
LREC-COLING 2024, pages 14595–14605
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

14595

Self-Knowledge Distillation for Knowledge Graph Embedding

Haotian Xu1, Yuhua Wang2, Jiahui Fan3
1University of Science and Technology of China, Hefei, China

2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
3Meituan Group, Beijing, China

xuhaotian@mail.ustc.edu.cn, wangyuhua2021@ia.ac.cn, fanjiahui06@meituan.com

Abstract
Knowledge graph embedding (KGE) is an important task and it can benefit lots of downstream applications. General
KGE can increase the embedding dimension to improve model performance. High-dimensional KGE will significantly
increase the number of model parameters and training time. Therefore, knowledge distillation is proposed for learning
a low-dimensional model from a pre-trained high-dimensional model. To avoid introducing a complex teacher model,
we use self-knowledge distillation. However, there are still some issues with the self-knowledge distillation model
we mentioned later. One of them is misdirection from incorrect predictions during model training. Another is the
loss of discrimination information caused by excessive distillation temperature. To address these issues, we apply
self-knowledge distillation, knowledge adjustment and dynamic temperature distillation to KGE. Self-knowledge
distillation uses the information from the latest iteration to guide the training in the current iteration. Knowledge
adjustment fixes the predictions of misjudged training samples. Dynamic temperature distillation designs dynamic
sample-wise temperatures to compute soft targets. Our model can not only improve model performance but also
achieve a lightweight model. Experimental results demonstrate the effectiveness and generalization ability of our
model in link prediction. The lightweight model can maintain good model performance while reducing the number of
model parameters and training time.

Keywords: knowledge graph embedding, self-knowledge distillation, link prediction

1. Introduction

Knowledge Graph (KG) is an important branch of
technology of artificial intelligence and a structured
semantic knowledge base. KG is used to describe
concepts and their interrelationships in the physical
world in the form of symbols (Ji et al., 2021). The
basic unit of KG is the "entity-relation-entity" triple.
Entities are connected through relations to form a
networked knowledge structure. KGs are generally
constructed manually or semi-automatically. Most
of the KGs are incomplete or sparse, and many
hidden relations have not been discovered. Knowl-
edge graph embedding (KGE) (Bordes et al., 2013)
is proposed to address these issues. The key idea
is to learn the embedding of entities and relations
while preserving the original structure of the KG.
The embedding of entities and relations can be
further applied to various downstream tasks.

The general KGE method will obtain better perfor-
mance by increasing the dimension of embedding
(Zhu et al., 2022). Not only the number of model
parameters but also the cost of training time will
greatly increase with the rise of the embedding di-
mension. Therefore, knowledge distillation (Hinton
et al., 2015) is proposed to apply to KGE. The goal
is to learn low-dimensional KGE from a pre-trained
high-dimensional one (Zhu et al., 2022).

Early knowledge distillation methods (Hinton
et al., 2015; Romero et al., 2015) employ offline
distillation, which transfers the knowledge of a pre-

trained teacher model to the student model. To
alleviate the large amount of training time brought
by the teacher model in offline distillation, online
distillation is proposed (Zhang et al., 2018). The
key idea is that the parameters of the teacher model
and the student model will be updated at the same
time. However, existing offline and online distil-
lation methods usually cannot avoid the problem
of computational sources and run-in memory con-
sumed by the complex teacher model. To avoid the
above problems, the idea of self-knowledge distil-
lation (Hahn and Choi, 2019) is proposed. Finding
a teacher model without adding a large model can
also provide an effective gain of information to the
student model. The teacher model here is often
not more complicated than the student model, and
may even be the student model itself.

Inspired by the success of self-knowledge distil-
lation (Yuan et al., 2020; Kim et al., 2021; Shen
et al., 2022) in computer vision, we plan to ap-
ply self-knowledge distillation to KGE. Although
self-knowledge distillation does not need to intro-
duce a teacher model, there are some other issues
with self-knowledge distillation. Firstly, because the
teacher model in self-knowledge distillation is itself,
the accuracy of the predictions in the early stage
of model training is not high. This will lead to more
incorrect predictions early in the model training. To
fix the misleading model training caused by incor-
rect predictions, knowledge adjustment (KA) (Wen
et al., 2021) is adopted. For KA, the predictions

14596

of misjudged training samples are fixed according
to the corresponding ground truth before loss func-
tion calculation. The student model trained in this
way is fed completely correct information from the
teacher model. Secondly, previous works (Hinton
et al., 2015) in knowledge distillation indicate that
students can benefit from the uncertainty of super-
vision, and overly uncertain predictions of teachers
may also affect the student. For example, when the
distillation temperature is high, some discrimination
information is lost. To solve this problem, dynamic
temperature distillation (DTD) (Wen et al., 2021) is
used. For DTD, we detect that some uncertainty
of soft targets comes from excessive temperature,
thus we turn to design dynamic sample-wise tem-
perature to calculate soft targets. By conducting
so, student training will gain more discrimination
information on confusing samples.

In this paper, we apply self-knowledge distillation,
KA and DTD to KGE. Self-knowledge distillation
uses the distillation from the latest batch to gener-
ate soft targets to guide the training in the current
batch. The introduction of self-knowledge distilla-
tion can not only reduce the model size to achieve
lightweight but also avoid the consumption of com-
putational sources and run-in memory caused by
the introduction of a complex teacher model. Then,
we use DTD to design dynamic sample-wise tem-
peratures to compute soft targets. KA is used to
fix the predictions of misjudged training samples.
We propose a simple but effective method to apply
Self-knowledge distillation, Knowledge adjustment
and Dynamic temperature distillation to knowledge
graph Embedding (SKDE). For SKDE, the key idea
is that the target network plays both the roles of
teacher and student in each batch during the train-
ing process. As a teacher, the target network pro-
vides soft targets to guide itself in the next iteration.
As a student, the target network distills soft targets
generated from the latest iteration and minimizes
the loss function with ground truth. Our goal is to
obtain a lightweight model while maintaining a good
model performance.

We validate the comprehensive effectiveness of
our methods on two standard benchmark datasets,
namely WN18RR (Dettmers et al., 2018) and
FB15k-237 (Toutanova et al., 2015). We select
four representative KGE methods to illustrate the
generalization ability of our methods, including Dist-
Mult (Yang et al., 2015), ComplEx (Trouillon et al.,
2016), ConvE (Dettmers et al., 2018) and AcrE
(Ren et al., 2020).

The major contributions are three-fold:

• Based on self-knowledge distillation, KA and
DTD, an effective and uncomplicated KGE
method is proposed. Our SKDE simply uti-
lizes the data updated in the last iteration to

guide the training in the current iteration. With-
out changing the network structure of KGE,
the implementation of our SKDE only needs
to increase a small number of computational
sources and run-in memory, and the number
of model parameters will not increase. To the
best of our knowledge, we are the first to apply
self-knowledge distillation to KGE.

• Aiming at the shortcomings of self-knowledge
distillation, we put forward an improvement
scheme. We use DTD to design dynamic
sample-wise temperatures to compute soft tar-
gets. Then, we use KA to fix the predictions of
misjudged training samples. The experimen-
tal results show that both KA and DTD can
effectively optimize the model performance.

• Extensive experiments demonstrate the ef-
fectiveness and generalization ability of our
SKDE, which can be effectively applied to most
KGEs. Compared with other KGE methods,
our SKDE can obtain better performance with-
out increasing the number of model parame-
ters. SKDE can still maintain a good perfor-
mance after reducing the number of model
parameters. At the same time, the training
time of the model also decreases as the num-
ber of model parameters decreases. In this
way, we not only gain a lightweight model but
also maintain a good model performance.

2. Related Works

To make this paper self-contained, we introduce
some related topics here on knowledge graph em-
bedding and knowledge distillation.

2.1. Knowledge Graph Embedding
In recent years, KGE technology has developed
rapidly and has been widely used. The key idea
of KGE is to transform the entities and relations in
the KG into a continuous vector space as vector
representations (Zhu et al., 2022). Subsequently,
these vectors can be applied to many downstream
tasks of KG. This article mainly involves the follow-
ing types of KGE methods (Zhao et al., 2021): (i)
Translational-based models, which view relations
as translations from head entity to tail entity, such
as TransE (Bordes et al., 2013), ComplEx (Trouil-
lon et al., 2016). (ii) Tensor factorization-based
models, which suppose the score of a triple can be
factorized into several tensors, such as RESCAL
(Nickel et al., 2011), DistMult (Yang et al., 2015).
(iii) CNN-based models, which use convolutions on
entities and relations embedding to link prediction,
such as ConvE (Dettmers et al., 2018), AcrE (Ren
et al., 2020).

14597

Although there are so many types of KGE, a
common problem is that high-dimensional KGE will
bring huge challenges to computational sources
and run-in memory. While the model is lightweight,
it is also necessary to keep the performance of
the model. At present, the research on lightweight
KGE mainly uses knowledge distillation. MulDE
(Wang et al., 2021) is the first work to apply knowl-
edge distillation to KGE. MulDE transfers the knowl-
edge from multiple teachers to a student. DualDE
(Zhu et al., 2022) also uses knowledge distillation
to KGE. DualDE considers the dual-influence be-
tween the teacher and the student. The above
methods inevitably introduce complex teacher mod-
els. In this work, we propose a novel KGE method
based on self-knowledge distillation. Our method
can achieve a lightweight model without requiring
a complex teacher model.

2.2. Knowledge Distillation
Knowledge distillation, first introduced by Buciluǎ
et al. (2006), was later popularized by Hinton et al.
(2015). Numerous studies have shown that knowl-
edge distillation is effective in many places. The
goal of knowledge distillation is to transfer knowl-
edge from a high-capacity teacher model to a
lightweight student model. Although offline distil-
lation (Hinton et al., 2015; Romero et al., 2015)
has a good performance, pre-training a complex
teacher model requires a lot of training time and
computational sources. To alleviate the problem
of massive time consumption, online distillation is
proposed (Zhang et al., 2018). Online distillation
can achieve similar performance to offline distil-
lation while significantly improving computational
efficiency. However, the optimization of online dis-
tillation involves multiple networks, which requires
extra run-in memory to store all parameters.

To improve the efficiency and effectiveness
of knowledge transfer, self-knowledge distilla-
tion (Hahn and Choi, 2019) is proposed. Self-
knowledge distillation utilizes knowledge from it-
self and avoids introducing additional networks. In
teacher-free knowledge distillation (Tf-KD) (Yuan
et al., 2020), the student model learns from itself or
manually designed regularization distribution. The
author of the Tf-KD finds through experiments and
analyses that the “dark knowledge” of a teacher
model is more of a regularization term than simi-
larity information of categories. In progressive self-
knowledge distillation (PS-KD) (Kim et al., 2021),
the model progressively distills its own knowledge
to soften hard targets during training. Targets are
adjusted adaptively by combining the ground truth
and past predictions from the model itself. Self-
Distillation from Last Mini-Batch (DLB) (Shen et al.,
2022) rearranges the sequential sampling by con-
straining half of each mini-batch coinciding with the

previous iteration. The rest half will coincide with
the upcoming iteration. The former half mini-batch
distills on-the-fly soft targets generated in the pre-
vious iteration. In self-distillation framework with
meta learning (MetaSD) (Li et al., 2023), the source
and pruned models co-evolve in a dynamic man-
ner during training, thus we can avoid pre-training a
large model in advance, and the performance of the
pruned model is not limited to that of a pre-trained
large model.

However, there are still some issues in the ex-
isting self-knowledge distillation model. One of
them is misdirection from incorrect predictions dur-
ing training. Another is the loss of discrimination
information caused by excessive distillation tem-
perature. To address these issues in the above
self-knowledge distillation model, we apply KA and
DTD to self-knowledge distillation. Our model ob-
tains more discrimination information through DTD
and fixes incorrect predictions through KA.

3. Methods

We begin this section by introducing the notations
and definitions used in the rest of the paper, fol-
lowed by a background on loss functions. Then,
we introduce the various modules in SKDE. These
include self-knowledge distillation, dynamic temper-
ature distillation and knowledge adjustment. The
overall training process for our SKDE is visualized
in Fig. 1.

3.1. Background
KGs are denoted by G = (E ,R, T), where E and R
represent the set of entities and relations, and T
denotes the triples (facts) of the form {(h, r, t)} ⊂
E × R × E . A triple (h, r, t) is represented as a
relation r between head entity h and tail entity t in
G. KGE tries to learn an effective representation of
entities, relations, and a scoring function f , such
that for a given input triple x = (h, r, t), f(x) gives
the likelihood of triple x being a valid triple (Nathani
et al., 2019).

We write a K-classes labelled dataset as D =
{(xi,yi)}Ni=1, where N is the total number of train-
ing triples and K is the total number of entities
in E . In every batch, a batch of n samples B =
{(xi,yi)}ni=1 ⊆ D is provided to the model, where
xi = (hi, ri, ti) is a valid triple, yi ∈ R1×K is a label
vector whose elements are ones for entities that
exist in the triple xi and zero otherwise.

Most CNN-based KGEs (like ConvE (Dettmers
et al., 2018), AcrE (Ren et al., 2020), etc.) use
a kind of softmax regression loss that considers
the ranking scores collectively (listwise ranking
method). In our SKDE, we define the same list-
wise loss function as used in ConvE and AcrE.

14598

𝑝𝑖
𝜏𝑑,𝑗−1 , 𝑥𝑖 𝜖𝐵𝑗−1

𝑝𝑖
𝜏𝑑,𝑗−1 , 𝑥𝑖𝜖𝐵𝑗

Ɵ𝑗−1
𝐵𝑗−1
𝐵𝑗

𝑑𝑎𝑡𝑎
𝑠𝑎𝑚𝑝𝑙𝑒𝑟

𝑙𝑎𝑏𝑒𝑙 𝐿𝐻𝑎𝑟𝑑

𝐿𝑆𝑜𝑓𝑡

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(𝜏 = 1)

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑗 − 1

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑓𝑙𝑜𝑤 𝐷𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑟 𝐻𝑎𝑟𝑑 𝑙𝑎𝑏𝑒𝑙 𝑙𝑜𝑠𝑠 𝑆𝑜𝑓𝑡 𝑙𝑎𝑏𝑒𝑙 𝑙𝑜𝑠𝑠

𝑝𝑟𝑒𝑑

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(𝐷𝑇𝐷)

𝐾𝐴
𝑝𝑖
𝜏𝑑,𝑗 , 𝑥𝑖𝜖𝐵𝑗

𝑝𝑖
𝜏𝑑,𝑗 , 𝑥𝑖𝜖𝐵𝑗+1

Ɵ𝑗
𝐵𝑗
𝐵𝑗+1

𝑑𝑎𝑡𝑎
𝑠𝑎𝑚𝑝𝑙𝑒𝑟

𝑙𝑎𝑏𝑒𝑙 𝐿𝐻𝑎𝑟𝑑

𝐿𝑆𝑜𝑓𝑡

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(𝜏 = 1)

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑗

𝑝𝑟𝑒𝑑

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(𝐷𝑇𝐷)

𝐾𝐴

Figure 1: The overall training process for our proposed SKDE. We denote Bj , θj and pτ,j
i for a batch

of data samples, network parameters and soft target probability in the jth iteration. In this approach, a
portion of the model’s output is used to calculate the hard label loss, while another portion is used to
obtain predicted results through DTD. The predicted results from Bj−1 are used to calculate the soft label
loss, while the predicted results from Bj are utilized with KA to guide training in the next iteration.

LBCE(yi,p
τ
i) = − 1

K

K∑
k=1

(yi(k) · log pτi (k)

+(1− yi(k)) · log (1− pτi (k)))

(1)

where temperature τ is usually set to 1 in (1). This
loss function takes one (hi, ri) pair and scores it
against all entities simultaneously. Thus, the model
is very fast for both training and inference (Ren
et al., 2020). In order to predict tail entity of (hi, ri),
the predictive distribution pτ

i = (pτi (1), ..., p
τ
i (K)) ∈

R1×K in a softmax classifier for class k ∈ [K] is
formulated as:

pτi (k) =
exp (f(hi, ri, tk)/τ)∑K
j=1 exp (f(hi, ri, tj)/τ)

(2)

where tail entity tj traverses all entities in E . The
process is the same for the prediction of the head
entity. To enhance the generalization ability, knowl-
edge distillation methods transfer knowledge from
the pre-trained teacher model to the student model
(Hinton et al., 2015). The model training by op-
timizing an additional Kullback-Leibler (KL) diver-
gence loss between the soft target probabilities
from teacher and student in every batch:

LKD =
1

n

n∑
i=1

τ2 ·DKL(p̃
τ
i ||pτ

i) (3)

where p̃τ
i and pτ

i are the soft target probabilities,
parameterized by temperature τ , from teacher and
student models respectively. Using a higher value
for temperature τ produces a softer probability dis-
tribution, resulting in a similar regularization effect
as label smoothing (Yuan et al., 2020).

3.2. The Self-Knowledge Distillation
module

For a clear notation, we denote the original batch
of data sampled in the jth iteration as Bj =
{(xi,yi)}ni=1, and the network parameters as θj .
Our model employs a data sampler to obtain Bj

and Bj+1 simultaneously in the jth iteration. Both
the predictions from Bj and Bj+1 in the jth iteration
need to calculate the hard label loss. The hard
label loss for our model is the original loss of the
KGE method, usually a binary cross entropy loss.
The pτ

i in (1) is denoted as pτ,j
i in the jth iteration,

which is formulated as:

LHard =
1

n

n∑
i=1

τ2 · LBCE(yi,p
τ,j
i) (4)

where temperature τ is set to 1 in (4). To utilize
the latest iteration information, our model replaces
the p̃τ

i in (3) by the soft target probability pτ,j−1
i

generated from Bj by the network with the same
structure in the (j−1)th iteration, while the network

14599

parameters are θj−1. The soft label loss for our
model is the original loss of the knowledge distil-
lation method, usually a KL divergence loss. The
pτ
i in (3) is also denoted as pτ,j

i in the jth iteration,
which is formulated as:

LSoft =
1

n

n∑
i=1

τ2 ·DKL(p
τ,j−1
i ||pτ,j

i) (5)

where temperature τ is set to a fixed value other
than 1 in (5). Instead of storing the whole θj−1 in the
jth iteration to calculate the soft target probabilities,
which is run-in memory consuming. Our model
obtains the soft target probability pτ,j−1

i from Bj in
the (j − 1)th iteration. In other words, predictions
from Bj in the (j − 1)th iteration are smoothed by
temperature τ and then stored for regularization in
the jth iteration.

3.3. The Dynamic Temperature
Distillation module

During model training, the distillation temperature
is fixed. Distillation temperature may be high or
low for different samples. At lower temperatures,
distillation pays much less attention to matching
predictions that are much more negative than the
average. However, the very negative predictions
may contain useful information about the knowl-
edge (Hinton et al., 2015). At higher temperatures,
the predictions may lose some discrimination infor-
mation. Therefore, the model may be confused in
some samples that get significant and similar pre-
dictions on several classes. As a solution, we use
DTD (Wen et al., 2021), to customize the distillation
temperature for each sample. DTD is used to make
temperature τ vary on different training samples.
Especially for samples that confuse easily, tem-
perature τ should be smaller to enlarge inter-class
similarity. And for easily learned samples, a bigger
temperature τ will help to utilize the classification
information about the classes. The modified soft
label loss is as follows:

LDTD =
1

n

n∑
i=1

τ2d ·DKL(p
τd,j−1
i ||pτd,j

i) (6)

where τd is sample-wise temperature in (6), and
the calculation formula is as follows:

τd = τ0 + (

∑n
i=1 ωi

n
− ωd)β (7)

where τ0 and β denote the base temperature and
bias in (7). And ωd is sample-wise normalized
weight, describing the extent of confusion. ωi is
used to calculate the average of ωd over a batch.

ωd is designed to increase when the sample is con-
fusing. Then τd will be smaller, and the soft target
gets more discrimination information. On the oppo-
site, ωd is designed to decrease when the sample
is easy to learn. Then τd will be larger, and the soft
target gains more classification information. Here
is how to calculate ωd. The method computes ωd

following the max output of logits. The specific
calculation method is as follows:

ωd =
1

smax
(8)

where smax represent the max output of logits pro-
duced by Bj in the jth iteration. smax can be
deemed to represent the confidence of the model
towards the sample. Samples with less confidence
get larger weights and samples with more confi-
dence get smaller weights.

3.4. The Knowledge Adjustment module
Although the model training process has been op-
timized, there is still a problem in the initial stage
of model training. Early in model training, the ac-
curacy of the soft target probabilities cannot be
guaranteed. Incorrect predictions can mislead the
training process, making training deviate from su-
pervision. We then use KA (Wen et al., 2021),
trying to fix the incorrect predictions with reference
to the ground truth label. The exact operation is
conducting an adjusting function fa(·) on soft target
probability pτ,j−1

i . The modified soft label loss is
as follows:

LKA =
1

n

n∑
i=1

τ2d ·DKL(fa(p
τd,j−1
i)||pτd,j

i) (9)

where τd is sample-wise temperature in (9).
Given an incorrect soft target, KA simply exchanges
the value of ground truth (the theoretical maximum)
and the value of predicted class (the predicted
maximum), to ensure the maximum confidence is
reached at the ground truth label. For example,
we can see a soft target probability in Fig. 2. The
ground truth label is "apple" but the prediction of a
teacher is "pear". KA operation adjusts the theoret-
ical maximum (apple) and the predicted maximum
(pear). KA keeps all the soft target probabilities
produced by Bj in the (j − 1)th iteration instead of
discarding the wrong ones. And the fixed tensor
retains the overall numerical distribution of the soft
target probabilities.

3.5. The SKDE module
Finally, we get SKDE after combining self-
knowledge distillation, KA and DTD. The overall
loss function is formulated as:

14600

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

S
o

ft
 T

a
rg

e
t

V
al

u
e

Class

swap

apple: 0.47

pear: 0.53

Figure 2: KA on a misjudged sample’s soft target.
In this case, where the correct answer is "apple,"
but the model’s predicted probability for "pear" is
the highest, it is necessary to correct this error to
prevent misleading training of the model.

L =
1

n

n∑
i=1

τ2 · LBCE(yi,p
τ,j
i)

+
1

n

n∑
i=1

τ2d ·DKL(fa(p
τd,j−1
i)||pτd,j

i)

(10)

4. Experiments

We evaluate the effectiveness and generalization
ability of our SKDE by link prediction tasks. The
purpose of the link prediction is to infer the possible
missing entities in triples, predict h given (r, t) or
predict t given (h, r).

Our experiments seek to answer the following
research questions (RQs):

• RQ1: Can SKDE optimize model perfor-
mance?

• RQ2: Can SKDE be lightweight without signifi-
cantly degrading performance?

• RQ3: What role do KA and DTD play in SKDE?

4.1. Datasets and Settings

We use two public benchmark datasets for link pre-
diction experiments, including WN18RR (Dettmers
et al., 2018) and FB15k-237 (Toutanova et al.,
2015). Previous work (Dettmers et al., 2018;
Toutanova et al., 2015) pointed out that doing pre-
diction tasks on datasets WN18 and FB15K suffers
from the problem of inverse relations. To solve this
problem, corresponding subset datasets WN18RR
and FB15k-237 are proposed. Table 1 provides
statistics of all datasets used.

Dataset WN18RR FB15k-237
#entity 40,943 14,541
#relation 11 237
#train 86,835 272,115
#valid 3,034 17,535
#test 3,134 20,466
#total 93,003 310,116

Table 1: Statistics of datasets.

4.2. Baselines and Settings
To demonstrate the effectiveness and generaliza-
tion ability of our SKDE on the link prediction task,
we select different types of KGEs, such as:

• DistMult (Yang et al., 2015): a popular tensor
factorization-based KGE model which uses
a bi-linear scoring function to calculate the
scores of knowledge triples.

• ComplEx (Trouillon et al., 2016): an advanced
extension of DistMult which encodes entities
and relations into complex vector space in-
stead of real-valued vector space.

• ConvE (Dettmers et al., 2018): a popular con-
volutional network-based KGE model.

• AcrE (Ren et al., 2020): a simple but effective
atrous convolution-based KGE model. There
are two learning structures to integrate different
kinds of convolutions: one is a serial structure,
and the other is a parallel structure.

4.3. Training Protocol
In the training, we set the temperature τ0 = 3,
coefficient β = 1. We set the learning rate lr =
0.003, and decay the learning rate every epoch by
lr-decay = 0.995. We set the dropout for the in-
put embedding, convolutional feature and hidden
layer by input-drop = 0.2, feat-drop = 0.2 and
hidden-drop = 0.3, respectively. The initial dimen-
sions of entities and relations embedding are set
to embedding-dim = 200.

4.4. Evaluation Protocol
In the link prediction task, the goal is to predict
the missing head or tail entities. For each testing
triple, we remove the head entity or tail entity and
replace it with each of the entities in E in turn. The
model calculates a score for each triple and then
sorts by descending order. As a result, we can
get an accurate ranking of the correct triple in the
candidates. The evaluation metrics include: the
mean reciprocal rank (MRR) and the proportion of
correct entities ranked in the top N (Hits@N, N=1,
3, 10).

14601

Model WN18RR FB15k-237
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

DistMult 0.43 0.39 0.44 0.49 0.241 0.155 0.263 0.419
SKDE 0.45 0.41 0.46 0.52 0.339 0.248 0.373 0.523
SKDE (LW) 0.44 0.40 0.45 0.51 0.335 0.245 0.367 0.516
ComplEx 0.44 0.41 0.46 0.51 0.247 0.158 0.275 0.428
SKDE 0.47 0.44 0.49 0.54 0.349 0.257 0.383 0.534
SKDE (LW) 0.46 0.43 0.48 0.53 0.339 0.249 0.371 0.522
ConvE 0.43 0.40 0.44 0.50 0.311 0.223 0.339 0.493
SKDE 0.44 0.41 0.46 0.53 0.326 0.236 0.356 0.508
SKDE (LW) 0.44 0.40 0.45 0.52 0.324 0.234 0.355 0.506
AcrE(S) 0.44 0.40 0.45 0.51 0.324 0.244 0.363 0.481
SKDE 0.47 0.43 0.48 0.55 0.341 0.249 0.375 0.525
SKDE (LW) 0.43 0.38 0.46 0.52 0.334 0.245 0.367 0.511
AcrE(P) 0.45 0.42 0.46 0.52 0.328 0.247 0.367 0.485
SKDE 0.48 0.44 0.49 0.55 0.353 0.260 0.390 0.540
SKDE (LW) 0.41 0.35 0.44 0.51 0.339 0.250 0.372 0.517

Table 2: Link prediction results of KGEs and SKDEs on WN18RR and FB15k-237. SKDE (LW) is a
lightweight SKDE. The embedding dimension of SKDE (LW) is decreased from 200 to 100.

4.5. Results and Analysis (RQ1)
To verify whether SKDE can optimize model per-
formance, we first train these KGEs without mak-
ing any changes to the network structure. Then,
we add self-knowledge distillation, KA and DTD to
different types of KGEs to get the corresponding
SKDEs. We compare the performance of these
models on the link prediction task.

We can find out from Table 2 that under the same
embedding dimension, the model performance of
each SKDE is significantly improved compared to
the original KGE on all evaluation metrics. These
results can prove the effectiveness and generaliza-
tion ability of our SKDE.

4.6. The performance of SKDE after
lightweight (RQ2)

The model size, i.e. the number of parameters
is closely related to the embedding dimension of
the entities and relations in the triple. To achieve
a lightweight SKDE, we need to reduce the em-
bedding dimension. On the premise of keeping
the structure and hyperparameters of SKDE un-
changed, we reduce the embedding dimension in
half. The number of model parameters decreases
as the embedding dimension decreases.

We can observe two conclusions from Table 3.
Firstly, compared with the original KGE, the number
of SKDE parameters does not change. This conclu-
sion indicates that adding self-knowledge distilla-
tion, KA and DTD to the KGE does not change the
number of model parameters. Secondly, the num-
ber of SKDE parameters decreases significantly as

Model WN18RR FB15k-237
DistMult 8,193,800 3,003,800
SKDE 8,193,800 3,003,800
SKDE (LW) 4,096,900 1,501,900
ComplEx 16,387,600 6,007,600
SKDE 16,387,600 6,007,600
SKDE (LW) 8,193,800 3,003,800
ConvE 10,181,299 4,964,897
SKDE 10,181,299 4,964,897
SKDE (LW) 4,599,299 1,977,897
AcrE(S) 10,813,329 5,596,927
SKDE 10,813,329 5,596,927
SKDE (LW) 4,796,529 2,175,127
AcrE(P) 11,435,873 6,219,471
SKDE 11,435,873 6,219,471
SKDE (LW) 4,938,873 2,317,471

Table 3: The number of model parameters. The
number of parameters for each KGE method and
the matching SKDE model are equal in all scenar-
ios.

the embedding dimension is halved. This conclu-
sion shows that reducing the embedding dimension
can effectively reduce the number of model param-
eters. We can achieve the goal of the model being
lightweight by reducing the embedding dimension.
And then we explore the relationship between the
embedding dimension and model performance.

We can observe from Table 2 that after the em-
bedding dimension of SKDE decreases, the perfor-

14602

Model WN18RR FB15k-237
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

SKDE (DistMult) 0.446 0.408 0.463 0.521 0.3396 0.2483 0.3735 0.5234
-DTD 0.442 0.407 0.458 0.512 0.3378 0.2475 0.3695 0.5199
-KA 0.443 0.407 0.457 0.516 0.3372 0.2472 0.3694 0.5198
-KA and DTD 0.442 0.408 0.456 0.507 0.3402 0.2507 0.3727 0.5193
SKDE (ComplEx) 0.472 0.439 0.486 0.536 0.3493 0.2572 0.3839 0.5341
-DTD 0.468 0.435 0.482 0.528 0.3443 0.2528 0.3781 0.5285
-KA 0.470 0.438 0.486 0.531 0.3474 0.2568 0.3811 0.5298
-KA and DTD 0.469 0.437 0.484 0.530 0.3452 0.2538 0.3789 0.5281
SKDE (ConvE) 0.442 0.406 0.455 0.527 0.3258 0.2360 0.3563 0.5081
-DTD 0.438 0.400 0.448 0.521 0.3211 0.2312 0.3511 0.5040
-KA 0.437 0.399 0.449 0.523 0.3234 0.2348 0.3519 0.5033
-KA and DTD 0.436 0.398 0.447 0.520 0.3217 0.2315 0.3537 0.5032
SKDE (AcrE(S)) 0.467 0.427 0.481 0.552 0.3412 0.2493 0.3754 0.5246
-DTD 0.463 0.423 0.477 0.545 0.3356 0.2445 0.3694 0.5191
-KA 0.457 0.419 0.470 0.539 0.3368 0.2465 0.3692 0.5207
-KA and DTD 0.455 0.417 0.466 0.537 0.3364 0.2484 0.3718 0.5189
SKDE (AcrE(P)) 0.477 0.440 0.488 0.549 0.3529 0.2595 0.3900 0.5397
-DTD 0.470 0.436 0.480 0.540 0.3492 0.2581 0.3826 0.5343
-KA 0.471 0.433 0.484 0.542 0.3486 0.2558 0.3830 0.5371
-KA and DTD 0.469 0.432 0.483 0.540 0.3490 0.2572 0.3880 0.5326

Table 4: Link prediction results of SKDEs, SKDEs without DTD, SKDEs without KA, SKDEs without KA
and DTD on WN18RR and FB15k-237.

mance of SKDE (LW) shows a small decrease. In
most cases, the lower the embedding dimension,
the less information the model can learn, and the
model performance will also decrease. However,
our SKDE can maintain a good performance after
the embedding dimension is reduced. The number
of SKDE parameters also decreases as the embed-
ding dimension decreases. Thus, we achieved our
goal of obtaining a lightweight model while main-
taining good performance. We also found that the
performance of SKDEs after embedding dimension
reduction can exceed the performance of KGEs
without embedding dimension reduction. In this sit-
uation, we not only obtain a lightweight model but
also achieve a performance improvement, which
once again confirms the effectiveness and general-
ization ability of our SKDE.

We continue to explore the performance of SKDE
as the model parameter decreases. We reduce
the embedding dimension of lightweight SKDE
from 100 to 50. Compared with the original KGEs
with 200 embedding dimensions, the Hits@10
of lightweight SKDEs on WN18RR changed by
+2.04%, +1.96%, +2.00%, +1.96%, -5.76%. The
Hits@10 of lightweight SKDEs on FB15k-237
changed by +21.72%, +20.32%, -1.01%, -4.36%,
-0.41%. From the above results, we can find that
SKDE can still maintain the model performance
after the embedding dimension is reduced to 50.

Sometimes even better than the original KGE.
Then we discover the effects of model parame-

ters on model training time. When the embedding
dimension of SKDE is reduced from 200 to 100, the
average training time is reduced by 4.13%. When
the embedding dimension of SKDE is reduced from
200 to 50, the average training time is reduced by
12.00%. On the one hand, the lightweight model
can reduce model training time. On the other hand,
the lightweight model can reduce the consumption
of computational sources and run-in memory by
reducing the model parameters.

4.7. Ablation Study (RQ3)

The previous experimental results can fully prove
the effectiveness and generalization ability of
SKDE. Based on this, we further explore the role
of KA and DTD in SKDE. We will remove KA and
DTD from SKDE to observe the changes in model
performance. We can discover from Table 4 that
removing either KA or DTD degrades model perfor-
mance, and removing KA and DTD together suffers
the most.

From the experimental results in Table 4, we
can draw the following conclusions: (i) Remov-
ing both KA and DTD is equivalent to having only
self-knowledge distillation operating in the model.
In this case, the model performance is still better

14603

than the original KGE model. This shows that self-
knowledge distillation alone can also be used to
optimize model performance. (ii) Either KA or DTD
alone can increase model performance. This indi-
cates that both KA and DTD can optimize model
performance in our model. (iii) There is a significant
performance penalty to removing DTD from models.
This suggests that DTD plays a more important role
in our model than KA. (iv) Model performance is
best when both KA and DTD are used. This shows
that applying KA and DTD together to the model
maximizes model performance.

5. Conclusion and Future Work

In this paper, we propose a method to apply self-
knowledge distillation, KA and DTD to KGE, called
SKDE. SKDE utilizes information from the latest
iteration to guide training in the current iteration.
Our method can fix the predictions of misjudged
training samples. Our method also can design dy-
namic sample-wise temperatures to compute soft
targets. Extensive experiments demonstrate the ef-
fectiveness and generalization ability of our SKDE.
We achieve a lightweight model while maintaining
a good model performance. The training time of
the model is also decreased. In future work, we
intend to pay more attention to the development of
self-knowledge distillation. We will continue to opti-
mize the self-knowledge distillation structure and
explore the relationship between self-knowledge
distillation and KGE.

6. References

Jimmy Ba and Rich Caruana. 2014. Do deep nets
really need to be deep? Advances in neural
information processing systems, 27.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information
processing systems, 26.

Cristian Buciluǎ, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In
Proceedings of the 12th ACM SIGKDD interna-
tional conference on Knowledge discovery and
data mining, pages 535–541.

Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xi-
aochun Cao, and Qingming Huang. 2021. Dual
quaternion knowledge graph embeddings. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 6894–6902.

Tu Dinh Nguyen Dai Quoc Nguyen, Dat Quoc
Nguyen, and Dinh Phung. 2018. A novel em-
bedding model for knowledge base completion
based on convolutional neural network. In Pro-
ceedings of NAACL-HLT, pages 327–333.

Tim Dettmers, Pasquale Minervini, Pontus Stene-
torp, and Sebastian Riedel. 2018. Convolutional
2d knowledge graph embeddings. In Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, volume 32.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F
Wong, Dacheng Tao, and Zhaopeng Tu. 2021.
Rejuvenating low-frequency words: Making the
most of parallel data in non-autoregressive trans-
lation. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics
and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long
Papers), pages 3431–3441.

Sangchul Hahn and Heeyoul Choi. 2019. Self-
knowledge distillation in natural language pro-
cessing. In Proceedings of the International
Conference on Recent Advances in Natural Lan-
guage Processing (RANLP 2019), pages 423–
430.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al.
2015. Distilling the knowledge in a neural net-
work. arXiv preprint arXiv:1503.02531, 2(7).

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka
Marttinen, and S Yu Philip. 2021. A survey on
knowledge graphs: Representation, acquisition,
and applications. IEEE Transactions on Neural
Networks and Learning Systems.

Xiaotian Jiang, Quan Wang, and Bin Wang. 2019.
Adaptive convolution for multi-relational learn-
ing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Pa-
pers), pages 978–987.

Kyungyul Kim, ByeongMoon Ji, Doyoung Yoon, and
Sangheum Hwang. 2021. Self-knowledge distil-
lation with progressive refinement of targets. In
Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 6567–6576.

Hankook Lee, Sung Ju Hwang, and Jinwoo Shin.
2020. Self-supervised label augmentation via in-
put transformations. In International Conference
on Machine Learning, pages 5714–5724. PMLR.

Yunshui Li, Junhao Liu, Chengming Li, and Min
Yang. 2023. Self-distillation with meta learning
for knowledge graph completion. arXiv preprint
arXiv:2305.12209.

14604

Yunteng Luan, Hanyu Zhao, Zhi Yang, and Yafei
Dai. 2019. Msd: Multi-self-distillation learning
via multi-classifiers within deep neural networks.
arXiv preprint arXiv:1911.09418.

Deepak Nathani, Jatin Chauhan, Charu Sharma,
and Manohar Kaul. 2019. Learning attention-
based embeddings for relation prediction in
knowledge graphs. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 4710–4723.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Icml.

Feiliang Ren, Juchen Li, Huihui Zhang, Shilei Liu,
Bochao Li, Ruicheng Ming, and Yujia Bai. 2020.
Knowledge graph embedding with atrous convo-
lution and residual learning. In Proceedings of
the 28th International Conference on Computa-
tional Linguistics, pages 1532–1543.

Saed Rezayi, Handong Zhao, Sungchul Kim, Ryan
Rossi, Nedim Lipka, and Sheng Li. 2021. Edge:
Enriching knowledge graph embeddings with ex-
ternal text. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 2767–2776.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi
Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. 2015. Fitnets: Hints for thin deep
nets. In 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceed-
ings.

Bharat Bhusan Sau and Vineeth N Balasubrama-
nian. 2016. Deep model compression: Distilling
knowledge from noisy teachers. arXiv preprint
arXiv:1610.09650.

Yiqing Shen, Liwu Xu, Yuzhe Yang, Yaqian Li, and
Yandong Guo. 2022. Self-distillation from the
last mini-batch for consistency regularization. In
Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages
11943–11952.

George Stoica, Otilia Stretcu, Emmanouil Anto-
nios Platanios, Tom Mitchell, and Barnabás Póc-
zos. 2020. Contextual parameter generation for
knowledge graph link prediction. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 3000–3008.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and
Jian Tang. 2018. Rotate: Knowledge graph em-
bedding by relational rotation in complex space.

In International Conference on Learning Repre-
sentations.

Christian Szegedy, Vincent Vanhoucke, Sergey
Ioffe, Jon Shlens, and Zbigniew Wojna. 2016. Re-
thinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages
2818–2826.

Kristina Toutanova, Danqi Chen, Patrick Pantel,
Hoifung Poon, Pallavi Choudhury, and Michael
Gamon. 2015. Representing text for joint em-
bedding of text and knowledge bases. In Pro-
ceedings of the 2015 conference on empirical
methods in natural language processing, pages
1499–1509.

Théo Trouillon, Johannes Welbl, Sebastian Riedel,
Éric Gaussier, and Guillaume Bouchard. 2016.
Complex embeddings for simple link prediction.
In International conference on machine learning,
pages 2071–2080. PMLR.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin,
Nilesh Agrawal, and Partha Talukdar. 2020. Inter-
acte: Improving convolution-based knowledge
graph embeddings by increasing feature interac-
tions. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pages 3009–
3016.

Kai Wang, Yu Liu, Qian Ma, and Quan Z Sheng.
2021. Mulde: Multi-teacher knowledge distilla-
tion for low-dimensional knowledge graph em-
beddings. In Proceedings of the Web Conference
2021, pages 1716–1726.

Tiancheng Wen, Shenqi Lai, and Xueming Qian.
2021. Preparing lessons: Improve knowledge
distillation with better supervision. Neurocomput-
ing, 454:25–33.

Ting-Bing Xu and Cheng-Lin Liu. 2019. Data-
distortion guided self-distillation for deep neural
networks. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pages
5565–5572.

Bishan Yang, Scott Wen-tau Yih, Xiaodong He,
Jianfeng Gao, and Li Deng. 2015. Embedding
entities and relations for learning and inference in
knowledge bases. In Proceedings of the Interna-
tional Conference on Learning Representations
(ICLR) 2015.

Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and
Jiashi Feng. 2020. Revisiting knowledge dis-
tillation via label smoothing regularization. In
Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages
3903–3911.

http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/1412.6550

14605

Sukmin Yun, Jongjin Park, Kimin Lee, and Jinwoo
Shin. 2020. Regularizing class-wise predictions
via self-knowledge distillation. In Proceedings
of the IEEE/CVF conference on computer vision
and pattern recognition, pages 13876–13885.

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei
Chen, Chenglong Bao, and Kaisheng Ma. 2019a.
Be your own teacher: Improve the performance
of convolutional neural networks via self distilla-
tion. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages
3713–3722.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019b.
Quaternion knowledge graph embeddings. Ad-
vances in neural information processing systems,
32.

Ying Zhang, Tao Xiang, Timothy M Hospedales,
and Huchuan Lu. 2018. Deep mutual learning.
In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 4320–
4328.

Yu Zhao, Han Zhou, Ruobing Xie, Fuzhen Zhuang,
Qing Li, and Ji Liu. 2021. Incorporating global
information in local attention for knowledge repre-
sentation learning. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 1341–1351.

Yushan Zhu, Wen Zhang, Mingyang Chen, Hui
Chen, Xu Cheng, Wei Zhang, and Huajun Chen.
2022. Dualde: Dually distilling knowledge graph
embedding for faster and cheaper reasoning. In
Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining,
pages 1516–1524.

	Introduction
	Related Works
	Knowledge Graph Embedding
	Knowledge Distillation

	Methods
	Background
	The Self-Knowledge Distillation module
	The Dynamic Temperature Distillation module
	The Knowledge Adjustment module
	The SKDE module

	Experiments
	Datasets and Settings
	Baselines and Settings
	Training Protocol
	Evaluation Protocol
	Results and Analysis (RQ1)
	The performance of SKDE after lightweight (RQ2)
	Ablation Study (RQ3)

	Conclusion and Future Work
	References

