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Abstract

Argument pair extraction (APE) is a task that aims to extract interactive argument pairs from two argument passages.
Generally, existing works focus on either simple argument interaction or task form conversion, instead of thorough
deep-level feature exploitation of argument pairs. To address this issue, a Semantics-Aware Dual Graph Convolutional
Networks (SADGCN) is proposed for APE. Specifically, the co-occurring word graph is designed to tackle the lexical
and semantic relevance of arguments with a pre-trained Rouge-guided Transformer (ROT). Considering the topic
relevance in argument pairs, a topic graph is constructed by the neural topic model to leverage the topic information
of argument passages. The two graphs are fused via a gating mechanism, which contributes to the extraction of
argument pairs. Experimental results indicate that our approach achieves the state-of-the-art performance. The
performance on F1 score is significantly improved by 6.56% against the existing best alternative.

Keywords: Argument Pair Extraction, Dual Graph Convolutional Networks, Co-occurring Word Graph, Topic Graph,
Argument Mining

1. Introduction

Argument pair extraction (APE) aims to extract inter-
active argument pairs from two separate passages,
which is widely applied to intelligent debate (Bar-
Haim et al., 2021; Slonim et al., 2021), writing as-
sistance (Wambsganss et al., 2022; Wambsganss
and Niklaus, 2022), essay scoring (Wang et al.,
2018; Wachsmuth et al., 2017), and peer review
(Hua et al., 2019; Fromm et al., 2021). Instead of
solely extracting arguments from monologues, the
interactions between reviewer comments and au-
thor rebuttals give rise to the advancement of APE
task. APE is concerned, not just with settling the
complicated argument structure, but also with cap-
turing the interaction between arguments. Cheng
et al. (2020) collected a large number of reviews
and rebuttals to establish a dataset for APE. Figure
1 presents such examples, with a ‘review’ docu-
ment containing comments from a reviewer while
a ‘rebuttal’ involves the replies from an author. An
argument pair is thereby formed based on each
review and one corresponding rebuttal.

In general, an APE is further divided into two sub-
tasks, i.e., argument extraction and argument pair
identification. Research is ongoing to develop mul-
titasking approaches in this field. Notwithstanding,
the APE task remains challenging, primarily be-
cause these methods failed to deal with the hidden
information of arguments. Existing works focused
on either simplifying the structure of APE (Cheng
et al., 2021; Bao et al., 2022) or leveraging only
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2. For the first concern, you are right, we cannot know for an
unknown environment whether overestimation or underestimation
will help.

...
13. We are not exactly sure what you mean by your comment that
"a drift for Q learning (e.g.) has no effect on our policy".

...
18. If c is random, could you clarify further what you mean here?
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���
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���

19. You are right that our Maxmin Q-learning is a joint update
scheme for different Q functions, and one of our contributions is
that we provide a convergence proof for such a framework under
reasonable assumptions.

...
29. N Q functions are learned with Q-learning (rather than say
with the Maxmin update).

...
38. If you can further clarify why we should compare to SQL, we
would be happy to respond further.

��
���

Arg Review Arg

Non-Arg

1. This paper proposes a new Q learning algorithm framework:
maxmin Q-learning, to address the overestimation bias issue of Q
learning.

...
5. I have two main concerns for this paper:

Non-Arg

��
���

6. 1)When is your algorithm useful?
7. What's your criterion of picking the hyper-parameters (e.g.
number of Q functions you want to learn).

��
���

��
��� 8. 2) Comparison to more intriguing way for jointly update of

multiple Q functions, like soft Q learning.
��

���

... ... ...

Non-Arg
19. Overall, I believe the idea of the paper is novel and interesting,
but further improvements should be added in order to improve the
score the paper.

Non-ArgAP1

AP2

Figure 1: An example of APE. αrev
i /αreb

i denotes
the ith argument in the Review/Rebuttal. Two dis-
tinguishing argument pairs are respectively colored
in green and blue while the grey area represents
non-arguments.

explicit features (Cheng et al., 2020; Bao et al.,
2021b) (e.g., co-occurring words).

Encouragingly, the investigation of basic charac-
teristics of arguments paves the way for a deeper-
level analysis.

(1) As long as two arguments relate to the same
issue during discussion, certain words inevitably
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occur in both argument passages. The exploiting of
co-occurring words substantially contributes to the
argument pairing. Following the idea of (Bao et al.,
2021b), the information from co-occurring words is
applied to graph construction for encoding. How-
ever, the incorrect argument pairing can be gener-
ated by solely considering the co-occurring word
number. For this reason, the semantic relevance
of each argument has to be taken into account in
addition to the number of co-occurring words.

(2) An argument pair is subject to specific topics
under discussion, which can be used for argument
pairing. Despite the distinctiveness of co-occurring
words, the misunderstanding of argument informa-
tion is also derived. According to Figure 1, the
underlined word ‘Q learning’ is presented in the
‘review’ passage, as well as in the ‘rebuttal’, but
arguments fail to form an argument pair. The appli-
cation of only co-occurring words has deficiencies
in argument pairing, as it is the case. Further, the
passages in green and blue separately relate to
the topics of parameters and algorithm comparison
about ‘Q learning’. As a result, the utilization of
topic information benefits the argument pairing.

In this work, we propose a Semantics-Aware
Dual Graph Convolutional Networks (SADGCN)
that employs both co-occurring words and topic in-
formation on the task of APE. Our contributions are
as follows:

• We devise a Rouge-guided Co-occurring
word Graph Convolutional Network (RCGCN),
which deals with the semantic relevance of ar-
gument pairs containing co-occurring words.

• A topic-related graph is constructed in line with
the topic probability distribution of neural topic
model and topic embeddings, which is further
encoded by GCN for argument topic interac-
tion. Lastly, a gating unit is performed to fuse
the co-occurring word information and topic
information for APE.

• Experiments are carried out on publicly avail-
able benchmarks to evaluate the working per-
formance of our model. Experimental results
indicate that the proposed model outperforms
the state-of-the-art(SOTA) by 6.56% in F1
score. More tests are also conducted to val-
idate the effectiveness of components in the
proposed model.

The subsequent sections of this paper are orga-
nized as follows. Section 2 provides the literature
overview concerning APE and the utilization of topic
information in this task. In Section 3, we elucidate
the definition and the form of the argument pair
extraction task, aiming to enhance the comprehen-
sion of our proposed approach. Section 4 delves

into the technical underpinnings of our methodol-
ogy. The experimental setup for our method, along
with the corresponding results, is expounded upon
in Section 5. Section 6 summarizes the findings
and contributions of our research. Finally, Section
7 acknowledges the limitations of our study.

2. Related Works

Recently, Cheng et al. (2020) proposed a challeng-
ing task, namely APE. This allows for a more de-
tailed analysis that utilizes more of the information
provided by both reviews and rebuttals. With re-
spect to APE task, Cheng et al. (2020) proposed
a novel multi-task model that extracts arguments
from two documents using LSTM-CRF and pairs
them using a classifier, which did not achieve sat-
isfying results. In order to capture the argument
pairs, Bao et al. (2021b) explicitly modeled the rela-
tion between argument pairs using co-occurrence
information. While co-occurring words contributes
to the argument pairing, solely considering the co-
occurring word number can also lead to incorrect
pairing. Therefore, we further introduced semantic
information to reduce false connections. In addi-
tion, Cheng et al. (2021) transformed the APE task
into an attention-guided table-filling. Besides, Bao
et al. (2022) devised a two-stage machine read-
ing comprehension (MRC) framework. However,
both approaches simply transform the task form
but failed to utilize the features of arguments. By
contrast, we make a contribution to the mining of
topic information and co-occurring word information
at a deeper level instead of transforming the task
mode (Cheng et al., 2021; Bao et al., 2022) and
modeling the shallow-level features(Cheng et al.,
2020; Bao et al., 2021b).

Topic information refers to the key issue within a
text. In NLP domain, topic information is employed
to facilitate the comprehension of textual content
and structure, such as text classification(Zeng et al.,
2018), sentiment analysis(Zhu et al., 2023; Wang
et al., 2020), etc. In this context, the employment
of topic information is also highlighted in argument
mining tasks. Budán et al. (2020) decorated argu-
ments with a set of related topics. Considering the
topics of different arguments, Fromm et al. (2019)
presented distinguishing models for argument clas-
sification. Utilizing thematic information for APE
tasks is still limited. And existing approaches in the
argumentation domain use a label-based paradigm
to introduce topics without explicitly learning and in-
corporating deeper topic information. To delve into
more profound information, we adopt neural topic
models (NTM) (Srivastava and Sutton, 2017; Miao
et al., 2017; Dieng et al., 2020) to extract pertinent
topic information. This extracted information is then
represented in the form of graphs. By leveraging
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GCN, we effectively capture deep-seated topical
connections between arguments.

3. Task Description

The objective of this work is to extract argument
pairs from peer reviews and rebuttals. The APE
task is carried out in the form of two sub-tasks,
i.e., Argument Mining (AM) and Sentence Pair-
ing (SP). Let Drev = {srev1 , . . . , srevn } denote an
n-sentence review text and Dreb = {sreb1 , . . . , srebm }
be its m-sentence rebuttal text. A review argu-
ment span set Xrev = {αrev

1 , αrev
2 , . . .} and a re-

buttal argument span set Xreb = {αreb
1 , αreb

2 , . . .}
are derived where αrev

i and αreb
i separately repre-

sent the ith argument span of the review and rebut-
tal. Then, an argument pair set P = {p1, p2, . . .}
with pi ∈ Xrev × Xreb, is obtained via sentence
pairing. For the example in Figure 1, the review
argument span set and rebuttal argument span
set are Xrev = {αrev

1 , αrev
2 } = {(6, 7), (8, 8)} and

Xreb = {αreb
1 , αreb

2 } = {(2, 18), (19, 38)}, respec-
tively. The argument pair set is given as P =
{p1, p2} = {[αrev

1 , αreb
1 ], [αrev

2 , αreb
2 ]}. It is notewor-

thy that the single SP task requires the accurate
labeling of the AM task as its input. On the other
hand, the SP task in APE task takes the prediction
of the AM task as its input.

4. Proposed Approach

We propose a SADGCN, which aims to determine
the relationship between argument pairs by using
co-occurring word information and topic information.
Figure 2 shows the architecture of our model. More
details of each model component are described as
follows.

4.1. Input and Encoder
Seeing that APE is a document-level task, the Long-
former is employed to extract context information.
Following the idea proposed by Bao et al. (2022),
we use a special token "[AM ]" as the query for ar-
gument mining. This allows for the thorough mining
of all arguments Xrev and Xreb. During AM pro-
cess, the inputs are the concatenation of "[AM ]"
and the document, i.e.,

IAM = ([s], [AM ], [/s], [s], s1, . . . , snum, [/s]) (1)

where [AM ] is a special token used as the query to
identify all the arguments. [s] and [/s] are special
tokens of Longformer, si is the ith sentence in the
review/rebuttal document. The value of num ∈
{n,m}, where n and m represent the number of
sentences in the review and rebuttal, respectively.

With argument mining, both Xrev = {αrev
1 , . . .}

and Xreb = {αreb
1 , . . .} are obtained with αrev

t =

(srevt,start, . . . , s
rev
t,end) and αreb

t = (srebt,start, . . . , s
reb
t,end).

Taking each argument from Xrev as the query for
SP, we concatenate αrev

t with Dreb, to generate the
input sequence, which is:

ISP
rev→reb,t = ([s], αrev

t , [/s], [s], sreb1 , . . . , srebm , [/s]) (2)

where ISP
rev→reb,t represents the input of the tth

argument of Xrev querying the corresponding ar-
gument from Dreb. Similarly, we concatenate αreb

t

with Drev to generate ISP
reb→rev,t. Note that we take

the same Longformer in SP with that in AM.
Afterwards, the input sequences are fed into the

Longformer model to extract the hidden represen-
tations of individual tokens. In this process, the
global attention token is designated as the query
token. Subsequently, the sentence representation
is obtained by pooling the hidden representations
of the tokens within the sentence.

4.2. Argument Mining
As depicted in Figure 2, the input data is processed
by Longformer model, in order to derive the sen-
tence representations. Subsequently, these sen-
tence representations are fed into a Bi-LSTM+CRF
architecture to yield the final output. Mathemati-
cally, the process of attention mechanism (AM) can
be expressed as follows:

Y rev/reb = CRF(Bi-LSTM(Longformer(IAM ))) (3)

Y rev/reb =
(
y
rev/reb
1 , y

rev/reb
2 , . . . , yrev/rebn

)
(4)

where y
rev/reb
i is the IOBES tag of the ith sen-

tence in Drev/reb.

4.3. Sentence Pairing
At this stage, one or more arguments are derived
from the argument mining task, which is taken as
queries for SP to obtain the sentence representa-
tions HSP

rev→reb,t and HSP
reb→rev,t. It is worth noting

that we take the gold arguments from the bench-
mark dataset during training. The precise model-
ing of argument relation from two documents is
performed based on co-occurring words and topic
information. To facilitate the description, we tend to
present the search for rebuttal argument in Dreb us-
ing review argument, i.e., rev → reb. The process
of reb → rev is implemented in the same manner
but in a reversed direction. We take the union set
of both directions as the final extraction results.

4.3.1. RCGCN

Statistics reveal that over 80% of argument pairs
contain co-occurring words except for stop words.
However, co-occurring words can be either simply
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Figure 2: Model architecture.

mentioned or thoroughly discussed about them in
arguments. As such, solely using the numbers of
co-occurring words can lead to the unreliable pair-
ing. In our model, the semantic relevance among
words is also exploited, based on which a Rouge-
guided one-layer Transformer (ROT) is established.
Generally, Rouge-2 is an index for lexical relevance
capture due to its capability to evaluate the lexical
similarity of two texts, as it is the case in SP task.
Furthermore, the one-layer Transformer is effective
in dealing with semantic information (Sheng et al.,
2021). In such a manner, the semantic informa-
tion between lexical-related sentences is accessi-
ble and is further utilized for weight assignment in
a co-occurring word-based graph.
ROT. In our model, we pre-train a Rouge-guided
One-layer Transformer (ROT) to explore the seman-
tic relevance between lexical-related sentences.
Specifically, each sentence of Drev is paired with
each sentence of Dreb to obtain n × m sentence
pairs. Subsequently, the Rouge-2 value of the two
sentences in a pair is computed. The Transformer
is initialized with the first layer of BERT. A sentence
pair is fed into the Transformer. We thus have:

zrot = Transformer([CLS]srev[SEP ]sreb) (5)

where [CLS] and [SEP ] are the retained tokens
and zrot is the output representation.

The optimization of the ROT is performed by min-
imizing the mean-squared error between precision
and recall of ROUGE-2, which is given by:

R̂(srev, sreb) = MLP (zrot([CLS])) (6)

LR =
∥∥∥R̂(srev, sreb)− R(srev, sreb)

∥∥∥2

2
+ λR∥∆θ∥22 (7)

where R(srev, sreb) is the precision and recall
of sentences srev and sreb calculated using the

��×�
��×�

��×�

��×�

��×�

��×�

��×�

��×�

��×�

��×�

Figure 3: Components of the matrix.

ROUGE-2 metric, R̂(srev, sreb) is the predicted pre-
cision and recall by our method, zrot([CLS]) repre-
sents the output of the Transformer corresponding
to token [CLS]; the first term of LR is the regres-
sion loss; the second term of LR is to preserve the
semantic capabilities acquired by the pre-training
of Transformer; λR is a control factor and ∆θ refers
to the parameter variation.
Co-occurring Word Graph Construction. A
graph is constructed to model the co-occurring
word relation of the mined argument with the other
document. Assuming that an argument αrev

t con-
tains z sentences, a lexical-relevant matrix Aco ∈
R(z+m)×(z+m) can be established, where m is the
number of sentences in Dreb. Specifically, this ma-
trix is subdivided into four components; shown in
Figure 3. The weights at the diagonal positions are
set to 1 and other positions to 0 for Aco

z×z ∈ Rz×z

and Aco
m×m ∈ Rm×m. Note that Aco

z×m = (Aco
m×z)

T ,
we shall thus focus on the construction of Aco

z×m.
Only if the ith sentence of argument shares an oc-
curring word with the jth sentence of Dreb, can the
edge between the two sentences be established in
Aco

z×m. The weight value is computed as:

Ri = ROT ([CLS] si [SEP ]) (8)

Dco
ij = |Ri ([CLS])−Rj ([CLS]) |1 (9)

Aco
ij = 1−

Dco
ij −min(Dco)

max(Dco)−min(Dco)
(10)
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where Ri signifies the result of ith sentence ob-
tained by ROT; Ri ([CLS]) and Rj ([CLS]) denote
the vectors corresponding to token [CLS] in Ri and
Rj ; | · |1 represents the number of one paradigm;
min(Dco) and max(Dco) are the minimum and
maximum value of Dco, and Dco

ij is ith row and
jth column of Dco. Based on the processes above,
we can construct the co-occurring word graph Aco.
Co-occurring Word Graph Convolution. The
graph convolutional network (GCN)(Kipf and
Welling, 2017) is typically used for information ex-
change between nodes in a graph. In our model,
each node feature in the co-occurring word graph
involves two parts, i.e., the sentence representa-
tion of the tth argument Hrev

t ∈ Rz×d in Drev and
the sentence representation of the entire rebuttal
document Hreb ∈ Rm×d. That is, both Hrev

t and
Hreb consist of the initial node features, which are
presented as:

Hco
0 = [Hrev

t ;Hreb] (11)

Hco
l+1 = σ([AcoHco

l W co
l ]) (12)

whereHco
l ∈ R(z+m)×d contains the feature vectors

of all nodes in the lth layer of GCN, Aco is the co-
occurring word adjacency matrix, W co

l denotes the
trainable parameter matrix and σ(·) is the ReLU
activation function.

The final node features of Hco
rev→reb that are re-

lated to Hreb are taken as the co-occurring word
graph representation Hco

reb ∈ Rm×d.

4.3.2. Topic GCN

As pointed out in the section 1, the employment of
topic information certainly benefits the argument
pairing. In this section, we will describe the con-
struction of the Topic Graph Convolutional Network
(Topic GCN).
NTM. Neural topic model contains inference and
generation. Formally, we build an inference net-
work to infer the document-topic distribution θ. Let
a bag-of-words representation d ∈ R|V | be the input
to the inference network where V is the vocabulary.
To start with, d is sent to two neural networks to gen-
erate µ(d) and σ(d), together with the parameteri-
zation of q(z|d) = N(µ(d), σ2(d)) where z ∈ RF is
a potential variable in the topic model, F is the topic
number, q(z|d) and N(µ(d), σ2(d)) stand for Gaus-
sian distribution. We then re-parameterize(Kingma
and Welling, 2014) the q(z|d) to extract ẑ = µ(d) +
ϵ·σ(d), where ϵ is sampled from N(0, I2). The topic
distribution θ is expressed as:

θ = softmax(Wθ ẑ + bθ) (13)

where Wθ ∈ RF×F and bθ ∈ RF are trainable pa-
rameter matrices.

Furthermore, the generative network is devised
to parameterize p(d|θ, β). We define βf ∈ RV as
the word distribution of the f th topic in β ∈ RF×V .
Both the word embedding W ∈ RV×M and the
topic embedding Φ ∈ RF×M are used to obtain
β with M representing the embedding dimension,
which can be written as:

β = softmax(
Φ ·WT

√
M

) (14)

The reconstruction of d is presented as:

d = θ · β (15)

The loss function of the neural topic model is
given by:

LNTM = KL[q(z|d)||p(z)]− Eq(z|d)[logp(d|θ, β)] (16)

where p(z) represents a standard normal prior dis-
tribution N(0, I2). The first term of the loss function
ensures the distribution q(z|d) obtained from train-
ing approaches the real prior distribution p(z). The
second term represents the reconstructed docu-
ment likelihood from the generative network.
Topic Graph Construction. The topic embed-
ding of the NTM is used to construct a topic graph,
which models the topic relation between the mined
argument and the other document. Similar to the
construction of the co-occurring word graph, for a
z-sentence argument αrev

t , a topic-relevant matrix
Atopic ∈ R(z+m)×(z+m) is established.

Specifically, the construction of Atopic
z×m starts with

converting a sentence s into a bag-of-words repre-
sentation d as the input to the NTM. A document-
topic distribution θ is derived while the etopic ∈ RM

relates to s is computed as:

etopic = θ · Φ (17)

The distance between the ith sentence of αrev
t and

the jth sentence in Dreb is calculated and normal-
ized, which is:

Dtopic
ij = |etopici − etopicj |2 (18)

W topic
ij = 1−

Dtopic
ij −min(Dtopic)

max(Dtopic)−min(Dtopic)
(19)

where Dtopic is the distance matrix, | · |2 is the
two-norm, W topic is the weight matrix, Dtopic

ij is
the element of Dtopic, as well as max(Dtopic) and
min(Dtopic) are the maximum and minimum values
in Dtopic, respectively.

The top-k mechanism is exploited to keep the k-
largest values and set other values to 0 in each row
of W topic and obtain the topic graph Atopic, where
k is a hyperparameter.

Atopic
z×m,i = topk(W topic

i ) (20)
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Topic Graph Convolution. Likewise, GCN is
employed for topic information interaction between
nodes.

Htopic
0 = [Hrev

t ;Hreb] (21)

Htopic
l+1 = σ([AtopicHtopic

l W topic
l ]) (22)

where Htopic
l ∈ R(z+m)×d contains the feature vec-

tors of all nodes in the lth layer of GCN, and Atopic

is the topic adjacency matrix and W topic
l denotes

the trainable parameter matrix.
The final node features from Htopic

rev→reb in relation
to Hreb are considered as the topic graph represen-
tation Htopic

reb ∈ Rm×d.

4.3.3. Gated Fusion

The co-occurring word graph representation Hco
reb ∈

Rm×d and the topic graph representation Htopic
reb ∈

Rm×d are integrated via gating mechanism:

αgate = σ(W gate
1 ·Hco

reb +W gate
2 ·Htopic

reb ) (23)

Hgate = αgate ·Hco
reb + (1− αgate) ·Htopic

reb (24)

where W gate
1 and W gate

2 are trainable matrices and
σ(·) stands for the sigmoid activation function.

The outcome Hgate is fed into LSTM to obtain its
contextual representation, which is further sent to
the CRF sequence tagger. The argument relates
to αrev

t in Dreb is shown as:

Y pair
rev→reb,t = (ypairrev→reb,t1, . . . , y

pair
rev→reb,tm) (25)

where ypairrev→reb,ti refers to the IOBES label for the
ith sentence in Dreb.

Based on the label sequence, one can obtain the
argument span set of Xreb

rev→reb = {αreb
1 , . . .} from

Dreb corresponding to αrev
t . Notably, Xreb

rev→reb

can be an empty set or contain one or multiple
arguments. The argument pair set is derived as
Prev→reb,t = {[αrev

t , αreb
1 ], . . .}.

4.4. Model Training
The loss of our model comprises argument mining,
neural topic modeling, and sentence pairing.

The loss of argument mining is computed as:

LAM = logp(Ŷ rev|Drev) + logp(Ŷ reb|Dreb) (26)

where Ŷ rev and Ŷ reb represent the real label se-
quences, p(·) is the probability associated with
CRF.

The loss LNTM is described in Section 4.3.2. For
the loss of sentence pairing, we have that:

LSP =
∑
i

logp(Ŷ pair
rev→reb,i|D

reb, Xrev)

+
∑
i

logp(Ŷ pair
reb→rev,i|D

rev, Xreb)
(27)

Category Instances Size

Review

Sentences 99.8K
Arguments 23.2K

Argument sentences 58.5K
Avg. sentences per argument 2.5

Rebuttal

Sentences 94.9K
Arguments 17.7K

Argument sentences 67.5K
Avg. sentences per argument 3.8

Review-rebuttal pairs 4764

Table 1: Overall statistics of RR dataset.

where p(·) is the probability associated with CRF,
Ŷ pair
rev→reb,i denotes the real IOBES label sequence

of the ith argument in Drev corresponding to Dreb;
so does Ŷ pair

reb→rev,i.
Three losses are added up as the training objec-

tive of our model:

L = LAM + LNTM + LSP (28)

4.5. Inference
In the inference phase, prediction results of two
reversed directions are fused for sentence pair-
ing. For Y pair

rev→reb,t representing the label se-
quence of the tth argument in Drev correspond-
ing to Dreb, from which the rebuttal argument
span can be deduced. In such a way, the ar-
gument from Dreb that is in pair with αrev

t is ex-
tracted. The rebuttal argument span is written as
Xreb

rev→reb = {αreb
1 , . . .}. Accordingly, the argument

pair set derived from Y pair
rev→reb,t can be Prev→reb,t =

{[αrev
t , αreb

1 ], . . .}. Following this process, all argu-
ment pairs in the direction of rev → reb can be
predicted as Prev→reb =

⋃
t Prev→reb,t.

In the same way, all argument pairs in the di-
rection of reb → rev can also be maintained.
We shall take the predictions of both directions
as the final argument pair prediction, i.e., P =
Prev→reb

⋃
Preb→rev.

5. Experiments

5.1. Dataset
We carry out our experiment on the Review-
Rebuttal(RR) dataset (Cheng et al., 2020). De-
tails of the dataset are presented in Table 1.
This dataset is of two distinguishing versions,
namely RR-submission and RR-passage. In RR-
submission, the review-rebuttal text pairs of the
same paper are preserved in the same set. For
RR-passage, the different round-review-rebuttal
text pairs can be provided in different sets. The
dataset is split into three subsets, namely training,
validation, and test, with a ratio of 8:1:1.
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Data Method Argument Mining Sentence Pairing Argument Pair Extraction
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

RR-submission

PL-H-LSTM-CRF 67.63 68.51 68.06 50.05 47.15 48.56 19.86 19.94 19.90
MT-H-LSTM-CRF 70.09 70.14 70.12 53.44 42.71 47.48 26.69 26.24 26.46

MLMC 69.53 73.27 71.35 60.81 47.14 53.11 37.15 29.38 32.81
MGF 70.40 71.87 71.13 44.99 51.94 48.22♮ 34.23 34.57 34.40

MRC-APE 71.83 73.05 72.43 56.80 59.58 58.16♮ 41.83 38.17 39.92
GPT-3.5 57.83 63.31 60.45 65.64 50.57 57.13 25.02 28.57 26.68
GPT-4 67.38 69.71 68.53 67.33 55.63 60.92 37.63 39.12 38.36

Our SADGCN 73.18 72.88 73.03 59.16 66.15 62.46 45.67 47.32 46.48

RR-passage

PL-H-LSTM-CRF 73.10 67.65 70.27 51.34 42.08 46.25 21.24 19.30 20.22
MT-H-LSTM-CRF 71.85 71.01 71.43 54.28 43.24 48.13 30.08 29.55 29.81

MLMC 66.79 72.17 69.38 61.29 45.94 52.52 40.27 29.53 34.07
MGF 73.62 70.88 72.22 42.45 54.00 47.53♮ 38.03 35.68 36.82

MRC-APE 76.39 70.62 73.39 52.22 63.11 57.15♮ 37.70 44.00 40.61
GPT-3.5 64.40 66.43 65.40 58.34 50.53 54.15 28.90 30.23 29.55
GPT-4 68.52 71.75 70.10 59.43 56.86 58.12 38.38 40.71 39.51

Our SADGCN 73.31 73.69 73.50 56.21 67.37 61.29 43.25 47.53 45.29

Table 2: Comparison results with baselines on RR-submission and RR-passage (%). The best scores are
in bold. ♮ represents that we perform this task using their publicly available source codes.

5.2. Implementation Detail
In this experiment, a Longformer-base-4096 is used
as the base encoder with an output dimension of
768. The sliding window attention size is set to
512. Besides, an AdamW optimizer is adopted.
The Pytorch version is 1.11.0. The GPU is NVIDIA
GeForce RTX 3090. The learning rate of Long-
former is 1e-5 while that of other parameters is
1e-3. The number of GCN layers is 1. The Dropout
rate is given as 0.5. The layer of LSTM is 1 with the
output hidden layer dimension of 128. Our model
is trained with 5 epochs and the batch size of 2.
For the dataset RR-submission, the topic number
F is set to 40 and the k in the top-k mechanism
is 4. For RR-passage, F is set to 50 while k is 3.
During the training phase, the corresponding AM
golden labels of samples are input to the SP task.

5.3. Baselines
PL-H-LSTM-CRF (Cheng et al., 2020): a sequence
labeling model and a sentence relationship clas-
sification model are trained independently, whose
results are fused to establish argument pairs.
MT-H-LSTM-CRF (Cheng et al., 2020): Similar to
PL-H-LSTM-CRF, two subtasks are trained in a
multi-task framework.
MLMC (Cheng et al., 2021): an attention-guided
model is developed by converting APE into a table-
filling task.
MGF (Bao et al., 2021b): a GCN-based model is
proposed using co-occurring word information.
MRC-APE (Bao et al., 2022): a two-stage reading
comprehension framework is built.
GPT-3.5 (Ouyang et al., 2022; Brown et al., 2020):
a large language model provides accurate and cre-
ative support for text generation and comprehen-
sion.

GPT-4 (Eloundou et al., 2023; OpenAI, 2023): a
large-scale, multimodal model can accept image
and text inputs and produce text outputs.

GPT-3.5/4 were solely prompted without under-
going fine-tuning. The baseline models, including
PL-H-LSTM-CRF, MT-H-LSTM-CRF, MLMC, MGF
and MRC-APE, underwent the training by means
of training data.

5.4. Main Results

As shown in Table 2, the proposed model achieves
the best and most consistent results on different ver-
sions of the RR dataset. Comprehensively, there
is a considerable gap between the Longformer-
based methods (MRC-APE and SADGCN) and
Bert-based methods(MLMC and MGF). The main
reason is that Longformer is capable of modeling
all sentences from a document, contributing to the
sentence-attentive interaction. By contrast, the sen-
tence interaction in Bert is absent, due to its mod-
eling one single sentence separately.

Under the condition that our model is compara-
ble with MRC-APE in AM task, the proposed model
substantially outperforms MRC-APE in APE task.
The performance gaps on F1 against MRC-APE
are 6.56% and 4.68% on RR-submission and RR-
passage, which are significant. The exploiting of
both co-occurring word and topic information shows
its superiority in dealing with APE. The sentence
pairing task is based on the real labels from AM.
According to Table 2, with the elimination of error
propagation caused by AM, our model outperforms
MRC-APE by 4.30% on RR-submission and 4.14%
on RR-passage of F1 score. The technical effi-
cacy of co-occurring word and topic information in
APE task is most pronounced. By contrast, the pro-
posed model with only the number of co-occurring
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Models Argument Pair Extraction
Pre. Rec. F1

Our SADGCN 45.67 47.32 46.48
W/o ROT weight 45.30 43.08 44.16

W/o RCGCN 40.65 44.03 42.27
W/o Topic GCN 45.54 40.27 42.74

W/o RCGCN & Topic GCN 36.61 38.41 37.25
W/o Dreb → Drev 45.87 41.47 43.56
W/o Drev → Dreb 41.48 39.03 40.22

Table 3: The results of ablation experiments on
RR-submission (%). The best scores are in bold.

word (MGF) fails to exceed most baselines without
considering error propagation. The sole use of co-
occurring word has its deficiency in dealing with
APE. As such, a better working performance can be
expected with the application of topic information,
which is the case of our model.

Furthermore, we conducted zero-shot experi-
ments utilizing advanced Large Language Models
(LLMs) such as GPT-3.5 and GPT-4. The results
of these experiments indicate that LLMs exhibit
inadequate performance when it comes to address-
ing the task at hand. It is worth noting that LLMs
demonstrate commendable performance in the sub-
task of Sentence Pairing (SP), effectively summa-
rizing sentence content and deriving rationales for
pairing. However, our model surpasses LLMs in
terms of performance. This superiority can be at-
tributed to several factors. Firstly, LLMs are not
specifically trained for APE, which may have lim-
ited their performance in this task. Additionally,
the presence of noise in the dataset could have
negatively impacted the accuracy of LLMs. Lastly,
further optimization of the prompt format may be
necessary to enhance the performance of LLMs.

5.5. Ablation Study
In order to determine the importance of the different
components in the proposed method, an ablation
study is carried out; see Table 3. The most signifi-
cant modules for our model are co-occurring word
GCN and topic GCN, whose removals lead to drops
of 4.21% and 3.74%. An even worse performance
is generated by ablating these modules together.
Moreover, we remove ROT by assigning the weight
of 1 to edges in the co-occurring word graph, which
results in a 2.32% decline of F1. Hence, the appli-
cation of ROT benefits the exploiting of semantic
relevance in APE.

In addition, we conducted ablation experiments
to eliminate one direction. It is intuitive to as-
sume that the APE task can be accomplished
solely with the rev->reb direction. The experimen-
tal results indeed demonstrate that rev → reb
(W/o Dreb → Drev) is more efficient than reb →
rev (W/o Drev → Dreb). However, combining
both directions proves to be even more effective.

This is because, when tackling the argument pair-
ing task, individuals typically identify an argument
in the review paragraph and then establish argu-
ment pairs by identifying corresponding sentences
in the rebuttal passage. Conversely, the process
can be reversed by identifying sentences in the
review paragraph that correspond to arguments
derived from the rebuttal paragraph.

5.6. Effectiveness of Co-occurring Word
Graph and Topic Graph

The example in Figure 1 is used for co-
occurring word graph and topic graph vi-
sualization. In Drev, the argument span
set is Xrev = {αrev

1 , αrev
2 , αrev

3 , αrev
4 } =

{(5, 6), (7, 7), (8, 13), (14, 17)}. Similarly, the
argument span set in Dreb is Xreb = {αreb

1 ,
αreb
2 } = {(1, 17), (18, 37)}. There are four argument

pairs in this example: P = {p1, p2, p3, p4} = {[αrev
1 ,

αreb
1 ], [αrev

2 , αreb
2 ], [αrev

3 , αreb
1 ], [αrev

4 , αreb
2 ]}.

In the co-occurring word graph of αrev
1 , sent-6

has no connection to other sentences while sent-7
relates to six sentences with only one belonging
to αreb

1 . By contrast, both sent-6 and sent-7 in the
topic graph are in relation to sentences from αreb

1 .
One can observe that a co-occurring word ‘Q func-
tions’, which is underlined in Figure 1, is captured in
sent-7. However, this argument concerns ‘the role
of algorithms’, instead of just ‘Q functions’. Only
based on the co-occurring word information builds
the discussion about ‘Q functions’ and ‘Q learn-
ing’ in αreb

2 . Conversely, for αrev
2 , connections with

sentences of αreb
2 are established in co-occurring

word graph while those with sentences of αreb
1 are

built in topic graph. In our model, the topic and co-
occurring word are integrated with a gating mecha-
nism to enhance the information delivery between
sentences.

5.7. Execution Speed Comparison
To establish the superiority of our approach, primar-
ily regarding its validity, we further assess its execu-
tion speed in comparison to the baseline methods.
As shown in Table 4, the execution speed of LLMs
tends to be suboptimal because they encompass
a substantially larger quantity of parameters. PL-
H-LSTM-CRF, MT-H-LSTM-CRF, MLMC and MGF
exhibit a significant advantage in terms of execution
speed, but their performance on F1-score is sub-
par. The main reason is that these models merely
employ simplistic methods to solve tasks, thereby
gaining an edge in execution speed. Compared to
MRC models that also utilize Longformer encod-
ing, our model engages in more interactions during
the matching process. This leads to a marginally
slower execution speed, but concurrently, superior
performance on F1-score of our model.
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(a) Co-occurring word graph.
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(b) Topic graph.

Figure 4: Co-occurring word graph and the topic graph. Multiple graphs of are put together for better
illustration.

Dataset Method Execution Speed

RR-submission

PL-H-LSTM-CRF 1m12s
MT-H-LSTM-CRF 1m03s

MLMC 2m13s
MGF 50s

MRC-APE 3m21s
GPT-3.5 53m
GPT-4 48m

Our SADGCN 5m25s

RR-passage

PL-H-LSTM-CRF 1m13s
MT-H-LSTM-CRF 1m03s

MLMC 2m14s
MGF 52s

MRC-APE 3m24s
GPT-3.5 51m
GPT-4 47m

Our SADGCN 5m31s

Table 4: The speed of execution on test set.

6. Conclusion

In this work, a SADGCN model is developed to
improve the APE task. The model incorporates
co-occurring words and topic information to en-
hance the reliability of argument pairing. By con-
sidering the lexical and semantic relevance of argu-
ments, the built RCGCN mitigates unreliable pair-
ings caused by the number of co-occurring words.
Additionally, a topic graph characterizes sentence
relations of the same topic, enabling deeper sen-
tence comprehension and reducing reliance on co-
occurring words alone. The integration of these
two types of information facilitates the extraction of
argument pairs, resulting in SOTA performance on
the benchmark dataset.

7. Limitations

Based on the empirical study, our model accurately
extracts only 40% of arguments consisting of more
than 10 sentences. This could be because AM is

viewed as a task focused on annotating sentence-
level sequences, making it difficult to differentiate
and identify the diverse argument spans.

For another, errors generated in AM can cause
the unreliability of SP results. In our work, a minor
focus is to eliminate the issue of error propagation.
Comparing the working performances of AM and
SP, error propagation results in performance degra-
dation of at least 15%. In general, our model is less
effective in dealing with arguments of complicated
sentences. Besides, the mitigation of error propa-
gation is still in suspense, which can be addressed
in future work.

8. Ethical Considerations

Our study employed the publicly available dataset,
as presented by Cheng et al. (2020), for the pur-
pose of acquiring, training, and evaluating the mod-
els. Our methodology exclusively relied on textual
content and deliberately excluded the incorpora-
tion of any user profile information. It is crucial
to emphasize our firm condemnation of any form
of misuse of our model that may undermine data
security, compromise privacy protection, or violate
ethical standards.
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