In the first stage, Prog-TQA
leverages the ICL ability of the LLM to parse ques-
tions and generate primarily program drafts ac-
cording to a few question-program examples. In
the second stage, Prog-TQA aligns the mentions
in drafts to specific TKG using a similarity-based
linking module. To further improve the LLM’s abil-

ity to understand complex temporal questions, we
integrate Prog-TQA with a self-improvement strat-
egy, enabling the LLM to refine itself utilizing self-
generated programs. This process uses gold an-
swers as weak supervision to assess programs.
It progressively bootstraps LLM’s ability to under-
stand questions by iteratively learning from the cor-
rect programs and correcting the challenging ques-
tions.
In summary, our contributions are as follows:

• We systematically analyze time constraints in
TKGQA and design the corresponding tempo-
ral operators to extend KoPL to handle tempo-
ral questions.

• Based on the designed operators, we pro-
pose a two-stage framework for the TKGQA
task, namely Prog-TQA, which leverages the
ICL ability to perform few-shot program gen-
eration. Besides, we incorporate an effec-
tive self-improvement strategy in Prog-TQA
to enhance LLM’s comprehension of complex
questions.

• Experiments demonstrate the superiority of
Prog-TQA. It achieves up to 50.4% improve-
ment overall at Hits@1 on MultiTQ and 3.5%
for complex questions at Hits@1 on Cron-
Questions.

2. Related Work

TKGQA methods. Existing TKGQA meth-
ods can be divided into two categories: the
embedding-basedmethods and semantic-parsing-
based methods. Embedding-based methods,
which constitute the mainstream, typically learn
time-aware embeddings for questions and can-
didate answers and predict answers by embed-
ding calculations. CronKGQA (Saxena et al.,
2021) obtains entity and time embeddings from
pre-trained TKG models. Building upon this, Tem-
poQR (Mavromatis et al., 2022) retrieves the time
scopes of annotated entities and integrates them
into the question representation. MultiQA (Chen
et al., 2023) extracts time information and intro-
duces a multi-granularity time aggregation module
to enhance question embeddings.
The second category of approaches, which re-

mains relatively unexplored, revolves around se-
mantic parsing. These approaches aim to iden-
tify time constraints within questions and subse-
quently decompose the questions or generate
corresponding query structures. TEQUILA (Jia
et al., 2018b) decomposes each question into non-
temporal and temporal sub-questions, addressing
them separately. SF-TQA (Ding et al., 2022) or-
ganizes the time constraints into predefined struc-
tures and subsequently generates and executes

14581

Figure 2: The pipeline of proposed Prog-TQA. Prog-TQA firstly leverages the ICL ability of LLMs to
generate KoPL program drafts. Subsequently, it adopts linking and execution modules to complete and
execute the generated drafts on TKG and finally obtains the answers.

them for answer retrieval.
Different from the embedding-based methods

that implicitly model time constraints, Prog-TQA
explores parsing the questions into explicit query
steps, and distinguishes itself from other semantic-
parsing-based methods by the requirement of few
annotations.
Semantic-parsing-based KGQA methods.

Semantic-parsing-based approaches in KGQA
convert the questions into logical forms and then
execute them on the KGs to obtain answers. Tra-
ditional methods (Chen et al., 2021; Gu and Su,
2022; Shu et al., 2022) leverage the generative
capability of Language Models (LMs), which fine-
tune LMs and use them as semantic parsers. To
eliminate the need for annotations, some recent
works take advantage of the advanced LLMs.
KB-BINDER (Li et al., 2023) firstly leverages the
ICL ability of LLMs to generate logical forms with
few annotations. McL-KBQA (Tan et al., 2023)
employs ICL with multiple choices while Nie et
al. (Nie et al., 2023) introduces a code-style ICL
method to reduce format errors. The proposed
Prog-TQA also falls into this category. It explores
the parsing of temporal questions based on
designed temporal operators.
Self-improvement. Huang et al. (Huang et al.,

2023) introduces the self-improvement of LLMs,
leveraging self-consistency in generated reason-
ing paths as weak supervision. Similarly, we
adopt a self-improvement strategy in Prog-TQA,
using gold answers as weak supervision to distin-
guish generated programs. Differently, the itera-
tive process is highlighted to solve complex tem-

poral questions gradually.

3. Methodology

3.1. Overview
Given natural language questions with temporal
intent and a TKG G := {(s, r, o, t), s, o ∈ E , r ∈
R, t ∈ T }, where E , R and T represent the set
of entities, relations and time separately. The task
of TKGQA aims to answer these temporal ques-
tions by referencing the facts stored in the TKG.
To achieve this, we first design a set of fundamen-
tal temporal operators that empower KoPL to ex-
ecute temporal operations (Section 3.2). Building
upon this foundation, we propose a novel TKGQA
framework named Prog-TQA (Section 3.3).

3.2. The Designed Temporal Operators
To empower KoPLwith temporal operation capabil-
ities, we generalize three categories of temporal
operations according to time constraints and im-
plement them in KoPL’s function library. Table 1
provides descriptions and examples of operators,
more design details can be found in Appendix A.1.
Fundamental Temporal Operators. We first

summarize the fundamental temporal constraints
into comparative constraints (i.e., before, after,
simultaneous) and ordinal constraints (i.e., first,
last). For these constraints, we develop four op-
erators to simplify the querying process for facts
occurring before or after a particular time (Filter-
Before/FilterAfter), as well as to query the earliest
and latest facts or time (FilterFirst/FilterLast).

14582

Operator Types Temporal Operators Descriptions Examples (Simplified)

Fundamental

FilterBefore Retrieve facts occurring before the given time. FilterBefore(Facts,“2010-01-12”)
FilterAfter Retrieve facts occurring after the given time. FilterAfter(Facts,“2010-01-12”)
FilterFirst Retrieve facts or times that occur first. FilterFirst([“2010-01-12”, “2012-11-30”,“2013-11-02”])
FilterLast Retrieve facts or times that occur last. FilterLast([“2010-01-12”, “2012-11-30”,“2013-11-02”])

Precise

FilterRange Retrieve facts that occur within coarse-grained time bounds. FilterRange(Facts, “2010-10”)
GetYear Get year-format answers from the time or fact list. GetYear([“2010-01-12”, “2012-11-30”])
GetMonth Get month-format answers from the time or fact list. GetMonth([“2010-01-12”, “2012-11-30”])
GetDate Get date-format answers from the time or fact list. GetDate([“2010-01-12”, “2012-11-30”])

GetDuration Get the duration when facts hold happening state. GetDuration(Facts)
FilterByDuration Retrieve facts that hold the happening state within the given duration(s). FilterByDuration(Facts,[“2010”,“2011”,“2012”])
FilterByTimePoint Retrieve facts that hold the happening state at the given time point. FilterByTimePoint(Facts,“2012”)

Dataset-specific QueryEventQualifier Get the given qualifiers in the “event” type entities. QueryEventQualifier(“2004 Summer Olympics”,“duration”)

Table 1: Descriptions and examples for the designed operators. For ease of understanding, we provide
the description and a representative example for each operator, where the input is simplified. “Facts”
denotes the set of facts in TKGs.

Precise temporal Operators. We additionally
design advanced temporal operators to enhance
precise information retrieval, addressing diverse
operational needs arising from nuanced temporal
properties involving granularity (year, month, day)
and storage format (time point and time interval).
In terms of granularity, we introduce four functions
to facilitate the query of different granularity for-
mats (GetYear/GetMonth/GetDate) and to enable
the use of coarse-grained time for fact retrieval (Fil-
terRange). Considering the diverse storage for-
mats of time information in TKGs, we provide op-
erators for querying facts that occur at different for-
mat times (FilterByTimePoint/FilterByDuration).
Dataset-Specific Operators. Notably, these

operators can be flexibly extended according to
future requirements. To empower event queries
in the CronQuestions dataset, we additionally in-
troduce a function to query qualifiers in events, as
shown in the last block.

3.3. The Proposed Prog-TQA Method

Based on designed temporal operators, we pro-
pose a semantic-parsing-based TKGQA method
called Prog-TQA. Prog-TQA is a two-stage pro-
gram generation framework, which enables the
LLM to flexibly generate programs involving dif-
ferent external TKGs. As Figure 2 shows, Prog-
TQA initially employs a draft generation module
to generate a preliminary draft for a given tem-
poral question. Subsequently, the link module
aligns the draft with a specific TKG, followed by
the execution module that interprets and executes
the program to derive the answer. Moreover, to
overcome the challenge of lacking logical form an-
notations, Prog-TQA further incorporates a self-
improvement strategy, bootstrapping the LLM with
high-quality self-generated annotations in an itera-
tive fine-tuning manner.

3.3.1. Draft Generation Module

The draft generation module leverages the ICL
ability of the LLM to understand the questions

and generate program drafts with few annotations.
Specifically, it first samples relevant question-
program examples as demonstrations. Then, it
organizes the examples to construct the prompt,
which serves as the input for the LLM.
In the example retrieval process, to procure ex-

amples conducive to question answering, Prog-
TQA samples N examples of the same category
as the query question. To start the process, we
manually annotate a very small number of demon-
stration examples. We subdivide the pre-classified
categories based on the type of answer (i.e., entity
or time) and time constraints, and then provide 20
exemplary programs annotated for each category.
In the prompt construction process, following

the general ICL method, the prompt is organized
into three main components: a brief task instruc-
tion I, demonstration examples D, and the query
questionQ. To facilitate the LLM’s comprehension
of the provided programs, a simplified format of the
KoPL programs is given. In this format, the func-
tion name is retained. The textual arguments are
encapsulated within <i></i> tags, while the func-
tional arguments that specify the dependent func-
tions are encapsulated within <d></d> tags. Ad-
ditional details regarding annotated programs and
prompt examples are available in Appendix A.5.
In summary, the draft generation process for

the query question Q using instruction I, selected
demonstration examples D can be outlined as fol-
lows:

Kd = M(I;D;Q)

where Kd represents for the generated KoPL pro-
gram drafts, and M represents for the LLM used.

3.3.2. Linking Module

The drafts generated in the first stage are not guar-
anteed to be executable, for the entities and rela-
tions are directly extracted from questions. To facil-
itate execution, the linking module aligns mentions
in drafts with TKGs.
Unlike existing methods that use a simple fuzzy

matching approach, the linking module utilizes a

14583

similarity-based method to refine the linking pro-
cess. It can be observed that the main entities
and relations in the question semantics tend to ap-
pear in the reasoning steps to query the answers,
they usually appear in the same few fact quadru-
ples. Thus, the linking module narrows the scope
of linking candidates using the semantic similarity
between the core semantics of the question and
the fact.
As Figure 2 shows, the module begins with

skeleton extraction. It standardizes both questions
and facts into a uniform sentence structure consist-
ing mainly of entities and relations. For questions,
it extracts the skeleton by removing the question
words, stop words, and temporal words. As for
facts, it first removes the time component to obtain
triplet facts. Given that the semantics of another
entity can disrupt the retrieval in questions that in-
volve only a single entity, it also splits a triplet into
two entity-relation tuples, adding extra tuple facts.
Each fact is joined with spaces to form a sentence.
Then, the question and fact sentences are en-

coded into embeddings by the sentence encoder.
The cosine similarity is utilized to select the top k
relevant facts, thus forming the set of entities and
relations.
Finally, the linking module uses fuzzy matching

to link entities and relations in program drafts with
the above entity set and the relation set, respec-
tively. Noting that certain relations in the TKG are
easily confused, themodule selects r relations dur-
ing relation linking and generates r copies of the
draft.

3.3.3. Execution Module

Based on the linked drafts, Prog-TQA employs
an execution module to process drafts into KoPL
programs and execute them to retrieve answers.
Since the current program drafts are solely aligned
with the TKG, they may contain parameter errors
or structural inaccuracies. To address this, the
execution module incorporates an optional post-
processing submodule aimed at minimizing such
errors before executing programs.
Errors in the parameters or structure of a pro-

gram can be generalized to functional dependency
errors (e.g., a functional dependency argument of
1 but set to 0) and relational active-passive ar-
gument errors (e.g., mistake “forward” for “back-
ward”). The post-processing submodule enumer-
ates all possible arguments for functions that in-
volve functional dependency and active-passive
relation arguments. Then, it produces a copy of
the KoPL program for each enumeration result.
Finally, the execution module converts the KoPL

program drafts into complete programs and exe-
cutes them on the KoPL engine. The final answers

are obtained by combining the execution results of
all programs produced for the question.

3.3.4. Self-Improvement Strategy

Algorithm 1: Self-improvement process
Input :Training set T , raw LLM M0, TKG G,

convergence threshold C, maximum
iteration rounds Max

Output :Fine-tuned LLM Mi

1 Get fine-tuning data F0, gold answer GA from T ;
2 Results← GenProg(F0, G, M0);
3 F t

0 , F
f
0 ← CheckProg(Results,GA);

4 i← 0;
5 while |F t

i | ≥ C or i < Max do
6 Mi+1 ← FineTune(F t

i , Mi);
7 Results← GenProg(F f

i ,G,Mi+1);
8 F t

i+1, F
f
i+1 ← CheckProg(Results,GA);

9 i← i+ 1;

10 return Mi;
11 Function GenProg(data, TKG,LLM):
12 Results← ∅;
13 foreach Ques ∈ data do
14 Prog,Res←

Prog-TQA(Ques, LLM,TKG);
15 Results← Results ∪ (Ques;Prog;Res);

16 return Results;

17 Function CheckProg(results, gold_answer):
18 Correct, Incorrect← ∅, ∅;
19 foreach (Ques;Prog;Res) ∈ results do
20 Flag ← False;
21 foreach p, r ∈ Prog,Res do
22 if r ∩ gold_answer ̸= ∅ then
23 Correct← Correct ∪ (Ques; p);
24 Flag ← True; break;

25 if Flag is False then
26 Incorrect← Incorrect ∪Ques;

27 return Correct, Incorrect;

While Prog-TQA offers a complete program gen-
eration framework, the built-in LLM learns solely
from a limited set of provided examples, con-
straining its capacity for intricate reasoning tasks.
To address this, we incorporate Prog-TQA with
a self-improvement strategy, leveraging the self-
generated high-quality programs to refine the LLM.
The self-improvement process involves two main
stages: initially, it generates fine-tuning data using
gold answers as the weak supervision; then, it it-
eratively conducts fine-tuning sessions, enabling
the LLM to continually learn from high-quality
programs and rectify challenging questions. Al-
gorithm 1 shows the pseudo-code for the self-
improvement process.
In the initial data generation stage, the fine-

tuning data F0 and corresponding gold answers

14584

GA are sampled from the training set T . Then, the
fine-tuning data are processed through the Prog-
TQA pipeline, getting programs and execution re-
sults for each question (Algorithm 1 line 1-2 and
function GenProg). Notably, the post-processing
operation is activated to over-generate candidate
programs for filtration. Subsequently, the gold an-
swers for each question serve as the weak super-
vision to assess programs (Algorithm 1 line 3 and
function CheckProg): for every candidate pro-
gram associated with a question, if the program’s
execution results match the answers, the question-
program pair is included in the correct dataset F t

0 ;
conversely, if no program produces matching re-
sults, indicating a challenging question, it is in-
cluded in the incorrect dataset F f

0 .
The iterative fine-tuning process starts based

on the initial fine-tuning data. At the i-th itera-
tion, the LLM Mi undergoes fine-tuning based on
F t
i to assimilate knowledge from the correct pro-

grams. Subsequently, the fine-tuned LLM Mi+1

is deployed to address the challenging questions
in F f

i . Employing the same supervision strategy,
new correct and incorrect datasets F t

i+1 and F f
i+1

are delineated for the subsequent iteration. The
iterative process persists until either the maximum
number of rounds Max is reached or when the
size of F t

i decreases below a predefined thresh-
old C (Algorithm 1 line 4-10).

4. Experiments

4.1. Experimental Setup
In this section, we first introduce the datasets used
for evaluation. Then, we present baseline meth-
ods for comparison and finally explain the imple-
mentation details.
Datasets. We conduct experiments on two

widely-used datasets for the TKGQA task: Mul-
tiTQ (Chen et al., 2023) and CronQuestions (Sax-
ena et al., 2021). In MultiTQ, the time infor-
mation is represented as time points, and tem-
poral questions may be of single-constraint and
multiple-constraints. In CronQuestions, the time
information is represented as time intervals, and
the questions are single-constraint only. The de-
tailed statistics of these datasets can be found in
Appendix A.4.
Baselines. We compare Prog-TQA with three

types of baselines: 1) The embedding-based
methods, including EmbedKGQA (Saxena et al.,
2020) and CronKGQA(Saxena et al., 2021). 2)
The temporal-enhanced methods, including Tem-
poQR(Mavromatis et al., 2022), MultiQA(Chen
et al., 2023), and TMA (Liu et al., 2023). 3)
Additionally, the LM-based methods including
BERT(Kenton and Toutanova, 2019). The detailed

analysis and comparison of these baselines can
be found in Appendix A.2.
Implementation Details. In the draft genera-

tion module, we use vicuna-13B (Chiang et al.,
2023) as the base LLM.We employ 8 examples for
CronQuestions and 6 examples for MultiTQ, gen-
erating 1 program draft for each question. In the
linking module, we directly utilize the entity and
relation annotations given in the CronQuestions.
For MultiTQ, we employ the miniLM (Wang et al.,
2020) as the sentence encoder and retrieved 5
facts, linking the top 1 entity and 2 relations for
each question. In the execution module, we ac-
tivate the post-process submodule for the Cron-
Questions dataset but not for the MultiTQ dataset.
In the self-improvement stage, we apply the Low-
Rank Adaptation (LoRA) (Hu et al., 2021) method
for fine-tuning, with the rank set to 8. Experiments
are conducted on 2 NVIDIA RTX3090 GPUs. Re-
sults are reported for 2 rounds of iteration on 100k
fine-tuning data for MultiTQ and 1 round of itera-
tion on 50k fine-tuning data for CronQuestions.

4.2. Main Results

Table 2 and Table 3 present the experimental re-
sults of Prog-TQA in comparison with other meth-
ods on the MultiTQ and CronQuestions datasets,
where the highest results are highlighted in bold
font and the second highest results are marked
underlined. We report the Hits@1 and Hits@10
of the evaluation results.
As shown in Table 2, Prog-TQA achieves state-

of-the-art performance across all question types
for both hits@1 and hits@10 on MultiTQ. Specif-
ically, compared to the previous state-of-the-art
model, the hits@1 performances achieve 60.9%
improvement on multiple-constraint questions and
47.0% improvement on single-constraint ques-
tions. The results demonstrate the capability of
Prog-TQA for precisely answering temporal ques-
tions, especially for complex questions.
As for CronQuestions, Prog-TQA still achieves

a 2.1% relative improvement on Hits@1 and com-
petitive results on Hits@10. Given that CronQues-
tions contains only single-constraint questions that
have relatively simple semantics, existing models
have already achieved good performance on it. To
this end, the improvement gains from Prog-TQA
might not appear obvious. We believe that Prog-
TQA would exhibit greater potential when faced
with questions with multiple time constraints.
Besides, we also conduct a detailed analysis

across different question types, as shown in Fig-
ure 3. The simplest type of “equal” questions are
solved the best. Questions of the “Before/After”
and “First/Last” types show similar performance,
but the former lags slightly behind. This can be

14585

Model
Hits@1 Hits@10

Overall Question Type Answer Type Overall Question Type Answer Type

Multiple Single Entity Time Multiple Single Entity Time

BERT 0.083 0.061 0.092 0.101 0.040 0.441 0.392 0.461 0.531 0.222

EmbedKGQA 0.206 0.134 0.235 0.290 0.001 0.459 0.439 0.467 0.648 0.001
CronKGQA 0.279 0.134 0.337 0.328 0.156 0.608 0.453 0.671 0.696 0.392
MultiQA 0.293 0.159 0.347 0.349 0.157 0.635 0.519 0.682 0.733 0.396

Prog-TQA 0.797 0.750 0.817 0.790 0.815 0.934 0.910 0.944 0.922 0.963

Table 2: Comparison of various baselines and Prog-TQA on MultiTQ.

Model
Hits@1 Hits@10

Overall Question Type Answer Type Overall Question Type Answer Type

Complex Simple Entity Time Complex Simple Entity Time

BERT 0.243 0.239 0.249 0.277 0.179 0.620 0.598 0.649 0.628 0.604

EmbedKGQA 0.288 0.286 0.290 0.411 0.057 0.672 0.632 0.725 0.850 0.341
CronKGQA 0.647 0.392 0.987 0.699 0.549 0.884 0.802 0.992 0.898 0.857
TMA 0.784 0.632 0.987 0.792 0.743 0.943 0.904 0.995 0.947 0.936
TempoQR 0.918 0.864 0.990 0.926 0.903 0.978 0.967 0.993 0.980 0.974

Prog-TQA 0.937 0.898 0.989 0.914 0.982 0.973 0.960 0.993 0.968 0.982

Table 3: Comparison of various baselines and Prog-TQA on CronQuestions.

Figure 3: Performances (Hits@1) of Prog-TQA
and MultiQA on the MultiTQ dataset against ques-
tion types.

attributed to the fact that time information is implic-
itly present in entities for some “before/after” type
questions (e.g., the question mentioned in Section
1), which requires additional reasoning steps. For
multiple-constraint questions, “Before Last” and
“After First” questions exhibit only slightly lower
performance compared to “First/Last” questions,
indicating the reasoning ability of Prog-TQA. How-
ever, the performance for “Equal Multi” type ques-
tions is less satisfactory. For these questions with
unique answers, the selected r relations in the link-
ing module generate redundant answers, thereby
reducing the performance on Hits@1.

4.3. Ablation Study
To elaborate on the effectiveness of each part of
Prog-TQA, we first perform the full model with

the self-improvement strategy (Prog-TQA w/ SI).
Then, we consider four settings in the ablation ex-
periments on the MultiTQ dataset: we removed
the self-improvement strategy (Prog-TQA). Based
on the Prog-TQA, we subsequently replaced the
linking module with the one used in MultiQA (Prog-
TQA w/o L), enabled the post-processing mod-
ule (Prog-TQA w/ PP), and reduced the number
of demonstration examples to one (Prog-TQA w/
D(1)). The results are shown in Table 4.
Impact of self-improvement strategy. Com-

paring the results of Prog-TQA w/ SI with Prog-
TQA, there is a significant drop in overall results,
especially on multiple-constraints questions. It
demonstrates that the self-improvement strategy
bootstraps the capabilities of Prog-TQA in effec-
tively parsing and reasoning over questions, espe-
cially questions with multiple time constraints.
Impact of linking module. When comparing

the results of Prog-TQA and Prog-TQA w/o L, we
can observe that by replacing the linking mod-
ule, the overall performances decrease 13.2% on
hits@1 and 4.3% on hits@10, which indicates that
the proposed linking method achieves accurate
entity and relation recognition, and subsequently
ensures the precise execution of generated pro-
grams.
Impact of post-processing. Comparing the

Prog-TQA and Prog-TQA w/ PP, enabling the post-
processing resulted in a notable general decline in
Hits@1 results, but an improvement in Hits@10 re-
sults. This revealed that the post-processing pro-

14586

Model Hits@1 Hits@10

Overall Multiple Single overall Multiple Single

Prog-TQA w/ SI 0.797 0.750 0.817 0.934 0.910 0.944
Prog-TQA 0.583 0.379 0.666 0.697 0.466 0.790

Prog-TQA w/o L 0.451 0.250 0.532 0.654 0.522 0.708
Prog-TQA w/ PP 0.537 0.360 0.609 0.777 0.682 0.815
Prog-TQA w/ D(1) 0.330 0.252 0.361 0.498 0.488 0.502

Table 4: Results of the ablation study. “w/” means
removing the module and “w/o” means adding the
module.

Round Spurious program rate

1st Iteration 7.5%

2nd Iteration 4.0%

Table 5: Spurious program rate in the fine-tuning
data at each round.

cess can greatly expand the recall rate of candi-
date answers, which increases performances by
generating multiple programs for a draft, but at
the cost of performance degradation on the more
accurate Hits@1 metric. Therefore, we use the
post-processing operation in the self-improvement
to produce more programs for filtering high-quality
annotations.
Impact of the number of examples. Finally,

comparing the Prog-TQA with Prog-TQA w/ D(1),
we observe that reducing the number of demon-
strations leads to a significant decline in results.
Although utilizing only one demonstration can pro-
vide a basic understanding of the KoPL language
format to the LLM to boost the performances, it’s
crucial to employ more high-quality demonstra-
tions to enhance LLM’s abilities.

4.4. Further Analysis

To conduct a comprehensive analysis of the key
self-improvement strategy, we explore the impact
of the number of fine-tuning rounds and the scale
of fine-tuning data on the self-improvement pro-
cess. Going further, we explore the distribution of
the fine-tuning data with gold answers as weak su-
pervision.
Number of iterative fine-tuning rounds. We

analyze the performances on each round of iter-
ative fine-tuning on two datasets, the results are
shown in Figure 4. Since Prog-TQA gradually
learns from programs of relatively easy questions
and conducts self-correction when handling chal-
lenging ones, more iterations are necessary to
master complex questions. We can observe that
the best performance is achieved in the second
round on MultiTQ and the first round on CronQues-
tions which contains only single-constraint ques-
tions.
It is worth noting that the performances no

Figure 4: Performances (Hits@1) for each round
of iterative fine-tuning on MultiTQ and CronQues-
tions. “w/o SI” indicates removing the self-
improvement strategy.

Figure 5: Performances under different sizes of
fine-tuning data. The solid and dash lines donate
Hits@10 and Hits@1 metrics, respectively.

longer increase in the later rounds on CronQues-
tions. This is because the self-improvement pro-
cedure is affected by the distribution of simple and
complex questions in the fine-tuning samples. As
the iteration continues, the proportion of simple
questions is too large for Prog-TQA to learn about
the reasoning of complex ones.
Size of fine-tuning data. Figure 5 illustrates

the results of iterative fine-tuning on 10k, 50k, and
100k of the training data. The performance of
Prog-TQA steadily improves as the size of the
dataset increases. Notably, the overall perfor-
mances are relatively lower in the 10k dataset, be-
cause there are no sufficient correct annotations
of multiple-type questions for Prog-TQA to learn
from in a relatively small dataset.
Program distribution in fine-tuning data. In

the self-improvement strategy, we use correct an-
swers as weak supervision to assess the gener-
ated programs. However, there may arise pro-
grams where the final answer is correct but the rea-
soning process is not, called spurious programs.
Such programs may mislead the LLM and hinder
it from learning complex reasoning steps. To un-
derstand the distribution of fine-tuning data, we an-
alyze 200 randomly sampled programs from the
first and second iterations of the MultiTQ dataset,
respectively. Given the absence of annotated pro-
grams, we manually evaluate them for spurious-
ness by assessing the correctness of entities, re-
lations, and consistency of program logic with time
constraints. Results in Table 5 show a 7.5% spuri-
ous program ratio for the first iteration and 4.0% for

14587

Figure 6: Drafts generated by Prog-TQA without
the self-improvement strategy (Prog-TQA), and
the complete Prog-TQA (Prog-TQA w/ SI).

the second. This relatively low ratio attests to the
effectiveness of our proposed self-improvement
strategy, even considering the potential for itera-
tive fine-tuning noise.

4.5. Case Study
Figure 6 illustrates the program drafts gener-
ated by Prog-TQA for the same question be-
fore and after the self-improvement strategy. It
demonstrates the crucial role of self-improvement
in helping the model understand temporal ques-
tions and generating accurate programs regard-
ing time constraints. In the left draft, Prog-
TQA fails to figure out the active and passive
meaning of the relational parameters, resulting in
two parameter assignment errors (red font). Be-
sides, the LLM boosts its ability to link relations
with self-generated high-quality programs in self-
improvement. As shown in the lower part of Fig-
ure 6, Prog-TQA w/ SI can directly give a relation
similar to the one in TKG, while Prog-TQA fails.

5. Conclusion

In this paper, we systematically analyzed the pos-
sible time constraints and designed correspond-
ing temporal operators. Based on them, we pro-
posed a semantic-parsing-based TKGQA frame-
work called Prog-TQA. We further enhanced Prog-
TQA’s ability to understand temporal questions
with an effective self-improvement strategy. Prog-
TQA first leverages the ICL ability of LLMs to gen-
erate KoPL program drafts. Subsequently, it uti-
lizes the linkingmodule to align the drafts with TKG
and executes them with the execution module to
generate answers. To further enhance the compre-
hension of the temporal questions, Prog-TQA in-
corporates an effective self-improvement strategy
that iteratively bootstraps LLMs with high-quality
self-generated annotations. Experimental results
demonstrate that Prog-TQA can comprehensively
understand the semantics of questions involving
time constraints, and achieves significant perfor-
mance gains on multiple-constraints questions.

6. Acknowledgements

This work is supported by NSFC No. 62372430,
NSFC No. 62206266, and the Youth Innova-
tion Promotion Association CAS No.2023112. We
thank anonymous reviewers for their insightful
comments and suggestions.

7. Bibliographical References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. 2020. Language mod-
els are few-shot learners. Advances in neural in-
formation processing systems, 33:1877–1901.

Shulin Cao, Jiaxin Shi, Liangming Pan, Lunyiu Nie,
Yutong Xiang, Lei Hou, Juanzi Li, Bin He, and
Hanwang Zhang. 2022. Kqa pro: A dataset
with explicit compositional programs for com-
plex question answering over knowledge base.
In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 6101–6119.

Shuang Chen, Qian Liu, Zhiwei Yu, Chin-Yew Lin,
Jian-Guang Lou, and Feng Jiang. 2021. Re-
track: A flexible and efficient framework for
knowledge base question answering. In Pro-
ceedings of the 59th annual meeting of the as-
sociation for computational linguistics and the
11th international joint conference on natural
language processing: system demonstrations,
pages 325–336.

Ziyang Chen, Jinzhi Liao, and Xiang Zhao. 2023.
Multi-granularity temporal question answering
over knowledge graphs. In Proceedings of the
61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 11378–11392.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E.
Gonzalez, Ion Stoica, and Eric P. Xing. 2023. Vi-
cuna: An open-source chatbot impressing gpt-4
with 90%* chatgpt quality.

Wentao Ding, Hao Chen, Huayu Li, and Yuzhong
Qu. 2022. Semantic framework based query
generation for temporal question answering
over knowledge graphs. In Proceedings of the
2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1867–1877.

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

14588

Yu Gu and Yu Su. 2022. Arcaneqa: Dynamic
program induction and contextualized encod-
ing for knowledge base question answering.
In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages
1718–1731.

Edwarllorad J Hu, Yelong Shen, Phillip Wallis,
Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. 2021. Lora: Low-
rank adaptation of large language models. arXiv
preprint arXiv:2106.09685.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han.
2023. Large language models can self-improve.
In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Process-
ing, pages 1051–1068.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lu-
cas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel,
and Edouard Grave. 2022. Few-shot learn-
ing with retrieval augmented language models.
arXiv preprint arXiv:2208.03299.

Gautier Izacard, Patrick Lewis, Maria Lomeli,
Lucas Hosseini, Fabio Petroni, Timo Schick,
Jane Dwivedi-Yu, Armand Joulin, Sebastian
Riedel, and Edouard Grave. 2023. Atlas: Few-
shot learning with retrieval augmented language
models. Journal of Machine Learning Research,
24(251):1–43.

Zhen Jia, Abdalghani Abujabal, Rishiraj Saha Roy,
Jannik Strötgen, and Gerhard Weikum. 2018a.
Tempquestions: A benchmark for temporal
question answering. InCompanion Proceedings
of the The Web Conference 2018, pages 1057–
1062.

Zhen Jia, Abdalghani Abujabal, Rishiraj Saha Roy,
Jannik Strötgen, and Gerhard Weikum. 2018b.
Tequila: Temporal question answering over
knowledge bases. In Proceedings of the
27th ACM international conference on informa-
tion and knowledge management, pages 1807–
1810.

Zhen Jia, Soumajit Pramanik, Rishiraj Saha Roy,
and Gerhard Weikum. 2021. Complex temporal
question answering on knowledge graphs. In
Proceedings of the 30th ACM international con-
ference on information & knowledge manage-
ment, pages 792–802.

Jacob Devlin Ming-Wei Chang Kenton and
Lee Kristina Toutanova. 2019. Bert: Pre-
training of deep bidirectional transformers for
language understanding. In Proceedings of
NAACL-HLT, pages 4171–4186.

Timothée Lacroix, Guillaume Obozinski, and Nico-
las Usunier. 2019. Tensor decompositions for
temporal knowledge base completion. In Inter-
national Conference on Learning Representa-
tions.

Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang,
Wayne Xin Zhao, and Ji-Rong Wen. 2021. A
survey on complex knowledge base question an-
swering: Methods, challenges and solutions. In
Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI 2021,
Virtual Event / Montreal, Canada, 19-27 August
2021, pages 4483–4491. ijcai.org.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu,
Yu Su, and Wenhu Chen. 2023. Few-shot in-
context learning on knowledge base question
answering. In Proceedings of the 61st Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages
6966–6980.

Yonghao Liu, Di Liang, Fang Fang, Sirui Wang,
Wei Wu, and Rui Jiang. 2023. Time-aware
multiway adaptive fusion network for tempo-
ral knowledge graph question answering. In
ICASSP 2023-2023 IEEE International Confer-
ence on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 1–5. IEEE.

Niklas Lüdemann, Ageda Shiba, Nikolaos Thymi-
anis, Nicolas Heist, Christopher Ludwig, and
Heiko Paulheim. 2020. A knowledge graph
for assessing agressive tax planning strategies.
In The Semantic Web–ISWC 2020: 19th In-
ternational Semantic Web Conference, Athens,
Greece, November 2–6, 2020, Proceedings,
Part II 19, pages 395–410. Springer.

Costas Mavromatis, Prasanna Lakkur Sub-
ramanyam, Vassilis N Ioannidis, Adesoji
Adeshina, Phillip R Howard, Tetiana Grinberg,
Nagib Hakim, and George Karypis. 2022.
Tempoqr: Temporal question reasoning over
knowledge graphs. In 36th AAAI Conference
on Artificial Intelligence, AAAI 2022, pages
5825–5833. Association for the Advancement
of Artificial Intelligence.

Yu Meng, Martin Michalski, Jiaxin Huang,
Yu Zhang, Tarek Abdelzaher, and Jiawei Han.
2023. Tuning language models as training
data generators for augmentation-enhanced
few-shot learning. In International Conference
on Machine Learning, pages 24457–24477.
PMLR.

Zhijie Nie, Richong Zhang, Zhongyuan Wang, and
Xudong Liu. 2023. Code-style in-context learn-
ing for knowledge-based question answering.
arXiv preprint arXiv:2309.04695.

https://doi.org/10.24963/ijcai.2021/611
https://doi.org/10.24963/ijcai.2021/611
https://doi.org/10.24963/ijcai.2021/611

14589

Tangwen Qian, Yile Chen, Gao Cong, Yongjun
Xu, and Fei Wang. 2023. Adaptraj: A
multi-source domain generalization framework
for multi-agent trajectory prediction. CoRR,
abs/2312.14394.

A Saxena, S Chakrabarti, and P Talukdar. 2021.
Question answering over temporal knowledge
graphs. InACL-IJCNLP 2021-59th Annual Meet-
ing of the Association for Computational Linguis-
tics and the 11th International Joint Conference
on Natural Language Processing, Proceedings
of the Conference, pages 6663–6676. Associa-
tion for Computational Linguistics (ACL).

Apoorv Saxena, Aditay Tripathi, and Partha Taluk-
dar. 2020. Improving multi-hop question answer-
ing over knowledge graphs using knowledge
base embeddings. In Proceedings of the 58th
annual meeting of the association for computa-
tional linguistics, pages 4498–4507.

Chao Shang, Guangtao Wang, Peng Qi, and Jing
Huang. 2022. Improving time sensitivity for
question answering over temporal knowledge
graphs. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 8017–
8026.

Zezhi Shao, Zhao Zhang, Fei Wang, and Yongjun
Xu. 2022. Pre-training enhanced spatial-
temporal graph neural network for multivariate
time series forecasting. In KDD ’22: The 28th
ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, Washington, DC, USA,
August 14 - 18, 2022, pages 1567–1577. ACM.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Börje Karlsson,
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin.
2022. Tiara: Multi-grained retrieval for robust
question answering over large knowledge base.
In Proceedings of the 2022 Conference on Em-
pirical Methods in Natural Language Process-
ing, pages 8108–8121.

Chuanyuan Tan, YueheChen, Wenbiao Shao, and
Wenliang Chen. 2023. Make a choice! knowl-
edge base question answering with in-context
learning. arXiv preprint arXiv:2305.13972.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, et al. 2023. Llama 2: Open
foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288.

Fei Wang, Di Yao, Yong Li, Tao Sun, and Zhao
Zhang. 2023. Ai-enhanced spatial-temporal

data-mining technology: New chance for next-
generation urban computing. The Innovation,
4(2).

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao,
Nan Yang, and Ming Zhou. 2020. Minilm:
Deep self-attention distillation for task-agnostic
compression of pre-trained transformers. Ad-
vances in Neural Information Processing Sys-
tems, 33:5776–5788.

Yongjun Xu, Fei Wang, Zhulin An, Qi Wang, and
Zhao Zhang. 2023. Artificial intelligence for
science—bridging data to wisdom. The Innova-
tion, 4(6).

Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren,
Tuo Zhao, and Chao Zhang. 2021. Fine-tuning
pre-trained language model with weak supervi-
sion: A contrastive-regularized self-training ap-
proach. In Proceedings of the 2021 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies, pages 1063–1077.

Zhao Zhang, Zhanpeng Guan, Fuwei Zhang,
Fuzhen Zhuang, Zhulin An, Fei Wang, and
Yongjun Xu. 2023. Weighted knowledge graph
embedding. In Proceedings of the 46th Interna-
tional ACM SIGIR Conference on Research and
Development in Information Retrieval, pages
867–877.

8. Language Resource References

Chen, Ziyang and Liao, Jinzhi and Zhao, Xiang.
2023. Multi-granularity Temporal Question An-
swering over Knowledge Graphs.

Saxena, A and Chakrabarti, S and Talukdar, P.
2021. Question answering over temporal knowl-
edge graphs. Association for Computational Lin-
guistics (ACL).

A. Appendix

A.1. Details about KoPL and Temporal
Operators

In this section, we present details regarding the
KoPL programming language, the simplified KoPL
format, and the design of temporal operators.
KoPL: KoPL(Cao et al., 2022) is a composi-

tional and interpretable programming language,

https://doi.org/10.48550/ARXIV.2312.14394
https://doi.org/10.48550/ARXIV.2312.14394
https://doi.org/10.48550/ARXIV.2312.14394
https://doi.org/10.1145/3534678.3539396
https://doi.org/10.1145/3534678.3539396
https://doi.org/10.1145/3534678.3539396

14590

models the complex procedure of question an-
swering through a program comprising intermedi-
ate steps. Each step consists a function contain-
ing a list of textual arguments ai and a list of func-
tion arguments bi. The fucntion arguments repre-
sent the function list, indicating from which previ-
ous functions the current function receives its input.
For example, the function “Relate(Find(Sudan),
Make a visit, forward)” has two textual inputs: re-
lation “Make a visit” and direction “forward” and
one functional input “Find(Sudan)” derived from
the preceding function “Find”.
A KoPL program consists of a sequence of

KoPL functions, presenting a tree-like program
structure, which can be serialized into a sequence
of functions by post-order traversal and executed.
Simplified KoPL format: In the draft genera-

tion module, we simplified the tree-like program
representation. We keep the list of textual argu-
ments and wrap them with <d></d>. For func-
tion arguments, we utilize the index representa-
tion of their order in the program, enclosing them
with <i></i> tags. This format can be restored to
the original program structure and executed in the
same manner.
Details about design of temporal operators:

The designed temporal operators are rooted in the
KoPL function library and are consistent with KoPL
function naming conventions while expressing the
action semantics. In the design of three types
of operators, aiming at TKGs with different time
granularity and storage formats of time informa-
tion, the fundamental temporal operators are com-
patible with all granularity and storage formats.
To help the LLM understand the semantics of

the question more clearly, in the design of the pre-
cise temporal operators, the temporal constraint
of “simultaneous” is deconstructed into three spe-
cific precise operations. These operations include
retrieving facts utilizing coarse-grained time (Fil-
terRange), time points (FilterByTimePoint), and
time intervals (FilterByDuration). Similarly, the im-
plementation of the FilterFirst (FilterLast) operator
is segmented into FilterFirstTime (FilterLastTime)
and FilterFirstEvent (FilterLastEvent) to help the
LLM distinguish whether the query object of the
function is a list of times or a list of facts.

A.2. Baseline Methods

In the experiments, we compared Prog-TQA with
the embedding-based, temporal-enhanced, and
LM-based methods.
The embedding-based methods aim to learn

the embedding of questions and candidate an-
swers and predict the answers by embedding cal-
culation. The methods try to introduce pre-train
KG and TKG embedding models (Zhang et al.,

2023; Lacroix et al., 2019) to enhance the em-
beddings. EmbedKGQA (Saxena et al., 2020) de-
rives entity embeddings from pre-trained KG mod-
els, while CronKGQA (Saxena et al., 2021) ex-
tracts entity and time embeddings from TKG mod-
els and incorporates time-aware question embed-
dings. Both methods predict answers by comput-
ing matching scores between encoded questions
and candidate answers.
The temporal-enhanced methods focus on

identifying the time information and using it to en-
hance embeddings or retrieve relevant facts to ad-
dress complex questions. TempoQR(Mavromatis
et al., 2022) fuses time information by retrieving
time scopes of entities mentioned in the ques-
tion. TMA(Liu et al., 2023) enhances performance
through improved fact retrieval and an adaptive
fusion network. MultiQA(Chen et al., 2023) ex-
tracts time texts from questions and enhances the
time-aware embedding of questions with a multi-
granularity representation module.
The LM-based methods. Additionally, we also

utilized BERT(Kenton and Toutanova, 2019) to ob-
tain embeddings of entities, time, and questions,
which were concatenated to calculate the answer,
allowing us to analyze the effect of LMs in handling
temporal questions.

A.3. Further analysis on the LLM

Model Hits@1 Hits@10

Overall Multiple Single overall Multiple Single

Llama-13B 0.797 0.750 0.817 0.934 0.910 0.944
Vicuna-13B 0.793 0.748 0.811 0.930 0.912 0.937

Table 6: Performance of Prog-TQA with different
LLM variants.

Model Hits@1 Hits@10

Overall Multiple Single overall Multiple Single

7B 0.516 0.290 0.602 0.754 0.584 0.820
13B 0.529 0.346 0.598 0.772 0.683 0.806
33B 0.530 0.331 0.607 0.793 0.666 0.842

Table 7: Performance of Prog-TQA with differ-
ent scales of LLM. Due to cost constraints, exper-
iments were conducted on randomly selected 5
subsets of size 2000 from MultiTQ, with average
results being reported.

To assess the effectiveness of the LLM in Prog-
TQA, we analyze the impact of different LLM
variants and LLM with different parameter scales
on the performance of Prog-TQA on the MultiTQ
dataset.
Variants of LLM. we conduct experiments us-

ing Llama-13B (Touvron et al., 2023) as the base
model on the MultiTQ dataset. The result can be

14591

found in Table 6. It can be observed that the per-
formances of the two models are very close. No-
tably, both models outperform all baselines on the
MultiTQ dataset. The observation indicates that
using different LLM variants with similar parame-
ter scales as the base model in Prog-TQA doesn’t
bring significant performance differences.
Scale of LLM. We choose three LLMs which

differ only in parameter scale to explore the in-
fluence of parameter scale on the performance
of Prog-TQA. Due to the cost limitation of fine-
tuning the 33B model, we use Prog-TQA without
the self-improvement module to conduct experi-
ments on the MultiTQ dataset. We activate the
post-processing submodule to make full use of the
generated programs. The results are presented in
Table 7. The performance improves slightly when
the scales grow exponentially. It shows that the
parameter scale of LLMs is not a decisive factor
in improving performance. Combined with the re-
sults of ablation experiments, we can deduce that
the proposed linking module and post-processing
in the execution module, as well as the critical self-
improvement strategy, ensure the performance of
Prog-TQA jointly.

A.4. Dataset Statistics
We conduct experiments on the MultiTQ and Cron-
Questions datasets. The statistics for the two
datasets are shown in Table 8.

A.5. Annotated Programs and Prompt
Template

Prompt Template. Figure 7 shows a prompt ex-
ample in the draft generation module, which is
used in the initial stage of the self-improvement
strategy. Figure 8 shows the prompt tem-
plate used in the fine-tuning stage of the self-
improvement strategy.
Annotated Programs. We present one repre-

sentative question and corresponding manual an-
notations from each predefined question category
in both datasets, as shown in Table 9 and Table
10.

A.6. Difference with spatiotemporal
graph reasoning task

The spatiotemporal graph reasoning task aims at
discovering useful patterns from the dynamic inter-
actions of spatial and temporal information in the
data. It plays an important role in various tasks re-
lated to mining spatio-temporal patterns such as
time series (Shao et al., 2022), trajectories (Qian
et al., 2023), and TKG. Notably, while both spa-
tiotemporal graph reasoning and temporal ques-
tion answering are crucial in TKG, they cater to

unique challenges: TKGQA focuses on answering
natural language questions by diving into the time
constraints and retrieving relevant facts, whereas
spatiotemporal reasoning intends to mine patterns
of temporal changes in structured information to
achieve effective querying of the information we
are interested in.

14592

MultiTQ CronQuestions
Single Multiple Total Simple Complex Total

Equal Before/After First/Last Equal Multi After First Before Last Simple Before/After First/Last Time Join

Train 135,890 75,340 72,252 16,893 43,305 43,107 386,787 152,122 23,869 118,556 55,453 350,000
Dev. 18,983 11,655 11,097 3,213 6,499 6,532 57,979 12,942 1,982 11,198 3,878 30,000
Test 17,311 11,073 10,480 3,207 6,266 6,247 54,584 12,858 2,151 11,159 3,832 30,000

Table 8: Statistic of question types on MultiTQ and CronQuestions datasets.

Prompt in Draft Generation Module

Instruction: Convert a natural language question to a KoPL query.

Input: In the same month, who appealed to Tony Blair on behalf of an Indian Member
of Parliament?
Response: Find<d></d><i>Tony Blair</i>
Find<d></d><i>Member of Parliament (India)</i>
QueryRelationQualifier<d>1,0</d><i>Make an appeal or request,point in time</i>
Relate<d>0</d><i>Make an appeal or request,backward</i>
FilterFirstTime<d>2</d><i></i>
GetMonth<d>4</d><i></i>
FilterRange<d>3,5</d><i></i>
What<d>6</d><i></i>

...

Input: With whom did Daniel Ortega want to negotiate in the same month as Dmitry
Anatolyevich Medvedev?
Response: Find<d></d><i>Daniel Ortega</i>
Find<d></d><i>Dmitry Anatolyevich Medvedev</i>
QueryRelationQualifier<d>0,1</d><i>Express intent to meet or negotiate,point in time</i>
Relate<d>0</d><i>Express intent to meet or negotiate,forward</i>
FilterFirstTime<d>2</d><i></i>
GetMonth<d>4</d><i></i>
FilterRange<d>3,5</d><i></i>
What<d>6</d><i></i>

Input: Who visited China in the same month as Oleg Ostapenko?
Response:

Figure 7: The example prompt in the draft generation module, which is used in the initial stage of self-
improvement.

Template used in fine-tuning

Instruction: Convert a natural language question to a KoPL query.

Input: {question}
Response: {simplified KoPL program}

Figure 8: The prompt template used in the fine-tuning stage of the self-improvement strategy.

14593

Equal: Who did Avelino J. Cruz, Jr. wish to negotiate with in the same month of Philippine
military personnel?

Find<d></d><i>Avelino J. Cruz Jr.</i>
Find<d></d><i>Military Personnel (Philippines)</i>
QueryRelationQualifier<d>0,1</d><i>Express intent to meet or
negotiate,point in time</i>
Relate<d>0</d><i>Express intent to meet or negotiate,forward</i>
FilterFirstTime<d>2</d><i></i>
GetMonth<d>4</d><i></i>
FilterRange<d>3,5</d><i></i>
What<d>6</d><i></i>

Before/After: Before Opposition Supporter of Pakistan, who blamed Militant of Taliban?

Find<d></d><i>Militant (Taliban)</i>
Find<d></d><i>Opposition Supporter (Pakistan)</i>
QueryRelationQualifier<d>1,0</d><i>Accuse,point in time</i>
Relate<d>0</d><i>Accuse,backward</i>
FilterFirstTime<d>2</d><i></i>
FilterBefore<d>3,4</d><i></i>
What<d>5</d><i></i>

First/Last: In which month did the Israeli police use conventional military force against the
Israeli Defence Forces for the first time?

Find<d></d><i>Police (Israel)</i>
Find<d></d><i>Israeli Defense Forces</i>
QueryRelationQualifier<d>0,1</d><i>Use conventional military
force,point in time</i>
FilterFirstTime<d>2</d><i></i>
GetMonth<d>3</d><i></i>

Equal-Multi: In 2014, against whom did the men of South Africa use unconventional vio-
lence for the first time?

Find<d></d><i>Men (South Africa)</i>
Relate<d>0</d><i>Use unconventional violence,forward</i>
FilterRange<d>1</d><i>2014</i>
FilterFirstEvent<d>2</d><i></i>

Before Last: Before Macky Sall, who last negotiated with Barack Obama?

Find<d></d><i>Barack Obama</i>
Find<d></d><i>Macky Sall</i>
QueryRelationQualifier<d>1,0</d><i>Engage in negotiation,point in
time</i>
Relate<d>0</d><i>Engage in negotiation,backward</i>
FilterFirstTime<d>2</d><i></i>
FilterBefore<d>3,4</d><i></i>
FilterLastEvent<d>5</d><i></i>

After First: After the Ministry of Information of Somalia, who was the first to visit Sudan?

Find<d></d><i>Sudan</i>
Find<d></d><i>Information Ministry (Somalia)</i>
QueryRelationQualifier<d>1,0</d><i>Make a visit,point in time</i>
Relate<d>0</d><i>Make a visit,backward</i>
FilterLastTime<d>2</d><i></i>
FilterAfter<d>3,4</d><i></i>
FilterFirstEvent<d>5</d><i></i>

Table 9: The annotation examples for each question type in MultiTQ dataset.

14594

Simple: What team Angelo Buratti played in 1956?

Find<d></d><i>Angelo Buratti</i>
Relate<d>0</d><i>member of sports team|forward</i>
FilterByTimePoint<d>1</d><i>1956</i>
What<d>2</d><i></i>

Before/After: Which person was sovereign of Navarre before 18th century

Find<d></d><i>monarch of Navarre</i>
Relate<d>0</d><i>position held|backward</i>
QueryEventQualifier<d></d><i>18th century|start time</i>
FilterFirstTime<d>2</d><i></i>
FilterBefore<d>1,3</d><i></i>
What<d>4</d><i></i>

First/Last: When was John Salako playing their first play?

Find<d></d><i>John Salako</i>
Relate<d>0</d><i>member of sports team|forward</i>
FilterFirstTime<d>1</d><i></i>

Time-Join: Who was the Colorado Governor during Eurovision Song Contest 2005

Find<d></d><i>Governor of Colorado</i>
Relate<d>0</d><i>position held|backward</i>
QueryEventQualifier<d></d><i>Eurovision Song Contest
2005|duration</i>
FilterByDuration<d>1,2</d><i></i>
What<d>3</d><i></i>

Table 10: The annotation examples for each question type in the CronQuestions dataset.

	Introduction
	Related Work
	Methodology
	Overview
	The Designed Temporal Operators
	The Proposed Prog-TQA Method
	Draft Generation Module
	Linking Module
	Execution Module
	Self-Improvement Strategy

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Further Analysis
	Case Study

	Conclusion
	Acknowledgements
	Bibliographical References
	Language Resource References
	Appendix
	Details about KoPL and Temporal Operators
	Baseline Methods
	Further analysis on the LLM
	Dataset Statistics
	Annotated Programs and Prompt Template
	Difference with spatiotemporal graph reasoning task

