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Abstract
The predominant sense of a lemma can vary based on the timeframe (years, decades, centuries) that the text was
written. In our work, we explore the predominant sense of shorter timeframes (days, months, seasons, etc.) and find
that different short timeframes can have different predominant senses from each other and from the predominant
sense of a corpus. Leveraging the predominant sense and sense distribution of a short timeframe, we design
short timeframe temporal-aware word sense disambiguation (WSD) models that outperform a temporal agnostic
model. Likewise, author-aware WSD models tend to outperform author agnostic models, therefore we augment our
temporal-aware models to leverage knowledge of author-level predominant senses and sense distributions to create
temporal and author-aware WSD models. In addition to this, we found that considering recent usages of a lemma by
the same author can assist a WSD model. Our approach requires the use of only a small amount of text from authors
and timeframes.

Keywords: Word sense disambiguation, Temporal-aware, Personalization

1. Introduction

Gella et al. (2014) found that individual Twitter
users tend to favour a sense for a specific lemma,
which might not be the same sense for all users.
This suggests that a word sense disambiguation
(WSD) model should treat authors of text more
uniquely by tailoring themselves toward each au-
thor. King and Cook (2021) used author-aware
personalized WSD models for each author of text
by leveraging knowledge of a single author’s pre-
dominant sense or sense distributions. Their
author-aware models outperformed models that
were author-agnostic and models that considered
the predominant sense or sense distributions of a
group of authors. Following the themes of Gella
et al. (2014) and King and Cook (2021), we ex-
plore if different senses tend to be favoured within
specific temporal segments, which we then use
to create WSD models that are tailored toward a
specific temporal segment (day, month, season).

Many social media platforms include a times-
tamp with each post that a user publishes, which
makes access to temporal information relatively
feasible as opposed to metadata that is more dif-
ficult to obtain, such as the author’s age, gender,
and geolocation. We use the same dataset that
was used by King and Cook (2021), which con-
tains 1586 sense-annotated instances of nouns
contained in timestamped blog posts and was orig-
inally used in Schler et al. (2006). Our analysis
shows that different temporal segments tend to
favour specific senses, which can differ among
each temporal segment. Following this finding, we
then explore the potential of WSD models that are

tailored toward a temporal segment. Specifically,
we use the same underline WSD model, known
as SensEmBERT (Scarlini et al., 2020a), that King
and Cook (2021) used in their personalized WSD
model. Alternative WSD models include ARES
(Scarlini et al., 2020b) — a WSD model that gener-
ates sense embeddings through semi-supervision
while performing well on multilingual WSD tasks —
and LMMS (Loureiro and Jorge, 2019) — a model
that leverages contextual embeddings from BERT
to perform WSD. We tailor SensEmBERT to spe-
cific temporal segments using similar techniques
that were used by King and Cook (2021) along with
our proposed techniques, which consider temporal-
based predominant senses or sense distributions.
Our findings show that our proposed models, which
are tailored toward temporal segments, outperform
models that do not consider temporal information.
However, models that are tailored toward individual
authors outperform temporal-based models. Our
final set of experiments involves proposing mod-
els that consider both author-level and temporal-
level information, which achieves our highest per-
formance.

2. Related Work

Many modern knowledge-based WSD models in-
corporate a Lesk-based approach (Lesk, 1986),
which involves comparing the overlap between a
target token with the gloss of candidate senses
and selecting the sense with the highest amount
of overlap. Banerjee et al. (2003) explored extend-
ing the gloss of senses with the gloss of similar
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senses, which increased the amount of text rep-
resenting each sense. Blevins and Zettlemoyer
(2020) proposed a bi-encoder model to embed the
target word with its context and gloss of senses.
This method can reduce the error rate of predict-
ing non-frequent word senses. Basile et al. (2014)
incorporated word vectors to embed the context
of a target token, whose similarity to the embed-
ding of candidate senses is used to assign a sense.
SensEmBERT (Scarlini et al., 2020a) extends this
idea of embedding the context of a target token
and measuring the similarity to an embedding that
represents a sense. They generated a sense-level
embedding using BERT (Devlin et al., 2019) to
embed the gloss of a sense and concatenating it
with the embedding of Wikipedia articles related
to the words present in a sense’s gloss. Given a
target token, it’s context is embedded using BERT,
which is compared to candidate sense embeddings.
The sense that corresponds to the sense-level em-
bedding with the highest similarity is assigned to
the target token. Barba et al. (2021) approached
WSD as a span extraction problem and trained
a transformer-based model to extract the correct
definition of a word in context from a string of defi-
nitions.

WSD has been explored in a variety of domains,
such as editorial, news story, and fiction (Snyder
and Palmer, 2004); articles from the Wall street
Journal (Pradhan et al., 2007); printed text (Miller
et al., 1994); Twitter (Gella et al., 2014); and blog
posts (King and Cook, 2021). We perform our
experiments with English blog posts, which include
timestamps.

The most frequently used sense of a lemma —
known as the predominant sense — can change
across different temporal periods. For example,
the lemma cell could more likely be used in the
year 1500 with its sense referring to a room where
a prisoner is kept, but in 2023, it could more likely
be used with its sense that refers to a hand-held
mobile radiotelephone for use in an area divided
into small sections, each with its own short-range
transmitter/receiver. The change in the predomi-
nant sense across temporal periods have been the
interest of different groups. Mathew et al. (2017)
compared a topic modelling approach (Lau et al.,
2014), graph-based model (Mitra et al., 2014), and
a statistical-based model (McCarthy et al., 2007) to
detect the difference in predominant senses across
two corpora of different temporal periods (1987-
1995, 2006-2008). Loureiro et al. (2022) presented
a task called meaning shift detection along with a
dataset called TempoWiC based on Twitter. They
focused not only on the semantic representation
but also on the change of word senses over time.
Similarly, Schlechtweg et al. (2020) proposed a Se-
mEval shared task that involved determining which

word types had their number of senses changed
between two time-specific corpora and which word
types had a larger change in their meaning. Ku-
tuzov et al. (2018) discussed in their a survey a
breadth of findings from research related to di-
achronic word embeddings and how the meaning
of words can change over time. They also pre-
sented existing challenges and potential direction
of research related to the meaning of words chang-
ing over time, which includes, but are not limited to:
increasing the number of considered languages,
methods for smaller datasets, and exploring more
detailed analysis beyond the detection of a change
in meaning.

Beelen et al. (2021) introduced the task of time-
sensitive targeted sense disambiguation, which
involves determining if a given target token in times-
tamped text is related to a given sense. They look
at samples from 1760-1920. Piao et al. (2017)
considered temporal information in their WSD tool
(Historical-Thesaurus-based Semantic Tagger) by
limiting the list of candidate senses to only consider
senses that occurred in a given temporal window
consisting of decades.

Unlike the recently mentioned works that focus
on long temporal periods, Gonen et al. (2020) in-
cluded shorter temporal periods in their experi-
ments. They compared the difference in senses
between two corpora by comparing the neighbours
of the same lemma in both corpora. Lemmas that
have a large difference in neighbours are labelled
as having different usages. They evaluated their
approach on corpora of tweets that were split on
one of the following characteristics: gender, age,
occupation, or if the tweet was posted on the week-
day/weekend.

3. Dataset

In this section, we discuss the dataset that was
used for our experiments.

3.1. Dataset Overview

To study temporal-aware WSD models, it requires
sense-annotated text with timestamps. Further-
more, we wanted to evaluate the performance of
WSD models with respect to individual authors.
Therefore, the dataset that was proposed by King
and Cook (2021) is ideal. This dataset contains
1586 sense annotated English blog samples. Each
sample contains one sense annotated noun and
the sample is associated with an author, and the
date that the blog was posted. They selected blog
samples that contain at least one lemma from a
list of 11 nouns, which resulted in obtaining text
from 36 authors. They annotated each sample with
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WordNet senses (Miller, 1995) through a crowd-
sourcing website (Amazon Mechanical Turk).

3.2. Temporal Types

In this work, we explore the benefits of including
temporal knowledge in WSD models, therefore,
we first analyse the dataset with respect to such
information. Each blog sample corresponds to a
posting date, which details the day and year that
it was posted. We use the posted date to calcu-
late different temporal types (day of month, day of
week, month, year, season). For example, the date
December 25, 2003 is a Thursday (day of week)
and in the Winter (season) of 2003 (year). The
distributions of samples for each temporal type is
shown in Figure 1. The number of samples in the
different weekday groups ranged from 176 (Sun-
day) to 316 (Monday), the number of samples in the
different season groups ranged from 280 (Fall) to
472 (Summer), and the number of samples in the
different month groups ranges from 77 (October)
to 237 (July). Regarding the years, the majority of
the samples were posted in 2003 and 2004.

Figure 1: Sample distribution for each temporal
type.

3.3. Predominant Senses

Gella et al. (2014) and King and Cook (2021) both
showed that different authors may have different
predominant senses for the same lemma. In this
work, we explore the possibility that different tem-
poral groups may also have different predominant
senses for the same lemma. We refer to a group
as a value within a temporal type. For example,
Thursday is a temporal group for the temporal type

day of the week. Figure 2a shows the proportion of
predominant senses of the lemma case on differ-
ent weekdays, which shows that within the seven
days, there were four different predominant senses.
Furthermore, only the Thursday group and Mon-
day group share the same predominant sense with
the whole dataset’s predominant sense. Similarly,
Figure 2b shows that for the lemma sign, only the
Winter and Summer groups share the same pre-
dominant sense with the whole dataset’s predomi-
nant sense.

To further analyze the predominant sense of tem-
poral types, we show the percentage of samples
in each data group having a different predominant
sense than the dataset’s predominant sense. Ta-
ble 1 shows how much each type — including the
author as a type — differs from the dataset’s pre-
dominant sense. Higher values indicate that our
temporal-aware models could have a larger poten-
tial impact on performance. Table 1 shows that
individual authors are more likely to deviate from
the dataset’s predominant sense than temporal
types. We found that some lemmas have values
close to 0 for some temporal types (form/season),
which indicates that using the predominant senses
of these temporal groups may not achieve better
performance over using the dataset’s predominant
sense. We also analyze the percentage of groups
that differ from the dataset’s predominant sense in
Table 2.

Lemma Author W_day Month Season Year
paper 0.594 0.641 0.469 0.271 0.557
position 0.568 0.000 0.182 0.000 0.000
sign 0.528 0.239 0.442 0.405 0.620
form 0.083 0.000 0.064 0.000 0.000
case 0.422 0.688 0.474 0.351 0.487
degree 0.521 0.527 0.685 1.000 0.370
track 0.479 0.336 0.363 0.288 0.075
deal 0.550 0.000 0.379 0.000 0.186
field 0.512 0.372 0.372 0.198 0.116
rule 0.414 0.273 0.212 0.263 0.000
charge 0.312 0.118 0.118 0.000 0.000
Mean 0.453 0.290 0.342 0.252 0.219

Table 1: Percentage of samples in the data groups
which have predominant senses differing from the
dataset predominant sense. W_day indicates day
of the week.

3.4. Sample Window

The final temporal type that we explore is a more
dynamic type, which we call a sample window. In
this type, we consider the senses used in a window
of time preceding a selected blog sample. We
found that 42.1% of the time, the author used the
same sense twice in a row for the same lemma.
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(a) (b)

Figure 2: Proportion of predominant senses for the different weekdays (a) and seasons (b) of the lemmas
case (a) and sign (b). Green bar indicates that the predominant sense of the group is the same as the
dataset’s predominant sense.

Lemma Author W_day Month Season Year
paper 0.600 0.714 0.500 0.250 0.500
position 0.600 0.000 0.250 0.000 0.000
sign 0.500 0.286 0.417 0.500 0.750
form 0.100 0.000 0.083 0.000 0.000
case 0.400 0.714 0.583 0.500 0.333
degree 0.600 0.571 0.583 1.000 0.600
track 0.500 0.429 0.333 0.250 0.333
deal 0.500 0.000 0.417 0.000 0.333
field 0.600 0.429 0.417 0.250 0.333
rule 0.400 0.429 0.250 0.250 0.000
charge 0.400 0.286 0.167 0.000 0.000
Average 0.473 0.351 0.364 0.273 0.289

Table 2: Percentage of groups that differ from the
dataset predominant sense. W_day indicates day
of the week.

4. Methods

In this section, we describe our WSD models. Each
model will predict the sense of each target token
from the dataset.

4.1. Baseline Methods

For our baseline models, we consider two different
WSD models: the original SensEmBERT model,
and an all-in-one predominant sense model.

4.1.1. SensEmBERT - SEBERT

Our first baseline model uses SenseEmBERT1 as
it was originally proposed (Scarlini et al., 2020a).
SensEmBERT provides sense embeddings of
synsets in BabelNet by concatenating the embed-
ding of Wikipedia articles about a target token with
the embedding of text about the token in BableNet.
BERT (Devlin et al., 2019) is used to generate em-
beddings. The concatenated embeddings are av-
eraged to get the embedding of each synset/sense.
Given a token in context, we embed the token using
BERT and measure the cosine similarity between
the token’s embedding and the candidate SensEm-
BERT sense embeddings. This model will assign
the sense with highest cosine similarity. We refer
to this model as SEBERT.

4.1.2. Predominant Sense - PREDOM

This model always predicts the predominant sense
of each data group. We consider the author’s pre-
dominant sense and the dataset’s predominant
sense along with our temporal types — collectively
we refer to them as data groups. We refer to this
model as PREDOM.

4.2. SensEmBERT Sense Distribution -
SEBERT_SENSE_DISTRI

Following King and Cook (2021), we assume knowl-
edge of sense distributions of a given group and

1SensEmBERT is licensed under a Creative Com-
mons Attribution-Noncommercial-Share Alike 4.0 Li-
cense.
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use their model’s design to combine the sense dis-
tribution with the methods used in SensEmBERT.
This model uses cosine similarity of the BERT em-
bedded target token with SenseEmBERT’s sense
embeddings to rank the candidate senses. The
inverse of each sense’s rank is multiplied by the
probability of that sense occurring for some data
group. The detail is shown in the Equation 1. The
difference between our model and King and Cook
(2021) is that we consider temporal knowledge. We
refer to this model as SEBERT_SENSE_DISTRI.

score(sense) = p(sense|data group) ∗ 1
sense rank (1)

4.3. SensEmBERT Predominant Sense
Rank - SEBERT_PREDOM_RANK

For this model, we consider the predominant sense
model used by King and Cook (2021). This model
assigns the sense with the highest cosine similarity
according to SenseEmBERT, unless the predom-
inant sense is in the top k ranked senses. This
model will assign the predominant sense when
the predominant sense is in the top k ranked
senses. In this model, k is a hyperparameter that
is tuned. Again, the difference between our model
and King and Cook (2021) is that we consider tem-
poral knowledge. We refer to this model as SE-
BERT_PREDOM_RANK.

4.4. SensEmBERT Predominant Sense
Cosine Difference -
SEBERT_PREDOM_SIM

The previous ranked-based model loses informa-
tion by only considering the rank of the predicted
sense and not the similarity score. In this model,
we use the similarity score to assist our sense clas-
sification by comparing the difference of SenseEm-
BERT’s highest cosine similarity and the cosine
similarity of the predominant sense. Specifically,
assume the highest cosine similarity among all
candidate senses according to SensEmBERT is
c1 and the cosine similarity of the predominant
sense is c2. The difference for this sample is
d = |c1 − c2|. If d is smaller than some thresh-
old t, our model will predict the predominant sense,
otherwise, the sense with the highest similarity
is assigned. Threshold t is a hyperparameter
that is tuned. We refer to this model as SE-
BERT_PREDOM_SIM.

4.5. SensEmBERT Double Predominant
Sense Model

In this model, we explore the potential performance
gained by considering both the predominant sense
of a temporal group and the predominant sense
of a specific author. Similar to previous methods,

we consider both the rank-based method and the
cosine similarity-based method. The model will
assign the sense with with highest similarity ac-
cording to SensEmBERT if both of the two pre-
dominant senses (temporal/author) can not sat-
isfy the rank condition or cosine difference condi-
tion that we mentioned in earlier methods. Oth-
erwise, the model will assign the predominant
sense with the better rank or the smaller simi-
larity difference. We refer to these models as
SEBERT_DPR and SEBERT_DPS, which extend
the models SEBERT_PREDOM_RANK and SE-
BERT_PREDOM_SIM, respectively.

4.6. SensEmBERT Sample Window
Model

In this model, we consider the sample window that
was discussed in Section 3.4. This model uses only
the predominant sense of the temporally nearest
samples of the target sample to support its predic-
tion. The sample window incorporates a windows
size, which is adjusted to consider more samples
that were posted prior to this sample. We only con-
sider samples that contain annotated instances of
the target lemma. The predominant sense of the
samples in the window is taken as the input of SE-
BERT_PREDOM_SIM to make the prediction. We
refer to this model as SEBERT_SAMPLE_WIN.

5. Experimental Results

In this section, we measure the performance of
our WSD models on the given dataset by cal-
culating the mean accuracy. We evaluate our
models using different types of temporal and
author-based predominant senses. The nam-
ing of each model includes the method prefixed
with the type of knowledge that model is using.
For example, Month SEBERT_PREDOM_RANK
uses the SEBERT_PREDOM_RANK model while
considering the month temporal type, and Au-
thor+Season SEBERT_PREDOM_SIM uses the
SEBERT_PREDOM_SIM model while considering
the author and season types.

5.1. Tuning SEBERT_PREDOM_RANK

SEBERT_PREDOM_RANK requires tuning of the
hyperparameter k, which represents the rank
threshold. Figure 3 shows the accuracy of each
model for each value of k. We explored sense
rank thresholds from 2 to 8 and see that all models
perform as well or better than the SensEmBERT
baseline with values for k ranging from 2 to 5. We
summarized the highest accuracy of each rank-
based model with its corresponding value for k in
Table 3.
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Figure 3: Accuracy for each SEBERT_PREDOM_RANK model.

SEBERT_PREDOM_RANK Accuracy k
Year 0.622 3
Weekday 0.625 3
Season 0.644 3
Month 0.645 3
Author 0.66 3
Author+Year 0.673 3
Author+Season 0.692 4
Author+Weekday 0.714 5
Author+Month 0.762 6
SEBERT 0.574 –

Table 3: The highest accuracy of each SE-
BERT_PREDOM_RANK and its corresponding op-
timal value for k.

5.2. Tuning SEBERT_PREDOM_SIM

We tune the value for the hyperparameter t for
SEBERT_PREDOM_SIM models on a range from
0.01 to 0.08. Figure 4 shows the accuracy of each
model for each parameter t. All models outper-
form the SensEmBERT baseline under all values
of t. The highest accuracy and its corresponding
parameter t for each model are shown in Table 4.

5.3. Analysis

Due to the non-uniform distributions of our dataset,
accuracy across authors is applied as an important
metric. In this section, we evaluate models us-
ing accuracy across authors and accuracy across
instances.

SEBERT_PREDOM_SIM Accuracy t
Year 0.625 0.05
Weekday 0.644 0.05
Month 0.645 0.05
Season 0.648 0.05
Author 0.682 0.06
Author+Year 0.704 0.06
Author+Season 0.724 0.06
Author+Weekday 0.754 0.07
Author+Month 0.799 0.06
SEBERT 0.574 —

Table 4: The highest accuracy of each model and
its corresponding optimal value for t.

5.3.1. Performance of Temporal Models

We first compare the performance of models that
use our different temporal types (season, month,
and weekday). Table 5 shows the accuracy of
PREDOM, SEBERT_SENSE_DISTRI, and SE-
BERT_PREDOM for each temporal type across
instances and authors — SEBERT_PREDOM
represents SEBERT_PREDOM_RANK or SE-
BERT_PREDOM_SIM. In terms of accuracy, all
SEBERT_PREDOM models outperform PREDOM
models using the same predominant sense and
all SEBERT_SENSE_DISTRI models outperform
the corresponding SEBERT_PREDOM models.
What’s more, all SEBERT_SENSE_DISTRI mod-
els and SEBERT_PREDOM models outperform
SEBERT. This suggests that the inclusion of author
level and temporal level predominant senses has
improved the performance of the models. In addi-
tion, temporal SEBERT_PREDOM models gener-
ally outperform dataset SEBERT_PREDOM mod-
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Figure 4: Mean accuracy for each SEBERT_PREDOM_SIM model.

els across instances, but only slightly across au-
thors. The personalized author-aware models’ per-
formances are better than all temporal models,
which indicates the potential gains of acquiring
author-level sense knowledge. Most of the SE-
BERT_PREDOM_SIM models are better than the
SEBERT_PREDOM_RANK models.

To show the fairness of temporal-based models,
we measure the performance of the models that
consider month on each author in Figure 5. The
majority of authors with below-average accuracy
(less than 55%) received a better performance with
a month-aware model than a temporal agnostic
model (SEBERT). Likewise, we show the perfor-
mance for each author using personalized models
in Figure 6.

Figure 5: Author-level performance of temporal
models using month-level knowledge and SEBERT.
Authors are in ascending order with respect to the
performance of SEBERT.

Figure 6: Author-level performance of personalized
models using author-level knowledge and SEBERT.
Authors are in ascending order with respect to the
performance of SEBERT.

5.3.2. Performance of Personalized Temporal
Models

For the personalized temporal models, the two
best-performing temporal types are applied in our
analysis (Author+Weekday, Author+Month). The
accuracy of each personalized temporal model and
baselines are shown in Table 6. Similar to tempo-
ral models, SEBERT_PREDOM outperforms PRE-
DOM using the same predominant sense and all
SEBERT_SENSE_DISTRI outperform the corre-
sponding SEBERT_PREDOM. Among these two
kinds of author+temporal type models, the Au-
thor+Month models achieve better performance.

Figure 7 shows the performance of Au-
thor+Month models on individual authors. This
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Method Instance Author
Author
PREDOM 0.552 0.569
SEBERT_SENSE_DISTRI 0.718 0.741
SEBERT_PREDOM_RANK 0.66 0.677
SEBERT_PREDOM_SIM 0.682 0.706
Season
PREDOM 0.4 0.4
SEBERT_SENSE_DISTRI 0.67 0.668
SEBERT_PREDOM_RANK 0.644 0.662
SEBERT_PREDOM_SIM 0.648 0.667
Month
PREDOM 0.441 0.445
SEBERT_SENSE_DISTRI 0.706 0.7
SEBERT_PREDOM_RANK 0.645 0.667
SEBERT_PREDOM_SIM 0.653 0.669
Weekday
PREDOM 0.423 0.432
SEBERT_SENSE_DISTRI 0.693 0.709
SEBERT_PREDOM_RANK 0.625 0.643
SEBERT_PREDOM_SIM 0.644 0.669
Dataset
PREDOM 0.384 0.396
SEBERT_SENSE_DISTRI 0.660 0.664
SEBERT_PREDOM_RANK 0.632 0.667
SEBERT_PREDOM_SIM 0.628 0.666
SEBERT 0.574 0.611

Table 5: Accuracy of temporal models averaged
across instances and authors. Models are grouped
by their prefix (Author, Season, Month, weekday,
Dataset, which indicates the type of knowledge
that the model is leveraging.)

Method Instance Author
Author+Month
PREDOM 0.749 0.771
SEBERT_SENSE_DISTRI 0.873 0.894
SEBERT_PREDOM_RANK 0.762 0.777
SEBERT_PREDOM_SIM 0.799 0.808
Author+Weekday
PREDOM 0.682 0.708
SEBERT_SENSE_DISTRI 0.835 0.855
SEBERT_PREDOM_RANK 0.714 0.745
SEBERT_PREDOM_SIM 0.754 0.786
Author
PREDOM 0.552 0.569
SEBERT_SENSE_DISTRI 0.718 0.741
SEBERT_PREDOM_RANK 0.660 0.677
SEBERT_PREDOM_SIM 0.682 0.706
SEBERT 0.574 0.611

Table 6: Accuracy of personalized temporal models
across instances and authors. Models are grouped
by their prefix (Author+Month, Author+Weekday,
Author, which indicates the type of knowledge that
the model is leveraging.

model performs better than SEBERT for all authors
up to where SEBERT achieves approximately 70%.
Although, even for authors whose receive an accu-
racy higher than 70%, the majority of the authors
benefit from the Author+Month models.)

Figure 7: Author-level performance of Au-
thor+Month models and SEBERT. Authors are in
ascending order with respect to the performance
of SEBERT.

5.4. Performance of Personalized Models
with Double Predominant Sense

In this section we compare the performance of
double predominant sense personalized models,
including SEBERT_DPR and SEBERT_DPS.
Similarly, for SEBERT_DPR, we tuned parameter
k on a range from 1 to 7, and for SEBERT_DPS,
we tuned parameter t on a range from 0.01 to
0.08. Table 7 shows the optimal parameter of each
double predominant sense model. We find that
the accuracy of SEBERT_DOUBLE_PREDOM
is somewhere between that of temporal SE-
BERT_PREDOM and author+temporal type
SEBERT_PREDOM. Compared with both
author SEBERT_PREDOM and temporal SE-
BERT_PREDOM, SEBERT_DOUBLE_PREDOM
performs better.

We choose the two best performing data
group types (Author&Weekday and Author&Month)
and use them for this method. The accura-
cies of Author&Weekday and Author&Month SE-
BERT_DOUBLE_PREDOM across instances and
authors are shown in Table 8. We find that SE-
BERT_DPS outperforms SEBERT_DPR by about
0.02 in terms of accuracy. Furthermore, SE-
BERT_DPS achieved far better performance than
PREDOM and SEBERT.



14684

SEBERT_DPR Accuracy k
Author&Weekday 0.69 4
Author&Season 0.672 3
Author&Year 0.668 3
Author&Month 0.677 3
SEBERT_DPS Accuracy t
Author&Weekday 0.711 0.06
Author&Season 0.694 0.06
Author&Year 0.692 0.06
Author&Month 0.694 0.06

Table 7: The highest accuracy of each double pre-
dominant sense model using the Rank method
SEBERT_DPR and the Similarity method SE-
BERT_DPS with their optimal parameter k.

Method Instance Author
Month PREDOM 0.441 0.445
Weekday PREDOM 0.423 0.432
Author PREDOM 0.552 0.569
SEBERT 0.574 0.611
Author&Month SEBERT_DPR 0.677 0.689
Author&Month SEBERT_DPS 0.697 0.711
Author&Weekday SEBERT_DPR 0.69 0.713
Author&Weekday SEBERT_DPS 0.711 0.735

Table 8: Mean accuracy across instances and au-
thors for PREDOM, SEBERT, SEBERT_DPR, and
SEBERT_DPS.

5.5. Performance of
SEBERT_Sample_WIN

For SEBERT_Sample_WIN, we explored differ-
ent window sizes from 1 to 5 and the thresh-
old t from 0.03 to 0.06. Table 9 shows the
accuracies for SEBERT_Sample_WIN across
instances for each sample window and t. Al-
though SEBERT_Sample_WIN is superior to SE-
BERT, it is still not comparable to author SE-
BERT_PREDOM_SIM.

w
t 0.03 0.04 0.05 0.06

1 0.61 0.622 0.626 0.614
2 0.61 0.622 0.626 0.614
3 0.62 0.628 0.629 0.62
4 0.625 0.637 0.645 0.64
5 0.627 0.636 0.637 0.631

Table 9: Performance of SEBERT_Sample_WIN
against w (window size) and t.

6. Conclusion

In this work, we found that short timeframe
temporal-aware WSD models outperform temporal-
agnostic models, while only requiring a relatively
small amount of text. We considered the day

of the week, month, and season when the text
was posted to assist with labelling a token with its
proper sense. We found that personalized models
that considered author-level sense information out-
performed temporal-aware models, but we were
able to achieve our best performances when con-
sidering both author and temporal sense-based in-
formation. Author-level sense information could be
difficult to obtain or estimate due to author-specific
text being a relatively-low resource, but obtaining
temporal-based sense information could be more
obtainable because we can gather text from mul-
tiple authors for a specific temporal group. We
also considered a sample window approach that
looked at how the target lemma was recently used,
which outperformed a temporal-agnostic model.
We proposed models to incorporate knowledge
of predominant senses and sense distributions,
which includes models that can incorporate both
the author-based sense information and temporal-
based sense information. This work assumes
knowledge of either the predominant senses or
sense distributions of lemmas, therefore, a natural
step in future work would be to explore models
that estimate the predominant sense of a temporal
group or an individual author. Although we focused
on SensEmBERT to show that temporal-based in-
formation can be leveraged to better performance
of an embedding-based WSD model, we believe
that the same tailoring techniques can be applied
to models such as ARES (Scarlini et al., 2020b)
and LMMS (Loureiro and Jorge, 2019), which we
will consider in future work. Furthermore, we plan
on leveraging different representations of the times-
tamps, such as the embedding model from Goyal
and Durrett (2019), to build better temporal-aware
WSD models.

7. Ethical Considerations

Our proposed models have only been tested on
English text. Due to the limited information avail-
able from the dataset, we aren’t able to speak on
the dialect of the English. We hope that by consid-
ering the idiolect of each author that we mitigate
the potential bias toward a dialect, but we are un-
able to evaluate that hypothesis with this dataset.
We don’t have any indication of the performance
of our models for authors whose age is outside
the range of 17 years to 48 years, since that is the
range of ages for the authors in the dataset. The
dataset contains 10 authors that are female and
26 authors that are male, which we don’t consider
in our evaluation.
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